

Workshop Goals

- Human DNA Quantification using Real-Time PCR Assays
- An overview of various qPCR methods in a forensic context
- Many of the speakers have been *directly* involved in the design, optimization, and implementation of qPCR methods in their labs
- An opportunity to interact within the forensic qPCR community

Why Do We Care About Quantitating DNA?

- Forensic laboratories commonly use commercial STR typing kits
	- PowerPlex 16 – Identifiler

- Other kits (PPY, Yfiler, COfiler, ProfilerPlus, minifiler)
-
- These kits are optimized for multiplex PCR
	- DNA input range 0.5 to 2 ng
	- $-$ ~83 to 333 copies of the human genome
- Optimal amounts of input DNA result in quality electropherograms
- DNA Advisory Board **(DAB) Standard 9.3 requires human-specific DNA quantitation** so that appropriate levels of human DNA can be included in the subsequent PCR amplification

Why Do We Care About Quantitating DNA?

- Poor quality data means that…
- Samples will have to be re-run
	- Extraction process
	- PCR
	- CE
- Poor quality data will take longer for an analyst to review
- Cost: time + reagents + extract = \$\$\$
- *Peter M. Vallone qPCR Workshop AAFS 2008*

Peter M. Vallone qPCR Workshop AAFS 2008

Why Do We Care About Quantitating DNA?

- Not limited to 'conventional' STR markers
- With degraded or low amounts of nuclear DNA we may have an interest in the amount of mitochondrial DNA available
- In a male female mixture we may want an estimate of the Y-chromosome component
- An estimate as to the degree of degradation (and degree of inhibition as well)

Why Do We Care About Quantitating DNA?

- When obtaining samples from an outside source (collaborator, other lab) it is a good QC measure to confirm the quantity and integrity of the materials
- If evaluating a new technique (DNA extraction) qPCR can help quantitate performance
- When developing a new assay it is important to know the optimal [DNA] range

Why Do We Care About Quantitating DNA?

- If we can confidently determine the amount of DNA in an extract we can then ask questions:
	- Will mitochondrial sequencing be required? (skip STR analysis)
	- Should we use a miniSTR assay?
	- Should we use low copy number (LCN) methods for STRs?
	- Re-extract the sample?

Peter M. Vallone qPCR Workshop AAFS 2008

Peter M. Vallone qPCR Workshop AAFS 2008

• If problems occur in the STR typing process we can have confidence that the DNA template is not the source (CE, cycler, kit)

PCR Nomenclature

- qPCR quantitative PCR (usually implies using PCR for DNA quantitation in "real time", i.e., not at the end point)
- RT-PCR Real-Time PCR, but often reverse transcription PCR (and often in conjunction with real-time PCR, too)
- Amplicon product of PCR

Peter M. Vallone qPCR Workshop AAFS 2008

• Calibrant DNA – DNA of a known concentration that is serially diluted to prepare a standard curve (can be called the Standard DNA)

http://www.cstl.nist.gov/biotech/strbase/training/AAFS2008_qPCRworkshop.htm 6

PCR Nomenclature

- Baseline a linear function subtracted from the data to eliminate background signal
- Threshold a value selected when the PCR is in the exponential phase of growth
- C_T Cycle Threshold the cycle number at which the amplification curve crosses the selected threshold value
- E Efficiency measure relating to the rate of PCR amplification

Why Do We Care About Quantitating DNA??

• Other methods…..

Peter M. Vallone qPCR Workshop AAFS 2008

- $-$ UV (260 nm, 1 OD = 50 ng/ μ L)
- Yield Gel
- AluQuant
- Quantiblot
- Pico Green (fluorescence)
- others
- Time consuming (multiple steps)
- Not connected to software analysis
- Limited dynamic range
- Some not human specific
- *Peter M. Vallone qPCR Workshop AAFS 2008*

qPCR

- qPCR is a recently developed technique
	- Developed by Higuchi in 1993
	- Used a modified thermal cycler with a UV detector and a CCD camera
	- Ethidium bromide was used as intercalating reporter: As [dsDNA] increased, fluorescence increased
- First paper on qPCR:

Peter M. Vallone qPCR Workshop AAFS 2008

– Higuchi, R.; Fockler, C.; Dollinger, G.; Watson, R. "Kinetic PCR analysis: real-time monitoring of DNA amplification reactions" Biotechnology (N Y). 1993 Sep;11(9):1026-30

Advantages

- The availability of commercial qPCR kits (labs are switching over to this method)
- Higher throughput and reduced user intervention
	- Automated set up
	- Simple data analysis
	- Experimental data rapidly analyzed in software; interpolating into the calibration curve
- qPCR will be sensitive to the same inhibitors as faced in a traditional STR test (both PCR based)

Peter M. Vallone qPCR Workshop AAFS 2008

Peter M. Vallone qPCR Workshop AAFS 2008

Why Real-Time qPCR?

Advantages

- No post PCR manipulation (reduced contamination issues)
- High sensitivity (down to a single copy number?)
- Large dynamic range: ~30 pg to 100 ng
- Assays are target specific (autosomal, mito, Y) and can be multiplexed – to a degree…

Peter M. Vallone qPCR Workshop AAFS 2008

Why Real-Time qPCR? Challenges

- qPCR is subject to inhibition – internal PCR controls (IPC) can help
- qPCR quantitation precision suffers at low copy numbers (below 30 pg by a factor of 2)
- When working below 100 pg qPCR is still subject to variability and uncertainty

Why Real-Time qPCR?

Challenges

- qPCR quantitates specific target sequences, it does not quantify "DNA"
	- In highly degraded samples, assays that amplify short target sequences will detect and measure more DNA than assays that amplify long target sequences (relevant to STR typing)
- Accurate qPCR quantitation assumes that each unknown sample is amplified at the same efficiency as the Calibrant sample in the dilution series
- Results are relative to the Calibrant (which can vary)

Peter M. Vallone qPCR Workshop AAFS 2008

Peter M. Vallone qPCR Workshop AAFS 2008

Peter M. Vallone qPCR Workshop AAFS 2008

PCR Mechanism

- PCR amplification results in an exponential increase in PCR products
- The amount of DNA theoretically doubles with every cycle of PCR
- After 2 cycles of the PCR we have 2 x 2 more DNA; after 3 cycles 2 x 2 x 2 more DNA and so on…
- 2^N; where N is the number of cycles

PCR Mechanism

- Typically PCR is run for 28-32 cycles (E=100%) Starting with one copy:
	- After 28 cycles = 268,435,456 – After 32 cycles = 4,294,967,296
- Lower volume PCR may require fewer cycles
- At >40 cycles non-template controls may start to give signal
- Toward the end of the cycling: reagents are consumed and the PCR is less efficient

PCR Efficiency

- How is the PCR progressing?
- Is the PCR running at maximum efficiency?
- Are there PCR inhibitors present in reaction?
- Are we at the optimal annealing-extension temperatures? (during assay development)
- Are the unknowns amplifying with the same E as the Calibrants?

PCR Efficiency

- Taking our previous relationship 2^N
- The efficiency of the PCR can be represented as:

•
$$
X_N = X_0 (1 + E)^N
$$

Peter M. Vallone qPCR Workshop AAFS 2008

- $-X_N$ predicted copies
- $-X₀$ starting copy number
- E efficiency (0 to 1)
- N number of cycles

PCR Efficiency

- Starting with 100 copies and 100% Efficiency and 28 cycles $X_N = 100(1 + 1)^{28}$ $= 2.68 \times 10^{10}$ copies • 90%
	- $X_N = 100(1 + 0.9)^{28}$ $= 6.38 \times 10^9$ copies
- 80% $X_N = 100(1 + 0.8)^{28}$
	- $= 1.40 \times 10^9$ copies
- *Peter M. Vallone qPCR Workshop AAFS 2008*

PCR Efficiency

- A optimal reaction is typically between 90% to 110% slope = -3.58 to -3.10
- The slope may exhibit greater variation when running more complex (multiplex) qPCR assays; multiplex probes, targets, copies etc

PCR Efficiency

Peter M. Vallone qPCR Workshop AAFS 2008

Peter M. Vallone qPCR Workshop AAFS 2008

Peter M. Vallone qPCR Workshop AAFS 2008

• Taking the relationship between log (copies of DNA) and cycles of PCR one can rearrange the equation $X_N = X_0 (1 + E)^N$ in order to determine efficiency

Reaction Efficiency $=$ $[10^{(-1/m)}]$ -1

A reaction efficiency of 1 is 100%

• We will see later that the slope from our qPCR data plots can be used to estimate the efficiency of the reaction

Quantitation Using PCR

- Visually inspect qPCR curves
- Set Baseline and Threshold values
- Construct and evaluate a Calibrant Curve
- Review estimated DNA concentrations
- This can be done rapidly in the instrument software package
- Estimated DNA concentrations can be easily manipulated in Excel

Setting the Baseline

• A low and high value are set

- The Baseline is set to eliminate the background signal found in the early cycles of amplification
- The Baseline should not interfere with the exponential phase of the amplification
- The Baseline is set to allow for accurate C_T determination
- Many qPCR methods have a prescribed **Baseline**

The C_T Value

- C_T is the simply the cycle number selected at a specific threshold value
- The threshold value is selected where all the data is undergoing exponential amplification
- The threshold value can be selected manually or by the software
- The threshold value for different methods may vary
- Selected in the log(signal) plot view

CT Value and the Standard Curve

- After a suitable threshold has been selected the data is analyzed and the C_T values are determined
- The C_T values of the serial dilution are plotted versus the log[DNA] – your serial dilution of a calibrant DNA
- The line is visually inspected and the parameters are reviewed
- If the standard curve is linear and the line parameters are acceptable, the unknown concentrations can then be estimated

Equation of a Straight Line

- The equation $Y = mX + b$ defines a straight line
- m is the slope
	- $(y_1-y_2)/(x_1-x_2)$
	- The "steepness" of the line
	- Relates to the efficiency of the PCR
- b is the Y-intercept (where the line crosses the Y-axis)
- X is your log[DNA] concentration (serial dilutions)
- Y is the C_T value

Peter M. Vallone qPCR Workshop AAFS 2008

Linear Least Squares Regression

- The most widely used modeling method
- "regression," "linear regression," or "least squares"
- Many processes in science and engineering are welldescribed by linear models
- Good results can be obtained with relatively small data sets
- Main disadvantages: limitations in the shapes that linear models can assume over long ranges, possibly poor extrapolation properties, and sensitivity to outliers

Peter M. Vallone qPCR Workshop AAFS 2008

Peter M. Vallone qPCR Workshop AAFS 2008

Linear Least Squares Regression

- Carried out by the instrument software
- Can also be easily performed in Excel, Sigma Plot etc
- Briefly, the method solves for m and b from the data points (remember X and Y are constants)
- Finds numerical values for the parameters that minimize the sum of the squared deviations between the observed responses (your data!) and the functional portion of the model (the line!)

R2 (R-squared)

- Coefficient of determination
- A statistic for a predictive model's lack of fit using the data from which the model was derived
- R²-squared = $1 \frac{\sum (Y_i \sum (Y_i \$ 2 2 $(Y_i - \overline{Y}_i)$ $1 - \frac{\sum (Y_i - Y_i)}{\sum (Y_i - \overline{Y}_i)}$ $i^{-1}i$ $Y_i - \overline{Y}$ $Y_i - \hat{Y}_i$

Peter M. Vallone qPCR Workshop AAFS 2008

• A perfectly fitting model yields an $R²$ of 1 (all points fall directly on the line)

R2 (R-squared)

- For most log[DNA] versus C_T standard curves R2 should be greater than 0.990
- Sometimes outliers can be removed to improve the R^2 values
- Outliers can be at low/high concentrations or outside the performance range of the qPCR assay (or just a bad point – pipet error, dirty well etc)

- What happens when we change the Threshold value?
- Of course the absolute C_T values will change – But it will be consistent for that data set
- You don't want to compare C_T values from different methods or even runs

Peter M. Vallone qPCR Workshop AAFS 2008

• What is the effect of varying Threshold on the standard curve and the estimated values for the unknowns?

Importance of the Calibrant!

- All qPCR results are relative to the standard curve
- Serial dilutions of the Calibrant DNA comprise the standard curve
- Any errors involving the Calibrant DNA directly effect the estimates of your unknown DNA concentrations
	- Pipetting errors

Peter M. Vallone qPCR Workshop AAFS 2008

Peter M. Vallone qPCR Workshop AAFS 2008

- Miscalculation of concentrations
- New lots or vendors of Calibrant DNA
- Contamination of Calibrant
- Evaporation of Calibrant DNA

Importance of the Calibrant!

- Things to keep in mind about Calibrants
- The Calibrant is usually a pristine wellcharacterized DNA sample
	- Not extracted the same as the unknown
	- Not subjected to the same environment as your unknown(s)
	- Will not contain inhibitors, Heme, Ca++ etc
	- May be from a cell line or mixed source sample
	- May exhibit lot-to-lot variation (monitor this)

- Fluorophore is **not** sequence-specific detects any double-stranded PCR product at each cycle; specificity of detection and quantification is due to specificity of primers.
	- fluorophore typically SYBR Green
	- Fluorophore is sequence-specific detects only
specific double-stranded PCR product at each cycle; specificity of detection and quantification is due to specificity of primers AND to specificity of reporter fluorophore

Slide courtesy of Dr. Mark Timken, CA DO

- fluorophore commonly a "TaqMan" probe
- many others

qPCR: **Detection – TaqMan**

• **Advantages**

Peter M. Vallone qPCR Workshop AAFS 2008

Peter M. Vallone qPCR Workshop AAFS 2008

- Very specific, because combines specificity of primers and specificity of the TaqMan probe – typically do not detect non-specific PCR product
- Can design multiplex qPCR assays to simultaneously amplify and detect different target sequences in the same tube

e.g., use FAM-labeled probe for nuclear target sequence and VIC-labeled probe for mitochondrial target (or Y-specific target, or Internal PCR control target, etc.)

Slide courtesy of Dr. Mark Timken, CA DO

qPCR: **Detection – TaqMan**

• **Some Disadvantages (relative to SYBR Green)**

- More difficult to design because of need for efficient amplification AND efficient probe hydrolysis (and *possibility* that amplification and hydrolysis chemistries inhibit differently)
- More difficult to design because some TaqMan probes do not quench efficiently => large background fluorescent and lower signal-to-noise
- For some target sequences, AT-rich sequences make probe design difficult (see "MGB" probes)
- More expensive, due to cost of dual-labeled oligonucleotide

Slide courtesy of Dr. Mark Timken, CA DOJ

EraGen qPCR Detection Chemistry

• **Advantages**

- Can also probe multiple target sequences
- Proposed to give good sensitivity
- **Disadvantages**
	- Not as widely used as TaqMan or SYBR Green, so less experimental history to rely on
- **Comments**

Peter M. Vallone qPCR Workshop AAFS 2008

– Licensed to Promega (for many applications, not just forensic typing) see Plexor HY

qPCR Target Region

- Autosomal, Y chromosome, mitochondrial, IPC (synthetic)
- Species specific source specific?
- Single Copy Locus (e.g. hTERT)
- Multi Copy Locus (e.g Alu)
- Can be a STR locus (TH01)

Peter M. Vallone qPCR Workshop AAFS 2008

• The PCR amplicon can vary in size – 50, 100, 150, 200 base pairs

Slide courtesy of Dr. Mark Timken, CA DO

qPCR Target Region

• Multi Copy Locus (e.g Alu)

Peter M. Vallone qPCR Workshop AAFS 2008

Peter M. Vallone qPCR Workshop AAFS 2008

- Increased sensitivity due to the use of a multi copy locus
	- One cell will still have ~2,500 copies of the target
- Limited dynamic range (on the high end)
- Is there any variance between the unknown and a Calibrant in terms of number of Alu copies/cell?

Real-Time PCR Instrumentation Basics

- Light hits the tube/vessel containing the PCR (once per cycle)
- Fluorescent dye(s) emit light corresponding to their spectral characteristics
- The emitted light is focused onto a detector
- The computer-software interface interprets the detector signal

Real-Time PCR Instrumentation

- Excitation light source range
	- Visible range 330 1100 nm (bulb)
	- Laser 488 nm (Argon ion)
	- Light Emitting Diodes (specific wavelength)
- Emission (fluorescence) range
	- Common fluorescent dyes
	- $-500 700$ nm

Peter M. Vallone qPCR Workshop AAFS 2008

- Filters allow light of a specific wavelength onto detector
	- **Real-Time PCR Instrumentation**
- Source: laser, LED, tungsten-halogen lamp – Excite the fluorescent dye
- Detector: CCD (charge coupled device), PMT (photomultiplier tube)
	- Detect the light emitted from the excited dye
- Heating/Cycling
	- Traditional heat block (plate)
	- Convection (fan oven) (capillaries, single tubes)
- How many dyes can be detected? – Determines the level of multiplexing

Photomultiplier Tube (PMT)

- A photomultiplier tube, useful for light detection of very weak signals
- The absorption of a photon results in the emission of an electron
- These detectors work by amplifying the **Photomultiplier Tube** electrons **Incomin**
Photon

http://www.cstl.nist.gov/biotech/strbase/training/AAFS2008_qPCRworkshop.htm 39

qPCR Resources

- http://www.gene-quantification.info/
	- The Reference in qPCR Academic & Industrial Information Platform
- Introduction_to_Quantitative_PCR_Stratagene.pdf – Download from http://www.stratagene.com
- http://pathmicro.med.sc.edu/pcr/realtime-home.htm
- Margaret Hunt Univ. of South Carolina School of Med. • http://www.dnalc.org/ddnalc/resources/shockwave/pcranwhole.html – Flash PCR animations
- http://www.dna.iastate.edu/frame_qpcr.html – Iowa State University
- http://www.promega.com/plexorhy/default.htm – Promega Plexor HY Homepage
- https://products.appliedbiosystems.com/ab/en/US/adirect/ab?cmd=catNavigate2&catID=601641
- Applied Biosystems Quantifiler

qPCR Bibliography

-
-
- 1. Andreasson, H. and Allen, M. (2003) Rapid quantification and sex determination of forensic evidence
materials, J. Forensic Sci. 48, 1280-1287.
2. Andreasson, H., Nilsson, M., Budowle, B., Lundberg, H., and Allen, M. (20
- 4. Hudlow, W., Chong, M., Swango, K., Timken, M., and Buoncristiani, M. (2008) A quadruplex real-time qPCR assay for the simultaneous assessment of total human DNA, human male DNA, DNA degradation and the presence of PCR inhibitors in forensic samples: A diagnostic tool for STR typing. *Forensic*
- Science International: Genetics 2, 108-125.
S. Kline, M. C., Duewer, D. L., Redman, J. W., and Butler, J. M. (2005) Results from the NIST 2004 DNA
Quantitation Study, J. Forensic Sci. 50, 570-578.
Kubista, M., Andrade, J.
-
-
-
-
- 7. Nicklas, J. A. and Buel, E. (2003) Development of an Alu-based, real-time PCR method for quantitation
of human DNA in forensic samples, J. Forensic Sci 48, 936-944.
8. Nicklas, J. A. and Buel, E. (2003) Quantification
-

Peter M. Vallone qPCR Workshop AAFS 2008

qPCR Bibliography

-
-
- 12. Richard, M. L., Frappier, R. H., and Newman, J. C. (2003) Developmental validation of a
real-time quantitative PCR assay for automated quantification of human DNA, J. Forensic
Sci. 48, 1041-1046.
3. Shewale, J. G., Sc
- 15. Swango, K. L., Hudlow, W. R., Timken, M. D., and Buoncristiani, M. R. (2007)
- Developmental validation of a multiplex pPCR assay for assessing the quantity and quality
of nuclear DNA in forensic samples, *Forensic Sci. Int*. 170, 35-45.
16. Timken, M. D., Swango, K. L., Orrego, C., and Buoncristiani
-
- 17. Wiaker, J. A., Hughes, D. A., Hedges, D. J., Anders, B. A., Laborde, M. E., Shewale, J., Shina, S. K., and Batzer, M. A. (2004) Quantitative PCR for DNA identification based on genome-specific interspersed repetitive
- 19. Higuchi, R., Fockler, C., Dollinger, G., and Watson, R. (1993) Kinetic PCR analysis: real-time monitoring of DNA amplification reactions, *Biotechnology (N. Y.) 11*, 1026-1030.