
The Information Assurance Mission at NSA

September 2011

Cross Site Scripting (XSS) is a vulnerability in

web applications that allows an attacker to inject HTML,

typically including JavaScript code, into a web page. XSS

results from the intermingling of server code and user

input. If user input is not sanitized correctly, it could

contain code that runs along with server code in a client’s

browser. In 2010, XSS was ranked the #2 web application

security risk by the Open Web Application Security Project

(OWASP) and the #1 software error by the SANS Institute.

There are two primary types of XSS vulnerabilities –

re�ected (non-persistent) and stored (persistent). In a

re�ected XSS attack, the attacker persuades a victim to

click on a specially crafted link that makes a request to a

vulnerable web server. This allows the attacker to run

arbitrary code in the victim’s web browser. In re�ected

attacks, the attacker must target each victim individually.

In a stored attack, the attacker embeds code in a web page

or other data stored on a vulnerable server. The attacker’s

code will then run in the browser of everyone who visits

the compromised web page. Because of the potential to

exploit multiple victims with minimal effort, stored attacks

are generally considered to be more dangerous than

re�ected attacks.

XSS attacks range in severity. Typical XSS payloads include

redirection to phishing sites, password logging, session

theft, malware distribution, browser automation and

the ability to pivot onto an internal network to launch

additional attacks.

Users
There are steps that users can take to protect themselves

from XSS (and other) attacks. In addition to using common

sense while sur�ng (don’t click on links sent from unknown

sources, close sessions when �nished), users should

consider the following measures.

: Allowing all

JavaScript to run opens a user up to XSS attacks. The

most effective (but not foolproof) method for a user to

prevent XSS attacks is to allow JavaScript to run only if

it comes from a domain that the user explicitly trusts.

Installing a browser plug-in that implements domain

Protect Against Cross Site
Scripting (XSS) Attacks

whitelisting, such as NoScript for Firefox, is highly

recommended. Internet Explorer users can achieve

whitelisting through the con�guration of Trusted and

Restricted Security Zones.

 Some browsers

have begun to incorporate XSS protection inherently.

For example, as of version 8, Internet Explorer includes

an XSS �lter as well as a SmartScreen �lter that uses

reputation to protect against malicious websites. These

extra security measures should be enabled when

available.

Allowing external websites to

force a browser to request internal resources can allow

for an attacker to pivot an attack onto a vulnerable

internal website. The NoScript plug-in has a feature

called the Application Boundary Enforcer (ABE) that

can be con�gured to disallow external websites from

requesting internal resources.

 It is important to

keep systems and applications up-to-date with updates

and patches, protected from malware and securely

con�gured. For more information, read the following

NSA guides: Best Practices for Securing a Home Network

and Mitigation Monday #2: Defense Against Drive-By

Downloads.

The most effective way to get rid of XSS vulnerabilities is to

ensure that developers understand the dangers of XSS

attacks and have tools that allow them to create secure web

applications without hindering their productivity. The

OWASP XSS Prevention Cheat Sheet has a lot of useful

information on XSS attacks and how to process user input

safely. There are also tools that help developers create

secure web applications without much extra work.

Blacklisting vs. Whitelisting: To help mitigate XSS

attacks, two basic techniques are used to sanitize data.

Blacklisting uses a list of known bad data to block illegal

content from being executed. Whitelisting uses a list of

known good data to allow only that content to be executed.

Blacklisting mode is faster to set up, but can be bypassed

more easily by a skilled attacker. Whitelisting allows for a

much stronger security solution but comes with a steep

learning curve. Once mastered, though, whitelisting is very

effective at stopping XSS attacks.

: The ESAPI

library is an implementation of methods, including

whitelisting, that process user input safely. It is available

in a number of modern programming languages such as

Java EE, PHP, .NET, Cold Fusion, Python and others. The

ESAPI library requires the developer to understand which

methods are susceptible to XSS attacks, and replace them

with safe implementations accordingly.

: The Microsoft AntiXSS

Library can be used to replace existing ASP.NET

methods that process user input with new methods that

do so safely. The AntiXSS Library uses a whitelisting

approach for �ltering content. The AntiXSS Library

also includes a DLL that can be included in a project

and used to hook all potentially unsafe calls, replacing

them with safe alternatives.

There are many tools

or services that scan websites for XSS vulnerabilities.

These tools or services crawl through websites

and check code that takes user input to see if it is

susceptible to XSS attacks. These tools may not catch

all XSS vulnerabilities, but they may at least �nd the

low hanging fruit.

Another technique for mitigating XSS attacks that has

started to emerge is using coordination between the

web application and the client browser to separate user

supplied data from web application HTML.

: CSP is a proposed

client/server technology standard that was �rst

implemented in Firefox version 4. In CSP, the website

administrator segregates scripts from the rest of the

web site (putting them into a source �le) and whitelists

the domains that should be trusted by the browser as

valid script sources. Any other scripts that the browser

encounters should be presumed to have resulted from

an XSS attack. The browser takes this server information

and uses it to determine whether it will run a given

script or not.

Modi�cations to desktop con�gurations and web application

code are often outside the network administrator’s control.

While protecting the enterprise against XSS attacks by

relying solely on network devices can be hard, there are a

number of technologies that can help.

: WhiteTrash

is a plug-in for the squid proxy with goals similar to

those of NoScript. It uses whitelists to accept scripts

only from explicitly trusted domains. Enterprise

management of WhiteTrash is easier than NoScript as

the whitelist can be managed on a small number of

proxies that all enterprise web traf�c must pass

through.

A WAF is an

Intrusion Detection/Prevention technology that

speci�cally looks at and understands Hyper Text

Transfer Protocol (HTTP) traf�c. WAFs can sit anywhere

on the network but need to be able to view the HTTP

traf�c unencrypted. They can inspect both inbound

and outbound HTTP traf�c for vulnerabilities and can

operate in either blacklist or whitelist mode.

