Real-time Terrain Mapping

Tony Bernardin®, Eric Cowgill®, Ryan Gold?, Bernd Hamann®, Oliver
Kreylos®, and Alfred Schmitt!

! Institut fiir Betriebs- und Dialogsysteme, Universitit iarlsruhe
{uglg,aschmitt}@rz.uni-karlsruhe.de
? Department of Geology, University of California, Davis
{cowgill,gold }@geology.ucdavis.edu
% Tnstitute for Data Analysis and Visualization, University of California, Davis
{hamarnn,kreylos}@cs.ucdavis.edu

Abstract. We present an interactive, real-time mapping system for dig-
ital elevation maps (DEMs), which allows Earth scientists to map and
therefore understand the deformation of the continental crust at length
scates of 10m to 1000 km. OQur system visualizes the surface of the Farth
as a 3D surface generated from a DEM, with a color texture generated
from a registered multispectral image and vector-based mapping ele-
ments draped over it. We use a quadtree-based multiresolution method
to be able to render high-resolution terrain mapping data sets of large
spatial regions in real time. The main strength of our system is the com-
bination of interactive rendering and interactive mapping directly onto
the 3D surface, with the ability to navigate the terrain and to change
viewpoints arbitrarily duting mapping. User studies and comparisons
with commercially available mapping software show that our system im-
proves mapping accuracy and efficiency, and also enables qualitatively
different observations that are not possible to make with existing sys-
tems.

1 Introduction

Understanding how continents deform is a fundamental problem in Earth sci-
ence [1]. Although the plate tectonic paradigm provides an accurate description
of the behavior of oceanic crust, the theory fails to fully explain strain dis-
tribution within continents. There are currently two end-member views of the
problem [2]. In one, continental deformation is spatially distributed over thou-
sands of kilometers and thus, fundamentally differs from the plate-like behavior
of the oceanic crust. In a second view, continents are mosaics of strong, rigid
blocks bounded by weak faulls, and thus mimic the behavior of oceanic plates.
Distinguishing between these two views centers on determining the geometric
and mechanical evolution of first-order {= 1000 km long) intracontinental struc-
tural systems [2]. Do these systems of faults and folds remain stable in space
and time for tens of millions of years (oceanic-plate like), or do they migrate,
eventually producing spatially distributed deformation zones (diffuse pattern)?

Addressing this problem centers on determining how these 1000 km-long
structural systems form and evolve over geologically intermediate time scales
of a few tens of thousands to a few million years. Al its core, developing this
understanding requires mapping these structural systems. Specifically, mapping
means identifying and measuring the 3D orientation of surfaces such as faults
and folded layers of rock, along with the various topographic features by which
these structures may be identified, such as contorted drainage networks or dis-
placed ridges. Short-term deformation of a few seconds to a few thousands of
years is straightforward to characterize using active, historical or paleo earth-
quakes as well as geodetic techniques such as VLBI, GPS, or InSAR. Likewise,
long-term deformation that accumulates over tens of millions of years can be
measured using thermochronology and geochronology. But understanding the
intermediate record has proven difficult because it has been difficultl to map.

At such intermediate time scales, active deformation of the Eartl'’s surface
produces detailed (10 m-1001m) topographic features by which active structures
may be identified and mapped. However, such mapping has been hampered by
the lack of both data and tools that permit efficient analysis of those data over
the 1000 km x 1000 km areas that span regions of active continental deforma-
tion. In the last few years the first of these problems has been addressed and
geologists now have access to non-classified intermediate (10 m—20m) and high
{1 m—10m) pixel resolution DEMs and multispectral satellite or photographic
imagery. The sudden availability of these new datasets has amplified the need
within the earth sciences community for straightforward tools that provide both
efficient visualization of gigabyte to terabyte datasets and geological mapping
within an interactive, 3D visualization environment. The problem of interactive,
3D visualization of large datasets has been previously addressed using multi-
resolution and level of detail techniques [3,4]. We expand that environment to
allow users to map on the 3D surface and compare our new application with
recently developed alternative approaches based on 3D photogramimetric tech-
nigues.

Although active structures typically deform the Earth’s surface, this surface
is also under constant attack by geomorphic processes that either destroy it via
erosion or bury it via deposition. The competition between the rates of swrface
deformation and destruction results in a characteristic length scale for preserved
deformed geomorphic markers, such that markers that are a few thousand to
a few million years old will typically have spatial dimensions of a [ew tens to
a few thousands of meters. This spatial range requires geologists to make nu-
merous detailed observations to fully map active structures, and therefore places
a fundamental limit on the data resolution needed to study these markers. In
particular, multispectral imagery and digital terrain data must have resolutions
not coarser than 15m and 30 m, respectively. However, because the first-order
structural systems are typically on the order of 1000 km long, geologists must
also make these detailed observations over very large areas. In addition, many
of the areas of active continental deformation lie in Africa, Asia and the Middle
East, where data are incomplete and/or of variable quality.

Geologists have struggled with the dilemma of making detailed, remote obser-
vations over large areas for some time. One compromise is to use low-resolution
imagery, and a second is to conduct detailed investigations of small {10}km x
10km)} areas at a few, widely spaced localities. Both methods give a strongly
fAltered view of the active deformation field. As a result, the geomorphic record
of neotectonic deformation, and thus our understanding of how major struc-
tural systems evolve at intermediate time scales, remains largely unexplored. In
response, we have developed RIMS, a Real-time, Interactive, Mapping System.
RIMS allows geologists to visualize, and map in 3D space, structures that are ac-
tive at intermediate time scales, both in detail but also over thousand-kilometer
wide zones of active continental deformation.

2 Related Work

Prior to the development of RIMS, there were two basic methods for analysis
of high resolution, multispectral imagery and digital terrain data available to
geologists. Omne option was perspective views of texture data such as imagery
draped over a DEM. A large munber of widely available tools allow interactive
manipulation of such displays [5-10]. Most of thein do not yet appear to make
use of multiresolution techniques [11]. More importantly, it is not possible to map
directly on the 3D scene. The second approach has been to perform 3D feature
extraction nsing a StereoGraphics Z-Screen and a photogrammetry package [12-
14).

2.1 Terrain Level-of-Detail (LOD) Algorithms

Multi-resolution visualization of large-scale 31} terrain models is an active area
of research. [15] have recently presented a technique using triangulated irregular
network (TIN) patches as drawing primitives in place of triangles. TIN patches
represent terrain highly accurately and are optimized in a preprocessing step for
efficient storage and rendering and are batched to the graphics hardware by a
view-dependent algorithm. In addition, a texture tile hierarchy is constructed to
allow for multi-resolution imagery to be projected onto the terrain geometry. [16]
and [3] work with regular gridded data, considerably reducing the preprocess-
ing requirement, and present data management and view-dependent algorithms
focusing on the real-time generation of the triangulated mesh representation of
the terrain. The former method focuses on attaining the best fidelity in the gen-
erated approximation using complex algorithins, whereas the latter method con-
centrates on the simplicity and ease of implementation of the data management
and simplification techniques. All the mentioned techniques feature out-of-core
data management enabling them o process the large data sets associated with
terrain visualization.

The terrain visualization component of our system is based on the algorithm
of [4]. Quadtrees are a well-understood data structuring concept we use to uni-
formly represent and manage the different components of our system (geometry,
texture and mappings).

2.2 Vector Mapping and Display Systems

One of us (Cowgill) has recently developed a method for building digital stereo
models {DSMs) from 15 m-pixel resolution ASTER stereoscopic imagery using
only the ground control point information provided with the Level 1A data.
Individual DSMs comprise 4200 x 4200 pixel (= 60km x 60km) images that
can be mapped in 3D using StereoAnalyst (SA) {12] al scales up to 1:20,000
(= 6% screen pixels to 1 image pixel). This system js limited to a plan or bird’s
eye view and does not permit a user to view the surface along a vertical cross-
section, which is a perspective that geologists rely upon heavily for analysis.
In addition, the DSMs typically have lateral variations in X and Y parallax,
resulting in eye strain alter a few hours of analysis with SA. Finally, the lack
of an ASTER-specific sensor model and external ground control information
restricts the DSM to a single scene, thus only a 60km x 60km area can be
mapped at once using SA.

To address the visualization problem of draping 2D vector data over a multi-
resolution 3D terrain representation, [17] propese algorithms for rendering geo-
metric lines adapted to surface tessellation. Their method handles sophisticated
restricted quadtree triangulations where the representation is not fixed for a
given node. Qur approach employs fixed regular triangulations per node and
allows for the more straightforward method presented in Sect. 4.1.

As an alternative to the polyline-as-geometry approach mentioned above, {18]
present techniques to render vector data using textures generated on-demand.
In hopes of being less sensitive to vector data quantity, we would like to add
such a polyline-as-texture approach to our system in the future.

3 Terrain Visualization

To be useful for netotectonic studies, a 3D mapping system must provide in-
teractive textured height field rendering of very large terrain data sets (above
35k x 35k samples) with full roaming and viewpoint manipulation, and at the
same time must provide interactive mapping of attributed points, polylines and
polygons directly on the 3D terrain model. When zoomed in to large magnifi-
cations, the system must display height field and texture at full resolution. The
system must be able to import and export georeferenced mapping data from and
to standard GIS applications. Ideally, the system should be able to manipulate
the viewpoint at any time while placing mapping elements.

3.1 Terrain Representation

Unprocessed terrain data sets are commonly maintained as two-dimensional sin-
gle or multi-band images. In our case, one gray-scale DEM represents the height
measurements for a given longitude/latitude sampling, and other three-channel
images contain the corresponding color-information — typically either false-colors
generated from the height or spectral-band interpretations, or actual aerial pho-
tographs. The first main task of our system is to facilitate visual exploration of

such data sets by constructing and rendering appropriate 3D surface represen-
tations.

Quadtrees For rendering purpeses, a terrain data set’s surface is reconstructed
using triangle drawing primitives. When rendered directly, the large and high-
resolution terrain data sets required by the application would far exceed current
graphics hardware capabilities, prohibiting real-time exploration. To address this
problem, we use multi-resolution representations based on a quadtree subdivi-
sion. A quadiree’s lowest-level nodes correspond to a tiling of a given data set at
its native resolution. Higher-level nodes contain successively coarser representa-
tions, subsampled by a [actor of two between levels. All nodes in the same tree
have a fixed size of some power of two in each dimension. By sending only appro-
priate nodes to the graphics hardware (see Sect. 3.1), we can render very large
data sets in real time while maintaining sufficient detail for mapping purposes.
When treating each tree node as an atomic entity, the quadiree representation
enables efficient frame processing, e. g., hierarchical view culling (see Sect. 3.1,
selecting appropriate detail level (see Sect. 3.1), and computing mapping element
representations {see Sect. 4.1).

In our system, terrain models are represented by a set of correlated quadtrees,
the first one containing the terrain’s height values, and one or more additional
ones containing texture data. These trees are generated from the unprocessed
data in a preprocessing step (see Sect. 3.2). Considering that the original height
and texture data are tightly correlated, the height and texture trees will present
a node-to-node matehing if generated with appropriate node sizes. For example,
using a 30m resoluition DEM with a 15m resolution texture draped over it
would require a texture quad twice the size of a height quad, e.g., 128 and 64,
respectively. This tight coupling prompted us to merge the two trees leaving
a single terrain tree that needs to be maintained and processed each frame:
each of its nodes contains references to corresponding height and texture data
(see Fig. 1 left). We expect this structure to also facilitate future out-of-core
management /caching and allow for quick overlaying of compatible preprocessed
textures.

Level-of-Detail Calculation To effectively exploit the multi-resolution ter-
rain representation, we need a means of evaluating the appropriateness of a
node based on a set of frame conditions. We consider a continuous LOD value
characterizing a node as perfectly fitting the conditions if it is zero. Negative
values progressively indicate the node’s resolution to be too coarse and positive
values indicitate it being too fine. Additionally, we choose a split-threshold be-
low which nodes will be considered for subdivision and a merge-threshold above
which merging is suggested (see Sect. 3.1). We make the following considerations
for our LOD evaluation:

Focus and Context. When mapping, users operate locally on the terrain data,
effectively defining the region of interest. We consider each evaluated node’s dis-

tance from the manipulation cursor as a first LOD value: at the cursor location,
the finest detail is desired and the farther away from the focus point, the coarser
we are allowed to represent the terrain (see Fig. I, top-right}.

View-Distance Dependency. To explore the data, users are constantly manipu-
lating view parameters that in turn affect the projection of terrain tree nodes
into screen space. To account for such view-specific characteristics we consider
a node’s projected pixel coverage using [3] estimation of perspective projection
dependent on the distance between the node and the viewing camera. The node’s
world-space edge-size is projected and compared to a chosen optimum for a sec-
ond LOD value: for a given view, the finest detail level discernable on screen (as
specified by the optimum) is chosen (see Fig. 1, middle-right).

In the end, the final LOD value is compufted by combining the two previous
ones: the focus-LOD sets the coarsest bound, meaning that although the view
would allow for more detail to be displayed on the screen, for a node away from
the focus point this does not currently interest the user. On the other hand, the
wew-LOD specifies the finest bound, in that even for the node directly under
the focus point we need only render as much detail as will be discernable in the
sereen projection (see Fig. 1, bottom-right).

Fig. 1. Left: Terrain tree with height and texture data. Aciive tiles belonging to the
current approximation are colored, and their geometry and texture data quads are
shown. Right: Level-of-detail computation. Top: LOD is calculated based solely on the
focus point {note the overly detailed square in the middle). Middle: LOD is determined
only using the view parameters. Bottom: Focus and view LODs are combined

Tree Maintenance Ideally, the active tree nodes chosen for a terrain approxi-
mation would be those with a LOD value evaluated between the split and merge

thresholds. Refining recursively by starting with the root node and subdividing
nodes whose LOD values lie below the split-threshold would in fact result in a set
of leaf nodes defining a gap-less, overlay-free tiling of the terrain area. However,
cracks might appear between neighboring nodes of different resolutions due to
hanging triangle vertices (see Fig. 2). To address this problem, we modify the
LOD criterion such that direct neighbors in the active set differ at most by one
level of resolution. If this property holds for an entire tree, cracks can be removed
by simple stitching at the edges of affected nodes.

Splitting and Merging. Since users exploring terrain roam interactively, view
parameters change little from one frame to the next. A high inter-frame coher-
ence can be expected and an approach similar to the one followed by [16] is
worthwhile. Instead of generating the appropriate representation by recursive
subdivision of the root {with the necessary balancing performed on the fly), the
previous representation is tweaked to conform to the new frame conditions. Qur
current implementation dedicates a first traversal pass to tree maintenance using
split and merge operations, but the task could easily be left to the care of an
independent thread.

The tree maintenace pass initially evaluates the LOD values of all previously
active nodes. Their new LOD values are then compared to the thresholds in order
to decide whether nodes should be kept as they are, split into their children, or
merged with their siblings. Both the split and merge operations assume a valid
one-level difference terrain tree and result in a similarly valid one. The split
operation does so by recursively forcing the considered node’s neighborhood
to subdivide appropriately, whereas the merge operation only succeeds if the
siblings and neighborhood allow for the parent to become a leaf. This scheme
favors showing detail over hiding it. Additionally, before either operation can be
completed, the stitching attributes for the inserted node(s) and the neighborhood
have to be corrected, i. e., coarser nodes have to be adapted to neighboring finer
ones. We use four bit-flags, one for each edge, specifying if the corresponding
edge connects to a more detailed one. We describe how these bit-Hags relate to
actual mesh approximations in Sect. 3.3.

Fig. 2. Stitching between nodes. Left: Cracks can appear at the edge of neighboring
nodes of different resolutions. Right: Stitching adapts lower-resolution nodes to higher-
resolution ones for smooth transitions.

View Frustum Culling. By taking advantage of the quadtree structure, we can
further reduce maintenance costs (and later rendering time) using hierarchical

view frustum culling. The tree maintenance pass traverses the terrain tree depth-
first from the root until it encounters a node that is outside the current view
frustuwm or a leaf node in the current approximation {(as determined by the splhit
and merge criteria described above). Computing the visibility of a node is done
by intersecting its bounding sphere with the view frustum. This check is very
inexpensive, and enables efficient culling of entire subtrees from the maintenance
traversal if an upper-level nede is invisible. We maintain a visibility flag in each
node to forward the results obtained here to the rendering phase (see Sect. 3.3).

3.2 Quadbase Preprocessing

Available terrain data sets usually describe a continuous area at a given res-
olution, whereas our program requires a multi-resolution hierarchical tiling of
that area. We generate the needed tiles ofi-line with our preprocessing tool and
store them in a binary quadbase file. The preprocessor first constructs a skeletal
quadtree with the property that its leal nodes tile the input data set at its na-
tive resolution, the root node entirely covers the input data set’s domain, and
only those nodes intersecting the domain are retained. The skeletal tree is then
traversed in a bottom-up, breadth-Arst fashion. At each level, each node crops
out the data associated with it and appends it to the quadbase file. After all
nodes in a level are processed, the input data is resampled to the resolution
appropriate for the next higher level. To associate the image data with mesh
geometry we place vertices at the centers of pixels (see Fig. 3, left). Therefore,
care must be taken to duplicate quad edge pixels where vertices are shared for
rendering. Moreover, quads produced to store height information should addi-
tionally store border pixels to facilitate generation of vertex normals later on
(see Fig. 3, right).

Ly < 2*]
o o
& & + 2
Log & < o0 =3
i © L -0

Fig. 8. Quadbase preprocessing. Left: Alignment of vertex positions in a height quad
(blue dots) and texels in a texture quad (bold squares). Right: Alignment between
input height data, height quads in the same level, and height quads between levels.
Black tick marks denote pixet borders of input data, blue dots denote vertex positions
in height quads, hollow dots denote “ghost vertices” around height quads.

Descriptive information for hoth the quadtree, e. g., quad reselution and num-
ber of quads, and the contained data, e.g., upper-left. corner longitude/latitude
and data resolution, is stored in an additional quadbase header file.

3.3 Rendering

Mesh Representation. Whereas the preprocessed texture quads can be used di-
rectly as sources for texture objects, the height quads have to be converted into
triangulated patches of 3D vertices. The vertex positions and texture coordinates
are generated by creating a planar regular grid where {z, y)-points are elevated
using the appropriate pixel value of the height quad. Vertex texture coordi-
nates are caleulated by linearly mapping (z, y)-coordinates into the associated
texture quad’s texture rectangle, which is identical for each texture node. The
only considerable computation comes from running a filter on a height pixel’s
neighborhood to obtain vertex normals for rendering. After being computed, the
position, texture coordinates and normals are stored in memory compactly as
an interleaved vertex array. We have chosen Lo omit this step from the prepro-
cessing to keep the input data as general and independent of internal geometric
representation as possibie. This approach also reduces I/0 volume, making us
less dependent on slow reads [rom disk.

We employ a simple caching scheme for node geometry and texture data,
to circumvent having to wailt for disk I/O when a previously active node be-
comes activated again. This caching scheme can be enhanced for full data size-
independent out-of-core rendering for very large terrain data and limited inain
IIEmory.

Rendering pass. The image corresponding to the current terrain representation is
produced in a second pass through the terrain tree. Similar to tree maintenance, a
separate thread could be assigned this task, refreshing at the graphics hardware’s
rate instead of the I/O-bound update thread’s rate. A depth-first traversal from
the root finds the active nodes of the current approximation and renders them,
exploiting the hierarchical view culling maintained in the visibility bit-flag (see
Sect. 3.1). Additionally, we could use the quadtree structure to always draw
the nodes in front-to-back order and take advantage of the graphics hardware’s
depth buffer culling.

Tn Sect. 3.1, we mention the need for neighboring rendered quads to align
without cracks, even when they do not represent the same level of detail. This
aflects the triangulations that have to be generated: with one level of difference
maximally possible between neighbors, we can identify fifteen different stitching
cases. For each case, we pre-compute a static index array defining appropriate
triangle strips over the vertex grid. To render a node, its vertex data can then
efficiently be sent to the graphics hardware with the appropriate index array
for the node’s stitching flag computed by the tree maintenance traversal {see
Sect. 3.1).

4 Mapping

The real-time rendering provided by RIMS constitutes a highly valuable tool
for terrain data exploration. However, textured 3D representations are already

available in common commercial software {albeit not using multi-resolution ap-
proaches yet) and mainy advanced techniques have been published. More impor-
tant for our purposes is the use of the 3D terrain model to directly and efficiently
specify and edit georeferenced mapping elements. The following section presents
our program’s mapping capabilities.

Specifying 2.8D Mappings. Typically, mapping data is two-dimensional, e.g., a
polyline would be specified as a list of (longitude, latitude} control peints. Our
mapping tools conceptually operate on a 2D plane by keeping this representa-
tion and dynamically assigning appropriate height values to all control points.
This approach allows for mappings to be defined independently of the current
3D terrain approximation which, in our case, is constantly changing. Interfacing
with cormmon GIS packages can then also be realized easily: our system supports
the ASCII ARC/INFO interchange file format for imports and exports.

Most comumonly, geologists highlight features using a connected sequences of
line segments, i.e., polylines. Qur system supports mapping with this primitive:
controlling a cursor bound to the terrain surface as a spatial reference, users can
perform various actions such as creating, selecting, moving and deleting control
points {see Fig. 4, top).

4.1 Polyline Rendering

To display polylines we take a line-as-geometry approach similar to [17]. Com-
bining such an approach with the multi-resolution 3D terrain representation
requires “lifting” polylines to the 3D terrain model appropriatedly to avoid clip-
ping with the terrain geometry (see Fig. 4, bottom). In the following, we describe
processing the polyline approximation in detail.

General Hondling. Geometric lines, our display primitives, can only accurately
follow flat surfaces, like those defined by the triangles of the 3D terrain represen-
tation. Thus, each 2D polyline segment - specified by a pair of 2D control points -
has to be represented by a sequence of 3D line segiments, one for each triangle
intersected by the 2D polyline segment. Re-computing the appropriate 3D ver-
tices for each frame would dramatically reduce the amount of segments that can
be visualized interactively. To address this limitation, we exploit the locality of
polyline manipulations (moving an inner control point, for example, modifies at
most two segments) and the strong frame-to-frame coherence (triangulations will
only change for few quads in each frame) by storing 3D representations for all
polylines, and fweaking previously valid representations when polyline seginents
are edited, or the terrain approximation changes.

A polyline is represented as a list of subsegments, such that each subsegment
is contained in a single currently active quadtree node. When a polyline is cre-
ated or manipulated, the sequence of subsegments is computed by clipping the
2D polyline against the domains of all active nodes it intersects. Each active
node also stores a list of subsegments associates with it, such that when a node
splits or is merged with its neighbors, the affected polyline subsegments can be

Fig. 4. Top: Refining a polyline by inserting a new control point. Bottom: 3D polyline
representation. Left: Line strips connecting the segment control points follow the terrain
topology. Right: Mesh representation has changed showing more detail, thus hiding the
old line strips (red). A new line strip has to be generated connecting the same control
points.

determined efficiently, and replaced with new ones appropriate for the changed
set of active nodes.

Subsegment Computation. The dominating computational cost of visualizing a
polyline lies in the generation of line strips for each of its subsegments, i.e.,
for each polyline part contained in an active quad of the current terrain ap-
proximation; thus, a fast technique is required to maintain high frame rates.
In our case, this is facilitated by the regular triangulations within each quad.
Moreover, computing the subsegment vertices is effectively only to a 2D prob-
lem: since all vertices of the 3D terrain approximation are extruded from the
(z,y)-plane along the same direction, we “fHatten” them back onto the plane
containing the 2D polylines. Intersection points can then be computed and sub-
sequently extruded appropriately. Thus, a very simple algorithm similar to those
used to rasterize lines to a regular pixel grid can be used with lew modifications.

5 Results

To evaluate RIMS’ performance, we simulated mapping usage on three test data
sets of different sizes. The data set sizes (as DEM size and texture size) and the
preprocessing times necessary to create the hierarchical quadbases from the input
data sels are given in Table 1, as well as the minirnum, average and maximum
frame rates achieved during mapping.

To evaluate the utility of RIMS, we conducted two comparison tests between
the RIMS and StereoAnalyst (SA} [12] mapping methods. The first test (see
Fig.5 and 6) compares the maximum level of geological detail that can be ex-
tracted from the data to identify the mapping system with the highest sensitivity

Table 1. Data set sizes (in pixels for DEM and texture), preprocessing times (in
seconds) and frame rates (in frames per second) for the three test data sets.

Data Set | DEM Size | Tex Size |Build|Min. fps|Avg. fps|Max. fps

Alksai 1850 x 900 | 3700 x 1800 Gs 41.2f 141.6] 285.7
Mosul 2558 x 2447 5115 % 4901 22s 60.6 130.0 400.0
Puget Soundi8193 x 8193|16384 x 16384| 7o0s 30.1 94,2 285.7

Lo detail. Geologists seck the most sensitive system because il allows them to
extract the largest amount of information and thus develop the most sophis-
ticated geological analysis. For this test, a user spent as much time as needed
to extract the maximum number of features over the same area. The second
test (see Fig. 7) compares the number and quality of geologic observations that
can be collected in the same finite period of time to identify the most efficient
mapping system. (Geologists prefer highly efficient systems that allow them to
process their data as quickly as possible. For this test, a user spent two hours
mapping the same area. In both lests, the study areas were mapped first with
SA, then with RIMS. This approach was admittedly biased, because the users
had the bhenefit of already having mapped the scene once at the start of their
RIMS sessions. However, both users are significantly more familiar with the SA
navigation/mapping environment; thus, their lack of familiarity with the RIMS
controls likely offsets any advantage their prior SA mapping provided.

The tests indicated that RIMS provides a number of user benefits, including
reduced eye strain, faster zoom and pan speeds, and slight advantages in the nav-
igation. More importantly, the tests also revealed five key differences that make
RIMS more useful for geological applications. Relative to SA, RIMS provided
greater 1) widerstanding of the mapped structural geometry and thus pattern of
active deformation; 2) confidence in feature identification and location; 3) num-
bers of mapped features (i. ., a larger number of mapping elements); 4) mapping
accuracy (i e., a larger number of vertices per mapping element); and 5) ability
to locate and identify small features. Specific examples of each difference are
provided in the following sections, highlighting the utility of RIMS.

1. The most important difference revealed by the tests is that RIMS allowed
both users to obtain a more sophisticated understanding of the structural
geometry of their areas. For example, in Fig. 5, arrow A’ on the right-hand
side of the figure paints to a structure that was obvious in the RIMS environ-
ment. The Jack of a structure at arrow A on the left-hand side of the figure
indicates that the user was notl able to see and interpret this feature using
SA. A RIMS screen shot (see Fig. 6, right half) clearly shows the structure
mapped at A’, and also demonstrates that it appears as an uninterpretable
bump in a plan-view stereo pair that replicates the view from SA (see Fig. 6,
left half). Likewise, additional structures were discovered at B’ and C” using
RIMS while the corresponding points B and ¢ indicate that the user missed
these features when using SA. In sununary, the plan (bird’s eye) view and

grayscale imagery of SA made it difficult to identify the topographic and
textural variations that indicated the existence of these subtle features.

2. RIMS provided hoth users with higher confidence in their vector mapping,
as indicated by the type of lines selected Lo represent mapped features. Geol-
ogists express their confidence in their ability to accurately locate a mapped
feature by using solid, dashed, or dotted lines {in order of decreasing confi-
dence). Fig. 7 shows that the RIMS project contains 20 boundaries mapped
using solid lines, 2 using dashed, and 2 with dotted. In contrast, the SA
project has only 2 boundaries defined with solid lines, 21 with dashed lines,
and 1 with a dotted line.

3. Both users were able to identify a larger number of features using RIMS than
SA. The RIMS output shown in Fig. 5 has 289 mapped features whereas
only 172 features were extracted using SA. Likewise, Fig. 7 indicates that
14 major structures were defined using RIMS, in contrast to 8§ structures on
the SA map.

4, RIMS allows users {o more accurately locate features and then map them
using more vertices per feature because it does not demand constant man-
ual parallax adjustments. Because the polylines have more vertices in the
RIMS outputs, they better track short wavelength variations in the feature
geomebry and thus more accurately follow subtle changes in the boundaries
between geologic units. In contrast, the maps generated from SA show a
prevalence of long straight line segments. Differences in detail are especially
evident in Fig. 7 at comparison points A-A', B-B' and C-C’ in SA and
RIMS, respectively.

5. Finally, RIMS is more effective for locating small geologic features. For ex-
ample, a series of river terraces located at point D’ in the RTMS output were
not located at point 4 using $A (see Fig. 7). Likewise, points E-E’ indicate
a small outcrop that was not seen in SA at E but that was mappable us-
ing RIMS at E’. Although these features are small, their identification has
important implications regarding the geometry of active deformation in the
mapped area.

6 Conclusions and Future Work

In summary, while the tests described above show that the maps generated using
both utilities capture many of the same major geologic features, it is clear that
RIMS is both a more sensitive and a more efficient mapping utility, and thus
greatly advances geologists’ ability to remotely map patierns of active defoma-
tion in fAne detail while also spanning continental collision zones that are thou-
sands of kilometers wide and often inaccessible for field study. The advantages
of RIMS over the previously used system are mostly due to RIMS® interactive
visualization of large textured 3D terrain models, and its ability to map directly
onto the 3D terrain in real-time.

Our future efforts will focus on moving the terrain maintenance out-of-core
to allow for more scalability. We are also looking into on-demand textures to

support a higher quantity of mappings with a more varied appearance {(as seen
in the results figures produced with ArcMap). In addition, mapping capabilities
are to be extended providing geologist with more tools and help so as to more
efficiently extract interesting features from the data sets.

Acknowledgments This work was supported by the National Science Founda-
tion under contract ACI 9624034 (CAREER Award), through the Large Sci-
entific and Software Data Set Visualization (LSSDSV) program under contract
ACI 9982251, through the National Partnership for Advanced Computational
Infrastructure (NPACT), and a large Information Technology Research (ITR)
grant. This work was partially supported by the W. M. Keck Center for Active
Visualization in the Earth Sciences (Keck CAVES} and NASA grant EOS/03-
0663-0306. We have benefited from conversations with Magali Billen, Louise
Kellogg, and Nickolas Raterman. We thank the members of the Visualization
and Graphics Research Group at the Center for Image Processing and Inte-
grated Computing (IDAV) at the University of California, Davis.

References

1. Cowgill, E., Arrowsmith, J.R., Yin, A., Wang, X.F., Chen, Z.: The Akato Tagh
bend along the Altyn Tagh fault, NW Tibet 2. Active deformation and the im-
portance of transpression and strain-hardening within the Altyn Tagh system.
Geological Society of America Bulletin (2004)

2. Cowgill, E., Yin, A., Arrowsmith, J.R., Wang, X.F., Zhang, 5.: The Akato Tagh
bend along the Altyn Tagh fault, NW Tibet 1. Simoothing by vertical-axis rotation
and the effect of topographic stresses on bend-flanking faults. Geological Society
of America Bulletin (2004)

3. Lindstrom, P., Pascucci, V.: Terrain simplification simplified: A general framework
for view-dependent out-of-core visualization. IEEE Transactions on Visualization
and Computer Graphics 8{3) (2002) 239-254

4. Lindstrom, P., Koller, D., Hodges, L.F., Ribarsky, W., Faust, N., Turner, G.: Level-
of-detail management for real-time rendering of phototextured terrain. TFechnical
Report 6 (1995}

5. Lees, J.M.: Geotouch: Software for three- and four-dimensional GIS in the Earth
sciences. Computers and Geosciences 26 (2000} 751-761

6. : GRASS GIS. (http://grass.baylor.edu)

7. : ArcScene utility in 3D Analyst extension of ArcGIS. (
http:/ fwww.esri.com/software/arcgis/arcgisxtensions/3danalyst /)

8. : 3D SurfaceView utility in ENVL (
hitp://www.rsinc.com/envi/)

9. : VirtualGIS module in ERDAS IMAGINE. (
hetp:/ /gis.leica-geosystems.com,/Products/Imagine/)

10. : FLY! (http://www.pcigeomatics.com/product_ind /fly.htinl)

11. : ArcGlobe, to be released in Spring 2004. (
http:/ /www.esri.com/news/arcnews/summer(3articles/introducing-
arcglobe.htmi)

12. : Stereo Analyst for AreGIS. {
Lttp:/ /gis.leica-geosystems.com/Products/Stereo Analyst /}

Fig. 5. Results of sensitivity test. Gold arrows highlight points where the maps dif-
fer significantly, as discussed in the text. Red lines are fold hingelines and are solid
where confidently located and dashed where their position is less clear. Blue lines de-
note drainages. Broken black lines indicate contacts between two different geologic
units, dotted black lines are marker beds. Dashed yellow line denotes the edge of a
geomorphic surface. Brown lines indicate drainage divides. Left: Map generated using
StereoAnalyst. Right: Map generated using RIMS.

Fig. 6. Subtle ridge appearing at location A-A’ in Fig. 5. Left and center: Cross-eye
stereo pair reconstructing the plan view provided by StereoAnalyst. Right: Screen shot
from RIMS.

Fig. 7. Results of efficiency test. Decorated red lines are various types of active faults.
Black lines represent folds and contacts between two different geologic units. Red and
black lines are solid where features are confidently located and dashed, dotted, or quer-
ried where position is increasingly less clear. Solid blue lines are drainages. Text labels
(pC, T, Qo, Qm#, Qy) denote units of different apparent ages. Left: Map generated
using StereoAnalyst. Right: Map generated using RIMS.

13.
14,
15.

16.

17.

18.

: OrthoEngine add-on for Geomatica. (

http:/ fwww.pcigeomatics.com,/product.ind /add_on_oe.html)

: SOCET SET. (http://www. vitec.com/products/socetset/)

Cignoni, P., Ganovelli, F., Gobbetti, E., Marton, F., Ponchio, F., Scopigno, R.:
BDAM - batched dynamic adaptive meshes {or high performance terrain visual-
ization. Computer Graphics Forum 22(3} (2003)

Duchaineau, M., Wolinsky, M., Sigeti, D.E., Miller, M.C., Aldrich, C., Mineev-
Weinstein, M.B.: ROAMing terrain: Real-time optimally adapting meshes. In:
Proceedings of the 8th conference on Visualization 97, [EEE Computer Society
Press (1997} 81--88

Wartell, Z., Kang, E., Wasilewski, T., Ribarsky, W., Faust, N.: Rendering vector
data over global, multi-resolution 3D terrain. In: Proceedings of the symposium
on Data visualisation 2003, Eurographics Association {2003) 213-222

Kersting, O., Déllner, J.: Interactive 3D visualization of vector data in GIS. In:
Proceedings of the tenth ACM international symposium on Advances in geographic
information systems, ACM Press (2002) 107-112

