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We calibrated upward sensing profiling and downward sensing scanning LiDAR systems to estimates of
canopy fuel loading developed from field plots and allometric equations, and then used the LiDAR datasets to
predict canopy bulk density (CBD) and crown fuel weight (CFW) in wildfire prone stands in the New Jersey
Pinelands. LiDAR-derived height profiles were also generated in 1-m layers, and regressed on CBD estimates
calculated for 1-m layers from field plots to predict three-dimensional canopy fuel loading. We then produced
maps of canopy fuel metrics for three 9 km2 forested areas in the Pinelands.
Correlations for standard LiDAR-derived parameters between the two LiDAR systems were all highly
significant, with correlation coefficients ranging between 0.82 and 0.98. Stepwise linear regression models
developed from the profiling LiDAR data predicted maximum CBD and CFW (r2=0.94 and 0.92) better than
those developed from the scanning LiDAR data (r2=0.83 and 0.71, respectively). A single regression for the
prediction of CBD at all canopy layers had r2 values of 0.93 and 0.82 for the profiling and scanning datasets,
respectively. Individual bin regressions for predicting CBD at each canopy height layer were also highly
significant at most canopy heights, with r2 values for each layer ranging between 0.36 and 0.89, and 0.44 and
0.99 for the profiling and scanning datasets, respectively. Relationships were poorest mid-canopy, where
highest average values and highest variability in fuel loading occurred. Fit of data to Gaussian distributions of
canopy height profiles facilitated a simpler expression of these parameters for analysis andmapping purposes,
with overall r2 values of 0.86 and 0.92 for the profiling and scanning LiDAR datasets, respectively. Our research
demonstrates that LiDAR data can be used to generate accurate, three-dimensional representations of canopy
structure and fuel loading at high spatial resolution by linking 1-m return height profiles to biometric
estimates from field plots.
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1. Introduction

Wildland fire managers have a strong interest in accurately
mapping the structural characteristics of forest canopies. Maps of
canopy fuel loading can be used to predict fire behavior and guide
operational responses during active fire suppression, to prioritize
areas for hazardous fuel reduction treatments, and to evaluate the
effects of past fires or other disturbances. Thus, maximizing the
accuracy of canopy fuel maps is vital to guiding the effective allocation
of resources by fire management agencies. Fire behavior models such
as NEXUS (Scott, 1999), FARSITE (Finney, 2004), and CFIS (Alexander
et al., 2006) all use a generalized metric, termed canopy bulk density
(CBD), to characterize canopy fuels. CBD is a measure of the mass of
foliage and small branch wood that is available for combustion per
unit volume within a forest stand (kg m−3 of combustible foliage and
twigs; van Wagner, 1977). A second associated variable is total
canopy fuel weight (CFW), defined as the total fuel that could be
consumed within the canopy per unit ground area (kg m−2).

Typically, CBD and CFW aremeasured using destructive harvesting
techniques at the plot level. Data are then used to develop species-
specific regression models to predict CBD and CFW from standard
forest biometric measurements such as tree density, mean height, and
diameter at breast height (DBH; diameter at 1.37 m) (Duveneck and
Patterson, 2007; Keane et al., 1998, 2000). These biometricmodels can
then be used to estimate CBD and CFW across larger areas using plot-
based datasets such as USDA Forest Inventory and Analysis data
(http://fia.fs.fed.us/). Optical and other indirect estimation methods
have also been used to estimate canopy fuels at the plot level (Keane
et al., 2005). While these estimation techniques have proven effective
for the prediction of canopy fuels and crown fire potential at the scale
of individual stands and in larger homogeneous management units, it
is difficult to estimate crown fuels accurately across uneven aged,
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disturbed, or otherwise heterogeneous forested landscapes. However,
accurate mapping of these variables across landscapes characterized
by heterogeneous canopy structure (both horizontally and vertically)
and variable fuel loadings is important because fire behavior will tend
to be much more dynamic and unpredictable.

With recent advances in Light Detection and Ranging (LiDAR)
applications, a number of studies have demonstrated the potential use
of LiDAR technology to generate landscape-scale maps of CBD, CFW
and other canopy fuel parameters (Andersen et al., 2005; Clark et al.,
2009; Riaño et al., 2004; Skowronski et al., 2007). Much of this work
utilized standard LiDAR parameters such as maximum return height,
average return height, percent cover, and decile height distributions,
combined with data from forest biometric plots to develop regression
models to predict canopy fuels (Andersen et al., 2005; Skowronski
et al., 2007). LiDAR-derived parameters also have been used in the
assignment of fire behavior models (e.g., Scott and Burgan, 2005)
based on the fusion of LiDAR and reflectance data (Mutlu et al., 2008).
In addition, LiDAR-derived canopy height profiles (CHPs), which
provide structural data in 1-m layers, have been used to characterize
the three-dimensional distribution of biomass and fuel loading
parameters through the forest canopy using full-waveform LIDAR
(Parker et al., 2004a), downward sensing discrete-return profiling
data (Skowronski et al., 2007), and discrete-return scanning LIDAR
data (Popescu and Zhao, 2008).

An important next step in the generation of accurate three-
dimensional representations of canopy fuel loading across forested
landscapes is linking LiDAR-derived return height profiles with field
biometric measurements to generate high-resolution profiles of CBD
at discrete canopy heights. Representations of canopy fuel loading in
a three-dimensional grid space would considerably expand upon our
current use of two-dimensional canopy fuel characteristics such as
CBDmax and CFW. In one approach, Stoker (2009) discussed the use of
voxels as a potential way to characterize forest fuels in three
dimensions using LiDAR data. This more accurate assessment of
canopy fuel structure facilitates the development and parameteri-
zation of more complex fire spread models. For example, the
Wildland-urban interface Fire Dynamics Simulator (WFDS) is now
able to simulate fire spread through individual trees and shrubs with
horizontal and vertical resolutions as fine as 8.5 cm (Mell et al.,
2006).

Our study focuses on the ability of two independent LiDAR systems
to assess canopy fuel characteristics in pitch pine (Pinus rigida Mill.)-
dominated stands that are prone to wildfires in the Pinelands of New
Jersey. We first developed allometric estimates of canopy bulk density
and crown fuel weight in 24 field plots where we measured all trees.
We calculated CBD and CFWusing amodel developed from harvesting
of pitch pine by Duveneck and Patterson (2007) to predict these
variables. We then calibrated two commonly used LiDAR systems, an
upward sensing profiling system and a downward sensing scanning
system, to these field plots. While the use of scanning LiDAR to
estimate canopy fuels allows large-spatial scale estimates and
landscape level maps of canopy fuels, the more mobile and less
expensive upward sensing profiling LiDAR system can provide
immediate canopy fuel estimates. We used three approaches to
calibrate the LiDAR systems in these stands; 1) we developed
regression equations between standard LiDAR return parameters
and biometric estimates of CBD and CFW derived from the field plots,
2) we developed regressions between LiDAR CHPs and biometrically
derived canopy bulk density profiles to predict canopy fuels at 1-m
intervals through the canopy, and 3) we fit Gaussian distributions to
the LiDAR-derived CHPs and to the biometric CBD profiles, and
evaluated the ability of these three-parameter algorithms to condense
the information involved in themapping of three-dimensional canopy
fuels. We then explored the utility of these three approaches to
characterize and visualize canopy fuel loads in pitch pine–scrub oak
stands in the Pine Barrens of New Jersey.
2. Methods

2.1. Study area

Study sites are located in Ocean and Burlington Counties in the
PinelandsNational Reserve (hereafter, Pinelands) of southernNew Jersey.
The Pinelands encompass ca. 400,000 ha of pine and oak-dominated
upland forests, and variouswetland forest types. Upland forests comprise
62% of forested land. Stands are dominated by pitch pine, shortleaf pine
(Pinus echinata Mill.), and various oaks (Quercus spp.) in three major
communities; oak-dominated communities with scattered pines (Oak–
pine, 46% of upland forests), pine-dominated forests with oaks in the
overstory (Pine–oak, 31% of upland forests), and pitch pine-dominated
forests with scrub oak and shrubs in the understory (Pine–scrub oak, 23%
of upland forests) (Clark et al., 2009; Lathrop and Kaplan, 2004;
McCormick and Jones, 1973; Skowronski et al., 2007). All upland forests
have moderate to dense shrub cover in the understory, primarily
Vaccinium spp., Galussacia spp., Kalmia spp., and Quercus spp. (Wright
et al., 2007). Various sedges, mosses and lichens are also present.

2.2. Field methods

2.2.1. Field plots and biometric measurements
We conducted our field sampling within three scanning LiDAR

acquisitions, each measuring 9 km2 (Fig. 1). Within each 9 km2

acquisition, the 2001 NJ Land-Use/Land Change map (Lathrop and
Kaplan, 2004) was used to delimit stands consisting of N75% pitch
pine overstory in pitch pine–scrub oak stands. Field plot locations
were generated using random UTM coordinates, and were in stands
that were at least 4 ha in size, buffered by a minimum of 100 m from
the edge of the stand, and at least 100 m apart from each other. Using
these criteria, we established 24 20×20 m plots. The UTM coordinates
of the plot corners were recorded using a high-accuracy, differentially
corrected GPS (Pathfinder ProXT, Model # 52240-20, Trimble
Navigation Limited, Sunnyville, CA) in order to accurately georefer-
ence the scanning LiDAR point clouds to the plot locations. Positional
accuracy was recorded at sub-m precision, and when differentially
corrected, had a mean reported standard deviation of 0.4 m for 96
recorded points (24 plots with 4 corners per plot). We then recorded
species and crown class (dominant, co-dominant, intermediate, or
suppressed), and measured diameter at breast height (DBH) and tree
height using a Hypsometer (Haglof VL400, Haglof Sweden AB,
Langsele, Sweden) for each tree N2 m height (the height at which
they would be detected by the upward-looking LiDAR sensor) in each
plot.

We focused our field sampling efforts on the 9 km2 acquisition
around the Cedar Bridge fire tower in Greenwood Wildlife Manage-
ment Area in the Pinelands (Fig. 2). The upper right corner of the
image indicates the location of a 8,000 ha wildfire that occurred in
1995, and areas where crowning occurred are denoted with blue
cross-hatch. The area in the light green strip running north to south
near the center of the image is managed as a fuel break, and
prescribed fires are conducted every 2–3 years (Fig. 2).

2.2.2. Upward sensing profiling LiDAR measurements
We used an upward sensing, profiling LiDAR systemmounted on a

backpack frame to collect data in each field plot. The instrumentation
consisted of a discrete-return Riegl Laser Rangefinder (Model # LD90-
3100VHS-FLP, Riegl USA, Orlando, FL), with a range of 0.1–200 m,
connected to a PDA which collected first returns at 100 Hz via the RS-
232 port. Spot size for this instrument ranges from 12.4 cm2 at 1 m to
25.6 cm2 at 50 m (Parker et al., 2004b). The instrument was paced at a
constant rate along 20 north–south oriented transects spaced 1 m
apart within each plot. Sky shots (laser pulses that passed through the
canopy) were recorded as null values. Data below 2 m were not
collected because the LiDAR instrument wasmounted in the backpack



Fig. 1. Study sites in the Pinelands National Reserve, southern New Jersey. The inset shows the Pinelands National Reserve and black lines denote the location of the three 9-km2

scanning LiDAR acquisitions intensive study areas where overlapping LiDAR data were collected. The larger map indicates the major upland forest types (adapted from Lathrop and
Kaplan, 2004; Skowronski et al., 2007).
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at approximately 2 m above the ground. We recorded an average of
2007±516 pulses (mean±1 SD) per each 20 m line, for a total of
40,140±10,328 pulses for each field plot.

2.2.3. Downward sensing scanning LiDAR measurements
A multiple return scanning LiDAR system (Optech ALTM 2025/

2050, Optech Incorporated, Vaughn, Ontario) was flown over the
three 9 km2 study areas via fixed-wing aircraft on June 9, 2006 during
leaf-on conditions by Airborne 1 Corp. (El Segundo, CA). The spot size
for this instrument was ca. 95 cm2 based on the manufacturer's
specifications. These data had an average spacing of ca. 4 pulses m−2,
resulting in 704±259 pulses for each 20 by 20 m plot. Between one
and four returns were associated with each laser pulse, but only first
returns were used for analyses, facilitating direct comparisonwith the
profiling LiDAR sensor which recorded only first returns.
2.3. Data analyses

2.3.1. Field plots and biometric measurements
Canopy fuel parameters were calculated for each field plot using

allometric equations for pitch pine derived from Duveneck and Patterson
(2007). They used destructive harvests of trees ranging from 2.7 to
42.5 cm DBH and 4.1 to 23.8 m height in Montague, MA, and Martha's
Vineyard, MA, to develop allometric equations to predict CFW, and then
derived equations to calculate a profile of the distribution of canopy bulk
density through the canopy. Their CBDbin distribution was calculated
using a 3-m runningmean of canopy fuel to estimate CBDbin in 1-m layers
for each tree (Scott and Reinhardt, 2001). We used their CBD calculator
(http://www.umass.edu/nebarrensfuels/methods/index.html) to esti-
mate CFW and CBDbin in 1 m layers for all trees measured in each field
plot, and summed data for all trees to develop whole-plot estimates of

http://www.umass.edu/nebarrensfuels/methods/index.html


Fig. 2.Digital orthophoto of the 9 km2 LiDAR acquisition near the Cedar Bridge fire tower taken immediately following the 1995 wildfire. Areas where crowning wildfire occurred are
depicted by blue cross-hatch in the upper right, and the area burned every 2–3 years using prescribed fires is shown as green cross-hatch from north to south in the center of the
image.
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CFW and CBDbin. CBDmax was calculated as the maximum mean 1m
CBDbin value in each plot.

2.3.2. LiDAR datasets
Standard LiDAR parameters were calculated from the profiling LiDAR

data for each plot, including maximum return height (hmax), average
return height (hmean), decile height values (h10, h25, h75, and h90), canopy
cover (non-sky returns/all returns, D), and coefficient of variation (CV).
All returns from the scanning LiDAR dataset were used to derive ground
using a simple minimum grid technique, which has been determined to
adequately characterize relatively flat terrain with ±1% error when
compared to USGS 1:24,000 DEMs (USGS, EROS Data Center). Returns
were attributed as either zero for ground returns, or as height above the
ground for all other returns. Standard LiDAR parameters were then
calculated for each plot. Scanning LiDAR point clouds were only analyzed
for 19 of the field census plots, because five plots fell outside of the
scanning LiDAR acquisition.

LiDAR datasets were then processed using Eqs. (1) and (2) to
estimate CHPs in 1-m layers, or bins (e.g., bin 3 is a 1 m thick volume of
canopy between 3 and 4 m above ground level), analogous to percent
cover in 1-m layers (Skowronski et al., 2007):

Returns in height bin n ¼ Rn=Rtotal ð1Þ

Returns in height bin n þ 1 ¼ Rnþ1=ðRtotal−RnÞ ð2Þ

where Rn is the number of returns in thefirst height bin, Rtotal is the total
number of returns, and Rn+1 is the number of returns from the next bin
in the canopy. Thus, the transformation progressed upward through the
canopy for the profiling LiDAR data, and downward through the canopy
for the scanning LiDAR system. Scanning LiDAR data were processed
using Merrick MARS© software (Version 5, Merrick and Company,
Aurora, CO).

2.3.3. LiDAR data comparisons
The profiling and scanning LiDAR data were first compared to

examine relationships between sensors for return heights and % cover
estimates using correlation analyses (Pearson's Product moment).
CHPs derived from Eqs. (1) and (2) for each system were then
compared in two ways; data from each height bin for every plot was
used in a single comparison, and one correlation coefficient was
calculated for 19 plots×20 height bins for a total n=380 data points,
and an “individual bin” comparison where correlation coefficients
were calculated for each height bin. This method generated 20
individual 1-m height bin correlations, where n=19 plots.

2.3.4. LiDAR-derived canopy fuel models
We developed equations to predict CBDmax and CFW using

stepwise linear regression analyses in SYSTAT 12 (Systat Software,
Inc., Chicago, IL) from standard LiDAR metrics calculated from the
profiling and scanning datasets and the field plot data, following
Andersen et al. (2005). We used these equations to produce maps of
CBDmax and CFW for each 9 km2 scanning LiDAR acquisition. We then
developed regression equations to predict CBDbin in 1 m thick layers
from the LiDAR-derived CHPs and CBDbin estimates from the field

image of Fig.�2


Table 1
Stand and canopy structure in n=24 and n=19 field plots in pitch pine–scrub oak stands
in the Pinelands of New Jersey. Maximumcanopy bulk density (CBDmax)was calculated as
the maximum CBDbin value in a 1-m thick layer, and canopy fuel weight (CFW) was
calculated from Duveneck and Patterson (2007). All values are plot means±1 SD.

Parameter n=24 plots n=19 plots

Stems ha−1 1029±900 1184±893
DBH (cm) 17.59±6.36 16.19±5.95
Basal area (m2 ha−1) 17.63±8.19 19.23±5.57
Mean tree height (m) 9.74±2.56 9.62±2.68
Maximum tree height (m) 13.20±2.57 13.47±2.31
Canopy bulk density (CBDmax, kg/m3) 0.088±0.040 0.097±0.033
Canopy fuel weight (CFW, kg/m2) 2.22±1.04 2.42±0.73

Canopy bulk density (CBDbin, kg/m
3) at selected canopy heights

3-m height 0.009±0.007 0.010±0.007
8-m height 0.072±0.044 0.080±0.042
13-m height 0.022±0.034 0.021±0.024

CFW, CBDbin and CBDmax were estimated with predictive models presented by
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plots. Data were analyzed in two ways; all height bins for every plot
were pooled to produce a single regression equation to predict CBDbin,
and separate regression equations were developed to predict CBDbin

for each 1-m height bin. To evaluate potential model overfitting, we
utilized the SIMPLS program in Systat 12, an iterative “leave-one-out”
cross-validation algorithm, to calculate a PRESS statistic (Myers, 1990;
Popescu et al., 2003). We used the root mean square of the PRESS
statistic, analogous to the root mean square error of cross-validation
(RMSEcv), for comparison to the root mean square error (RMSE)
calculated using the complete datasets. The resultant predictive
models were used to produce maps of CBDbin in 1-m layers for each
9 km2 scanning LiDAR acquisition. We used two different color coding
schemes to indicate values of CBD on each map. The first scheme used
green for low CBD values, and red for high CBD values. The second color
coding scheme used a three-band, red, green and blue (RGB) composite
image to display three separate canopy layers (i.e., 3-m, 8-m, and 13-m),
with color intensity reflecting relative CBD values.
Duveneck and Patterson (2007) by using their calculator available at: http://www.
umass.edu/nebarrensfuels/methods/index.html.

Table 2
The relationship between LiDAR parameters derived from upward sensing profiling
LiDAR to downward sensing scanning LiDAR for n=19 20 m × 20 m plots. Means and
standard deviations of the number of returns for each parameter are presented for each
2.3.5. Gaussian distributions
Because of the large amount of LiDAR data associated with

calculating return height profiles at 1-m increments, we explored
the use of distribution analyses to reduce computation times. In this
approach, the entire CBD profile can be represented using only three
parameters, and displayed spatially as a raster. Landscape patterns of
CBD can then be visualized as a three-band red, green and blue (RGB)
composite image, unlike the individual bin approachwhere only three
discrete bins at a time can be visualized. We fit three-parameter
Gaussian distributions to both the CBD profiles calculated from the
field census plots and the CHP derived from LiDAR datasets:

f ðxÞ ¼ ae½−0:5ððx−x0Þ=bÞˆ2� ð3Þ

where a=maximum value of the distribution, x0=locus of the
maximum, and b=full-width at half maximum. These parameters
were fit dynamically to both the biometrically derived model and the
LiDAR-derived CHPs in Sigma Plot (Version 10, Systat Software Inc.,
Chicago, IL). Linear regression models were developed for each of the
Gaussian distribution parameters (a, x0, and b) for predicting CBDbin

from profiling and scanning LiDAR canopy height profiles. Models
were evaluated using the “leave-one-out” approach described above.
sensor, raw and uncorrected. Correlation coefficients (r2) are Pearson's product-
moments. Correlations are all significant at Pb0.0001, except where * indicates a
significant correlation at Pb0.05.

Parameter Profiling Scanning Equation r2

LiDAR LiDAR

Standard LiDAR-derived parameters
Mean return height, hmean 6.54±1.48 7.71±1.66 y=0.735x+0.940 0.98
Maximumreturnheight,hmax 12.04±3.07 12.40±2.29 y=1.288x − 3.599 0.82
90th percentile height, h90 8.85±1.83 10.00±2.00 y=0.746x +1.451 0.96
75th percentile height, h75 7.80±1.72 9.00±1.88 y=0.692x +1.652 0.94
25th percentile height, h25 5.51±1.43 6.51±1.54 y=0.662x +1.276 0.94
10th percentile height, h10 4.41±1.23 5.36±1.31 y=0.713x +0.640 0.90
Canopy density, D(%) 44.5±17.9 87.8±9.61 y=1.262x − 62.1 0.86
Coefficient of variation, CV 0.26±0.03 0.24±0.43 y=0.540x +0.128 0.67
3. Results

3.1. Field plots and biometric data

Average tree height was 9.7±2.6 m (mean±1 SD), and ranged
between 6.0 m and 14.1 m in the 24 plots (Table 1). Mean maximum
canopy bulk density estimated using allometric equations was
0.09 kg m−3, and ranged from 0.02 kg m−3 to 0.17 kg m−3. Mean
crown fuel weight was 2.2 kg m−2, and ranged from 0.4 kg m−2 to
4.5 kg m−2 for the 24 field plots. Datasets with 24 and 19 plots had
similar canopy metrics and canopy fuel parameters (Table 1).
Canopy height bins
All height bins (n=475) 0.04±0.06 0.14±0.19 y=0.320x − 0.001 0.85

Selected 1-m height bins (n=19 for each bin)
3-m height 0.01±0.01 0.05±0.06 y=0.081x +0.009 0.38*
8-m height 0.16±0.09 0.40±0.20 y=0.398x − 0.016 0.86
13-m height 0.03±0.04 0.11±0.11 y=0.224x − 0.001 0.93

Gaussian distribution
a 0.19±0.09 0.46±0.21 y=2.06x +0.0747 0.84
b 1.75±0.33 2.17±0.31 y=0.728x +0.893 0.61
x0 7.79±1.31 7.96±1.35 y=0.892x +1.006 0.75
CHPbin 0.04±0.04 0.04±0.03 y=0.94x +0.011 0.83
3.2. LiDAR data comparisons

Standard LiDAR canopy parameterswere highly correlated among the
profilingandscanningLiDARsystems(Table2; Figs. 3 and4). For example,
hmean, h90, h75, h25, and h10 all had correlation coefficients≥0.9. However,
slopes and intercepts differed in most cases (e.g., Fig. 3). The correlation
coefficient calculated for the LiDAR-derived CHPs from all height bins and
plots between LiDAR systems was 0.85 (Table 2). Correlation coefficients
for individual height bin comparisons among sensors ranged between
0.38 at 3 m height and 0.92 at 12 m height (Table 2; Fig. 4).
3.3. LiDAR-derived canopy fuel models

Best fit stepwise linear regression equations for predicting CBDmax

and CFW using LIDAR data were based on height metrics (hmean, hmax,
h90) and canopy cover (D), and were highly significant for both
systems (Table 3). Equations that predicted CBDmax and CFW using
the profiling LiDAR data had higher values for regression coefficients
than those using the scanning LiDAR data. Close agreement of RMSEcv
and RMSE statistics suggests that the models accurately predicted
these two-dimensional canopy fuel variables without overfitting.
Predicted values of CBDmax and CFW from upward profiling LiDAR
data and the downward scanning LiDAR data are presented as a
scatter plot against biometric estimates of CBDmax and CFW in Fig. 5.

http://www.umass.edu/nebarrensfuels/methods/index.html
http://www.umass.edu/nebarrensfuels/methods/index.html
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Fig. 3.Mean return height (hmean) and mean maximum return height (hmax) in meters,
and percent canopy cover (D) in co-registered plot locations (n=19) for upward
scanning profiling and downward scanning LiDAR datasets.
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Table 3
Best fit stepwise linear regressions for predicting maximum canopy bulk density
(CBDmax, kg m−3) and canopy fuel weight (CFW, kg m−2) and using profiling and
scanning LiDAR data. All regressions are significant at Pb0.001.

LiDAR system Model a r2 RMSE RMSEcvb

Profiling LiDAR
CBDmax=−0.005 hmax+0.211 D+0.051 0.94 0.010 0.012
CFW=−0.049 hmax+5.587 D+0.33 0.92 0.313 0.354

Scanning LiDAR
CBDmax=−0.008hmax−0.001hmean+0.262D−0.029 0.77 0.017 0.019
CFW=−0.129h90+6.368 D− 1.877 0.71 0.362 0.430

a hmax, maximum canopy height; hmean, mean canopy height; D, percent cover ( # of
canopy returns/ total # of returns); h90 , height of 90th percentile.

b Square root of the mean of the PRESS statistic from leave-one-out cross-validation.
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Predicted values of CBDmax at 20 by 20 m resolution for the 9 km2

area at Cedar Bridge ranged from 0.0 to 0.232 kg m−3 (Fig. 6). Using
scanning LiDAR data to predict a single value for CBDmax detected
much of the spatial variability in CBDmax. Roads and open areas are
obvious, and lower CBD values associated with wetland forest stands
and pine–oak stands with a greater abundance of oaks also are
apparent (shown as light green to yellow areas at the top and two
bottom corners of Fig. 6). The prescribed fire strip in the middle of the
image also has a lower overall CBDmax value, compared to the denser
pitch pine scrub oak stands to the east and west of the strip (shown as
orange and red areas to the left and right of the strip in Fig. 6). The
dense pitch pine-dominated areas in the center of the image display
large CBD values because of rapid resprouting following the 1995
wildfire.

Single regression models which used data for all plots and canopy
heights to predict CBDbin at discrete height bins had a regression
coefficient of 0.83 for the profiling LiDAR system and 0.82 for the
scanning LiDAR system (Table 4). The “individual bin” regression
equations developed to predict CBDbin were significant for both
sensors, although the ability to predict CBDbin differed among 1-m
layers through the canopy (Table 4; Fig. 4). In Fig. 4, an increase in the
value of the regression coefficients for both sensors occurs until 7 m
height in the canopy, and then drops to a minima at approximately
9 m height. Regression coefficients then increase again to a second
maxima at 14 and 12 m height for the profiling and scanning LiDAR
data, respectively. The depression in the value of regression
coefficients at 9–10 m height corresponds to mean canopy height in
the field plots, but more importantly corresponds to the peak in
variability of biometrically derived estimates of CBDbin (Fig. 4).

When predicted values of CBDbin derived from upward profiling
LiDAR data or the downward scanning LiDAR data were plotted
against biometric estimates of CBDbin, values again scattered around
the 1:1 line (Fig. 7). Estimated CBDbin in 1-m layers at 20 m by 20 m
resolution for the 9 km2 area at Cedar Bridge derived from scanning
LiDAR data is shown in Fig. 8, and demonstrates the ability of this
approach to resolve complex canopy structure. Fig. 8a shows a “raster
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Fig. 5. Predicted values of CBDmax and CFW from equations for upward profiling LiDAR
(open symbols) and downward scanning LiDAR systems (closed symbols) in Table 3
plotted against biometric estimates of CBDmax and CFW from field plots.
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stack” of CBDbin values for a 7-m thick canopy volume calculated from
the scanning LiDAR data acquisition. In Fig. 8b–d, canopy bulk density
at 3, 8 and 13 m heights indicate the spatial variability in CBDbin

values, again using green for low values and red for high values.
Predicted CBDbin at 3–4 m height in the prescribed burn strip running
from north–south strip is relatively low, and values also are low in
wetland forests and pine–oak stands where oaks are more abundant
compared to pitch pine-dominated pine–scrub oak stands (shown in
green and yellow from top to bottom at the center of the image, and at
the top and in the lower right and left corners of the image in Fig. 8b).
A dense band of high CBD values occurs from east to west near the
center of the image, corresponding to areas burned intensely in the
1995 wildfire at the 3–4 m height level (shown in red to the left and
right of the of the prescribed burn strip). However, at the 8–9 m
height, lower CBDbin values occur in the area of crowning wildfire. At
the 13–14 m height, only the tallest canopies in scattered wetland
forests in the upper portion of the image, and in stands containing a
larger number of oaks in the lower right and left corners of the
acquisition have relatively high CBDbin values. This approach provides
increased vertical resolution over the CBDmax values displayed in
Fig. 6, allowing for increased understanding of where the highest
amounts of fuels occur in the canopy profile.

Fig. 9 shows the CBDbin at 3-m, 8-m and 13-m heights using the
red, green and blue (RGB) color scheme, with color intensity reflecting
relative CBD values. Differences and details that were not apparent in
Fig. 6 are much more visible using this color additive scheme,
illustrating the spatial complexity of the fuel loading and canopy
structure in this area. Dense fuel loading at 3–4 m height is apparent
in the upper right corner, reflecting the effects of the 1995 wildfire. At
8–9 m height, relatively dark green areas are apparent throughout the
image, with the exception of the upper right corner where the 1995
wildfire burned. Only the tallest canopies in the wetlands (upper
portion of the image) and the pine–oak stands in the two lower
corners appear as dark blue in the image (Fig. 9).

3.4. Gaussian distributions

Relationships between the Gaussian distribution parameters from
the profiling LiDAR and scanning LiDAR-derived CHPs were highly
significant, with correlation coefficients of 0.84 for a, 0.61 for b, and
0.873 for x0 (Table 2). The relationship between the profiling LiDAR
and scanning LiDAR CHPs following the Gaussian transformation
resulted in an r2 of 0.83 (using individual height bins for comparison).

The fit of a Gaussian distribution to the biometrically derived CBD
profiles, and to LiDAR-derived canopy height profiles for both profiling
and scanning LiDAR data yielded highly significant correlation coeffi-
cients, ranging from 0.94 to 0.99 for individual plots. Regressionmodels
developed to predict a, b, and x0 parameters of the biometrically derived
CBD profiles from LiDAR CHPs were highly significant (Table 5).
However, the profiling system was not able to predict the spread of
this distribution (b) aswell as the scanning system,with values of 0.489
and 0.798, respectively (Table 5). When these regression models were
applied to the raw LiDAR CHPs, each sensor was able to predict the
CBDbin well, with correlation coefficients for the profiling and scanning
LiDAR systems of 0.86 and 0.92, respectively (Table 5). A scatterplot of
the field derived CBDbin versus the LiDAR-derived (Gaussian trans-
formed) CBDbin is presented in Fig. 10. TheGausiandistributions yielded
comparable results for the generation of CBDmax and CFW values
relative to the othermethods used in our study (Table 5).WhenGausian
parameters were expressed using the RGB scheme, roads and feed plots
with very low predicted CBDbin values were detected well, appearing
black or blue in Fig. 11. Effects of the 1995wildfire can also be discerned
in this figure, appearing as a brown-orange color to the east of the
prescribed burn strip.

4. Discussion

We used equations developed by Duveneck and Patterson (2007)
to calculate crown fuel weight and canopy bulk density values from
biometric measurements made in field plots. The range of DBH and
heights of trees harvested by Duveneck and Patterson (2007) to
produce predictive equations encompassed the range of trees
measured in our field plots. We then calibrated two independent
LiDAR systems to canopy fuel characteristics measured in the field
plots. We used this information to map canopy fuels in three 9 km2

areas dominated by pitch pine in the Pinelands of New Jersey.
Estimates of CBD and CFW are commonly used throughout the fire
management and research communities (e.g., Scott and Reinhardt,
2001), but have not been previously estimated for the Pinelands.

We first compared the two independent LiDAR systems to
understand how differences between sensors (e.g., sensor type,
acquisition heights) affected our ability to detect canopy fuels
estimated from biometric measurements. While the use of scanning
LiDAR to estimate canopy fuels facilitates large-spatial scale estimates
and the production of landscape level maps of canopy fuels, the more
mobile upward sensing profiling LiDAR system can provide immedi-
ate estimates of canopy fuels. Comparisons among sensors can
improve the reliability of any future rapid canopy fuel assessments
using LiDAR sensors, because sensor responses are already well-
characterized. For example, understanding the relationships between
a simple upward profiling system and canopy fuel attributes allows
for the rapid calibration of a scanning LiDAR acquisition by using the
profiling system to “calibrate” the scanning system. Quantifying



Fig. 6. Map of maximum canopy bulk density (CBDmax, kg m−3) predicted with scanning LiDAR data over one of the 9 km2 study areas at 20 m resolution. Values were calculated
from the best-fit stepwise linear regression model in Table 3.
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differences among LiDAR systems also may illustrate issues with
using sequential LiDAR acquisitions for change detection of canopy
fuel parameters.
Table 4
Regression equations to predict canopy bulk density in 1-m canopy layers (CBDbin)
using the “all height bins” regressionmodels and the “individual height bins” regression
models for selected canopy layers for the profiling and scanning LiDAR systems. The
mean PRESS Statistic from leave-one-out cross-validation is reported for the predictive
models. Correlations are significant at Pb0.0001, except where * denotes a significant
correlation at P b 0.05.

Comparison n Model r2 RMSE RMSEcv

“All height bins” regression models
Profiling LiDAR 480 CBDbin=0.536x+0.006 0.83 0.015 0.015
Scanning LiDAR 380 CBDbin=0.182x+0.005 0.82 0.015 0.015

“Individual height bins” regression models
Profiling LiDAR

3-m height 24 CBD3=0.492x+0.002 0.36* 0.006 0.007
8-m height 24 CBD8=0.418x+0.230 0.74 0.023 0.024
13-m height 24 CBD13=0.583x+0.010 0.82 0.015 0.043

Scanning LiDAR
3-m height 19 CBD3=0.075x+0.007 0.44 0.005 0.007
8-m height 19 CBD8=0.583x+0.009 0.63 0.027 0.026
13-m height 19 CBD13=0.301x − 0.001 0.99 0.003 0.003

Standard canopy fuel regressions from “all height bins ” model
Profiling LiDAR

Canopy bulk density 24 CBDmax=1.021x − 0.003 0.92 0.011
Canopy fuel weight 24 CFW=1.267x − 0.133 0.87 0.084

Scanning LiDAR
Canopy bulk density 19 CBDmax=0.841x+0.021 0.87 0.012
Canopy fuel weight 19 CFW=0.846x+0.836 0.76 0.082
The relationships between return heights and other LiDAR
parameters generated from the upward sensing profiling system
and the downward sensing scanning system were all highly
significant. However, the slopes for these relationships were not 1:1,
and y-intercept values were never unity. Mean and maximum return
heights (hmean and hmax), generated from the upward sensing
profiling system, were consistently lower than those calculated from
the downward sensing system data for each plot, likely because light
Field Derived CBDbin (kg m-3)

0.00 0.05 0.10 0.15 0.20

Li
D

A
R

 P
re

di
ct

ed
 C

B
D

bi
n 

(k
g 

m
-3

)

0.00

0.05

0.10

0.15

0.20

Downward Scanning LiDAR
Upward Profiling LiDAR

1:1

Fig. 7. Predicted values of CBDbin from equations for upward profiling LiDAR (open
symbols) and downward scanning LiDAR (closed symbols) in Table 4 plotted against
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Fig. 8. 9 km2 maps of canopy bulk density in 1 m canopy layers (CBDbin, kg m−3) at 20 m horizontal resolution predicted using scanning LiDAR data and linear regression models in
Table 4. (a) is a raster stack of CBDbin values depicting layers from 1 to 7 m at 1 m vertical resolution. (b)–(d) illustrate CBD bin in three selected height bins (3–4 m height, 8–9 m
height, and 13–14 m height from the ground). Pixel color values are relative CBDbin values calculated using regression equations in Table 4, and scale from dark green (0 kg m−3) to
red (0.186 kg m−3).
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pulses from the two independent LiDAR systems physically encounter
the canopy differently (e.g., from above or below). A larger proportion
of returns from the upward sensing system encounter foliage and
branches lower in the canopy, resulting in a distribution of return
heights skewed towards the bottom of the canopy. Similarly, the
downward sensing system encounters more foliage and branches at
the top of the canopy, which skewed the distribution of returns
towards the top of the canopy. The distributions of LiDAR returns may
also be affected by the density of points per plot, by the spot size of
each return, and by other factors, resulting in different distributions of
LiDAR returns. Thus, independent LiDAR acquisitionsmay not result in
1:1 parameter generation unless repeated under nearly identical
circumstances (e.g., instrument, altitude, etc.). Fortunately, our study
demonstrates that simple linear regressionsmay be used to normalize
datasets to an acceptable degree.

We first used standard LiDAR-derived parameters (hmax, hmean, h90,
andD) to predict CBDmax and CFW in two dimensions (e.g., Andersen et
al., 2005). Both the upward sensing profiling LiDAR and downward
sensing scanning LiDAR predicted these variables well. However, when
compared to the use of discrete canopy height profiles to calculate
CBDbin, a great amount of detail is omitted by expressing canopy fuel
loading as only a single CBDmax value for each cell. Because these
regressionmodels are based primarily on canopyheightmeasurements,
the 2-dimensional CBDmax may not capture the effects of wildfires on
canopy structure, or of prescribed fire or other fuel management
activities thatmay affect sub-canopy and understory fuel loading. In our
example near the Cedar Bridge fire tower, the prescribed burn strip had
slightly lower values of CBDmax than other areas. However, images
derived from the CBDbin data indicatemuch lower fuel loading at 3–4 m
height in the burn strip, because repeated prescribed fires have
removed some of the understory shrubs and ladder fuels in the sub-
canopy (Clark et al., 2009; Skowronski et al., 2007). Thus, parameter-
based models can be limited by the use of variables that may not be
sensitive to the effects of wildfire, fire management or other
disturbances on canopy structure.

The single regression model predicting CBDbin in 1-m canopy
layers was highly significant. Some of the variation that was not
accounted for by these equations may be explained by the “ideal”
nature of the calculated biometric CBD profiles using the Duveneck
and Patterson (2007) model. In our analyses, correlation coefficients
for between-sensor comparisons were lower, on average, than
regression coefficients calculated for the equations relating each
LiDAR dataset to the biometric estimates of CBDbin profiles up to 7 m
height, and then correlation coefficients were generally greater than
regression coefficients above 7 m (as in Fig. 3). Use of regression
models likely resulted in the smoothing of some of the vertical
variability in canopy structure. These observations suggest that
sequential destructive harvest of canopy coupled with concurrent
LiDAR acquisitionsmay be the best approach for developingmodels to
predict CBDbin values from LiDAR data.

Our research demonstrates that LiDAR canopy height profiles can
be used to derive estimates of CBDbin that can resolve both horizontal
and vertical variability in canopy structure in greater detail than the 2-
dimensional CBDmax and CFW parameters. This approach can detect
the effects of wildfires and prescribed burns on the distribution of CBD
in the canopy (Clark et al., 2009; Skowronski et al., 2007). In our



Fig. 9. Red, green, blue (RGB) composites for three bins (red=bin 3, green=bin 8, and blue=bin 13) for the 9 km2 acquisition near the Cedar Bridge fire tower. The RGB uses a color additive
scale scheme with red=bin 3, green=bin 8, and blue=bin 13.
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example, the severe wildfire that burned much of the north-eastern
portion of the area in 1995 created a mosaic of canopy structure
corresponding to fire intensity. Increased amounts of regeneration are
clearly visible at 3–4 m height, which 11 years following the wildfire
consisted of pitch pine and understory oaks that had recovered to
form a dense canopy layer and damaged crowns were still detectable
at 8–9 m height. In contrast, an area that is frequently burned as a fuel
break using repeated, low-intensity prescribed fires is also visible just
to the left of center of the images in Fig. 8. The canopy of this area was
not damaged in the 1995 fire, and the overstory remains largely intact
Table 5
Parameters and models for the Gaussian distribution transformation. Data were fit
using the function f(x)=ae[−0.5((x−x0)/b)^2].

Comparison Parameter Model r2 RMSE RMSEcv

Profiling LiDAR (n=24)
a y=0.318x+0.036 0.86 0.012 0.013
b y=0.528x+1.328 0.49 0.183 0.189
x0 y=1.177x− 0.448 0.87 0.605 0.622
CBDbin y=0.941x+0.002 0.86

Scanning LiDAR (n=19)
a y=0.137x+0.034 0.81 0.014 0.015
b y=0.723x+0.684 0.80 0.115 0.121
x0 y=1.16x− 0.511 0.90 0.545 0.593
CBDbin y=0.974x+0.001 0.92

Standard canopy fuel derivation
Profiling LiDAR

Canopy bulk density CBDmax=0.848x+0.013 0.88
Canopy fuel weight CFW=0768x− 0.1.01 0.86

Scanning LiDAR
Canopy bulk density CBDmax=0.7868x+0.020 0.81
Canopy fuel weight CFW=0.818+0.097 0.82
at 8–9 m. Only the areas with the tallest canopies contribute to CBDbin

values at 13–14 m height in the upper layers of the canopy.
Our results also demonstrate that fitting Gaussian distributions to

LiDAR and biometrically derived canopy height profiles allows for a
simpler yet meaningful expression of CBDbin for mapping purposes.
This method did not perform as well compared to the other methods
for deriving the standard canopy fuel parameters CBDmax and CFW.
Additionally, this method essentially smoothes the data, and valuable
information about the vertical distribution of the canopy fuel may be
lost; while with the height bin regression approach, differences in
Field Derived CBDbin (kg m-3)
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Fig. 10. Field derived CBDbin values plotted against LiDAR predicted CBDbin values.
Predictions were made by applying Gaussian distribution transformations to each
LiDAR dataset as shown in Table 5.
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Fig. 11. 9 km2 maps of three Gaussian parameters (a, b, x0) and a RGB composite image for one of the three scanning LiDAR extents. The RGB display utilizes a color additive scale
scheme with red=a, green=b, and blue=x0.
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individual height bins are maintained for analysis. However, because
three parameters are derived from the dataset to characterize the
CHP, rather than 20 or more individual bins, it is much easier to
display data visually and may simplify otherwise extraneous
information. Thus, Gaussian distribution analysis may provide a
simple index for analyzing the distribution of canopy fuels, although it
may not be the most intuitive method for analyzing spatial variability
in canopy fuel loading.

Each of the approaches employed here are advantageous in specific
situations, and each has limitations. The expression of the canopy fuel
load parameters CFW and CBDmax using LiDAR data makes use of
standard LiDARparameters, which are easily derived from anumber of
commercial data processing packages, and can be used as inputs for
existing 2-dimensional wildfire spread models. Estimates of CFW and
CBDmax provide detail on canopy fuels at the landscape scale, but do
not provide information on vertical fuel loading. LiDAR CHP derived
estimates of CBDbin provide detailed assessments of three-dimension-
al canopy structure and fuel loading at the landscape scale, but are
much more computationally intensive. Additionally, interpretation of
these raster-stacks can be problematic because of the sheer amount of
data, and difficulty displaying these data visually without resorting to
some type of classification scheme. Finally, the Gaussian distribution
(or other similar distribution analyses), though shown to adequately
fit the CHPs here,may prove to over-smooth the CHP data and valuable
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information may be lost. However, the 3-parameter distribution does
show some promise at helping to visualize complex forest structural
variability, in a simple RGB environment.

Although we used LiDAR-derived CHPs to predict quantitative CBDbin

values, absolute CBD estimates may not be necessary for all fire
management assessments, where a relative scale would provide
managers with similar information. However, for some applications,
such as finer-scale parameter estimation for the next generation of fire
behavior models, the calibration of LiDAR data to field data to predict
actual three-dimensional CBD valueswill provide invaluable information.

5. Conclusions

Our study demonstrates that LiDAR data can be used to generate
accurate, three-dimensional representations of canopy structure and
fuel loading at high spatial resolution by linking 1-m canopy height
profiles to predictive calculators derived from forest census plots. This
approach provides much more spatially explicit three-dimensional
information compared to two-dimensional CFW and CBDmax esti-
mates of canopy fuels. Quantification of vertical structure of the
canopy is of importance to wildland fire managers, who are interested
in managing the landscape for the reduction of ladder or transitional
fuels that facilitate the spread of fire into the canopy. Further, this
forest structural information is vital for the development of the next
generation of wildfire spread models which will simulate fire
behavior in three dimensions, unlike the current two-dimensional
spread models.
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