John Sevier Fossil Plant Dry Fly Ash Stack Slope Analysis Section A-A' River Pool Elevation 1067.0 ft

Note:

The results of analysis shown here are based on available subsurface information, laboratory test results, and approximate soil properties. No warranties can be made regarding the continuity of subsurface conditions between the borings.

Method: Spencer

Name: Clay Fill Unit Weight: 125 pcf Cohesion: 0 psf

Phi: 32 °

Name: Starter Dike (Clay) Unit Weight: 126 pcf Cohesion: 0 psf

Phi: 31 °

Name: Alluvial Clay Unit Weight: 120 pcf Cohesion: 0 psf

Phi: 31 °

Name: Compacted Fly Ash Unit Weight: 110 pcf Cohesion: 0 psf

Phi: 32 °

Name: Sluiced Fly Ash Unit Weight: 105 pcf Cohesion: 0 psf

Phi: 24 °

Name: Gravel Unit Weight: 137 pcf Cohesion: 0 psf Phi: 39 °

Name: Rip-Rap Unit Weight: 115 pcf Cohesion: 0 psf

Phi: 40 °

John Sevier Fossil Plant Dry Fly Ash Stack Slope Analysis Section A-A' River Pool Elevation 1067 ft

50

100

1.04l

-100

-50

0

200

Distance

150

250

300

350

Note:

450

500

550

400

The results of analysis shown here are based on available subsurface information, laboratory test results, and approximate soil properties. No warranties can be made regarding the continuity of subsurface conditions between the borings.

Method: Spencer

Name: Clay Fill Unit Weight: 125 pcf Cohesion: 0 psf Phi: 32 °

Name: Starter Dike (Clay) Unit Weight: 126 pcf Cohesion: 0 psf Phi: 31 °

III. 31

Name: Alluvial Clay Unit Weight: 120 pcf Cohesion: 0 psf Phi: 31 °

Name: Compacted Fly Ash Unit Weight: 110 pcf Cohesion: 0 psf Phi: 32 °

Name: Sluiced Fly Ash Unit Weight: 105 pcf Cohesion: 0 psf Phi: 24 °

Name: Gravel Unit Weight: 137 pcf Cohesion: 0 psf

Phi: 39 °

Name: Rip-Rap Unit Weight: 115 pcf Cohesion: 0 psf

Phi: 40 °

John Sevier Fossil Plant Dry Fly Ash Stack Slope Analysis Section A-A' River Pool Elevation 1073 ft

Note:

The results of analysis shown here are based on available subsurface information, laboratory test results, and approximate soil properties. No warranties can be made regarding the continuity of subsurface conditions between the borings.

Method: Spencer

Name: Clay Fill Unit Weight: 125 pcf Cohesion: 0 psf Phi: 32 °

Name: Starter Dike (Clay) Unit Weight: 126 pcf Cohesion: 0 psf Phi: 31 °

Name: Alluvial Clay Unit Weight: 120 pcf Cohesion: 0 psf Phi: 31 °

Name: Compacted Fly Ash Unit Weight: 110 pcf Cohesion: 0 psf Phi: 32 °

Name: Sluiced Fly Ash Unit Weight: 105 pcf Cohesion: 0 psf Phi: 24 °

Name: Gravel Unit Weight: 137 pcf Cohesion: 0 psf Phi: 39 °

Name: Rip-Rap Unit Weight: 115 pcf Cohesion: 0 psf

Phi: 40 °

John Sevier Fossil Plant **Dry Fly Ash Stack** Slope Analysis Section B-B' River Pool Elevation 1067 ft

Note:

The results of analysis shown here are based on available subsurface information, laboratory test results, and approximate soil properties. No warranties can be made regarding the continuity of subsurface conditons between the borings.

Method: Spencer

Name: Clay Fill Unit Weight: 125 pcf Cohesion: 0 psf Phi: 32 °

Name: Starter Dike (Clay)

John Sevier Fossil Plant **Dry Fly Ash Stack River Pool Elevation 1067'**

The results of analysis shown here are based on available subsurface information, laboratory test results, and approximate soil properties. No warranties can be made regarding the continuity of subsurface conditons between the borings.

Method: Spencer

Name: Clay Fill Unit Weight: 125 pcf Cohesion: 0 psf

Phi: 32 °

Name: Starter Dike (Clay) Unit Weight: 126 pcf

Unit Weight: 110 pcf Cohesion: 0 psf

Unit Weight: 105 pcf Cohesion: 0 psf

John Sevier Fossil Plant
Dry Fly Ash Stack
Slope Analysis Section B-B'
River Pool Elevation 1067 ft
Assumed Proposed Sub-Drain System & Additional Rip-Rap

Note:

The results of analysis shown here are based on available subsurface information, laboratory test results, and approximate soil properties. No warranties can be made regarding the continuity of subsurface conditons between the borings.

Method: Spencer

Name: Clay Fill Unit Weight: 125 pcf Cohesion: 0 psf

Phi: 32 °

Name: Starter Dike (Clay) Unit Weight: 126 pcf Cohesion: 0 psf Phi: 31 °

Name: Alluvial Clay Unit Weight: 120 pcf Cohesion: 0 psf Phi: 31 °

Name: Compacted Fly Ash Unit Weight: 110 pcf Cohesion: 0 psf Phi: 32 °

Name: Sluiced Fly Ash Unit Weight: 105 pcf Cohesion: 0 psf Phi: 24 °

Name: Gravel Unit Weight: 140 pcf Cohesion: 0 psf Phi: 37.5 °

Name: Rip-Rap Unit Weight: 115 pcf Cohesion: 0 psf Phi: 40 °

John Sevier Fossil Plant **Dry Fly Ash Stack Slope Analysis Section B-B' River Pool Elevation 1067 ft**

The results of analysis shown here are based on available subsurface information, laboratory test results, and approximate soil properties. No warranties can be made regarding the continuity of subsurface conditons between the borings.

Method: Spencer

Name: Clay Fill Unit Weight: 125 pcf Cohesion: 0 psf Phi: 32 °

Name: Starter Dike (Clay) Unit Weight: 126 pcf Cohesion: 0 psf Phi: 31 °

Name: Alluvial Clay Unit Weight: 120 pcf Cohesion: 0 psf Phi: 31 °

Name: Compacted Fly Ash Unit Weight: 110 pcf Cohesion: 0 psf

Name: Sluiced Fly Ash Unit Weight: 105 pcf Cohesion: 0 psf Phi: 24 °

Name: Gravel Unit Weight: 140 pcf Cohesion: 0 psf Phi: 37.5 °

Name: Rip-Rap Unit Weight: 115 pcf Cohesion: 0 psf

Phi: 40 °

John Sevier Fossil Plant Dry Fly Ash Stack Slope Analysis Section B-B' River Pool Elevation 1073 ft

The results of analysis shown here are based on available subsurface information, laboratory test results, and approximate soil properties. No warranties can be made regarding the continuity of subsurface conditons between the borings.

Method: Spencer

Name: Clay Fill Unit Weight: 125 pcf Cohesion: 0 psf

Phi: 32°

Name: Starter Dike (Clay) Unit Weight: 126 pcf Cohesion: 0 psf Phi: 31 °

John Sevier Fossil Plant
Dry Fly Ash Stack
Slope Analysis Section B-B'
River Pool Elevation 1073 ft
Assumed Proposed Sub-Drain System & Additional Rip-Rap

Note:

The results of analysis shown here are based on available subsurface information, laboratory test results, and approximate soil properties. No warranties can be made regarding the continuity of subsurface conditions between the borings.

Method: Spencer

Name: Clay Fill Unit Weight: 125 pcf Cohesion: 0 psf

Phi: 32 °

John Sevier Fossil Plant Dry Fly Ash Stack Slope Analysis Section C-C' River Pool Elevation 1067.0 ft

Note:

The results of analysis shown here are based on available subsurface information, laboratory test results, and approximate soil properties. No warranties can be made regarding the continuity of subsurface conditions between the borings.

John Sevier Fossil Plant Dry Fly Ash Stack Slope Analysis Section C-C' River Pool Elevation 1067.0 ft

Note:

The results of analysis shown here are based on available subsurface information, laboratory test results, and approximate soil properties. No warranties can be made regarding the continuity of subsurface conditons between the borings.

Method: Spencer

Name: Clay Fill Unit Weight: 125 pcf Cohesion: 0 psf Phi: 32 °

Name: Reconstructed Dike (Clay) Unit Weight: 126 pcf Cohesion: 0 psf

Name: Alluvial Clay Unit Weight: 120 pcf Cohesion: 0 psf

Name: Compacted Fly Ash Unit Weight: 110 pcf Cohesion: 0 psf

Name: Sluiced Fly Ash Unit Weight: 105 pcf Cohesion: 0 psf

Name: Sand

Unit Weight: 139 pcf Cohesion: 0 psf Phi: 37 °

Unit Weight: 115 pcf Cohesion: 0 psf

John Sevier Fossil Plant Dry Fly Ash Stack Slope Analysis Section C-C' River Pool Elevation 1067.0 ft **Assumed Proposed Additional Rip-Rap and Sub-Drain System**

Phreatic Surface

300

350

Distance

Compacted Fly Ash

500

550

600

650

700

450

Bedrock (Shale)

400

Reconstructed Dike (Clay)

Alluvial Clav

150

Proposed Sub-Drain

100

Rip-Rap JS-43

50

Failure Plane

Additional Rip-Rap

Clay Fill

200

Sluiced Fly Ash

250

1.21

1.20

1.19

1.18

1.17

1.16

1.09

1.08

1.07

1.06

1.05

1.04

-100

1000)

Elevation (x

Note:

The results of analysis shown here are based on available subsurface information, laboratory test results, and approximate soil properties. No warranties can be made regarding the continuity of subsurface conditons between the borings.

Method: Spencer

Name: Clay Fill Unit Weight: 125 pcf Cohesion: 0 psf Phi: 32 °

Name: Reconstructed Dike (Clay) Unit Weight: 126 pcf Cohesion: 0 psf Phi: 31 °

Name: Alluvial Clay Unit Weight: 120 pcf Cohesion: 0 psf Phi: 31 °

Name: Compacted Fly Ash Unit Weight: 110 pcf Cohesion: 0 psf Phi: 30 °

Name: Sluiced Fly Ash Unit Weight: 105 pcf Cohesion: 0 psf Phi: 24 °

Name: Sand Unit Weight: 139 pcf Cohesion: 0 psf Phi: 37 °

Name: Rip-Rap Unit Weight: 115 pcf Cohesion: 0 psf Phi: 40 °

John Sevier Fossil Plant Dry Fly Ash Stack Slope Analysis Section C-C' River Pool Elevation 1067.0 ft **Assumed Proposed Sub-Drain System**

Note:

The results of analysis shown here are based on available subsurface information, laboratory test results, and approximate soil properties. No warranties can be made regarding the continuity of subsurface conditons between the borings.

Method: Spencer

Name: Clay Fill Unit Weight: 125 pcf Cohesion: 0 psf Phi: 32 °

Name: Reconstructed Dike (Clay) Unit Weight: 126 pcf Cohesion: 0 psf Phi: 31°

Name: Alluvial Clay Unit Weight: 120 pcf Cohesion: 0 psf

Name: Compacted Fly Ash Unit Weight: 110 pcf Cohesion: 0 psf

Name: Sluiced Fly Ash Unit Weight: 105 pcf Cohesion: 0 psf

Unit Weight: 139 pcf Cohesion: 0 psf

Name: Rip-Rap Unit Weight: 115 pcf Cohesion: 0 psf

Phi: 40 °

John Sevier Fossil Plant **Dry Fly Ash Stack Slope Analysis Section C-C'** River Pool Elevation 1073.0 ft

Note:

The results of analysis shown here are based on available subsurface information, laboratory test results, and approximate soil properties. No warranties can be made regarding the continuity of subsurface conditons between the borings.

Method: Spencer

Name: Clay Fill Unit Weight: 125 pcf Cohesion: 0 psf

Phi: 32 °

Name: Reconstructed Dike (Clay) Unit Weight: 126 pcf

Phi: 31 °

Name: Alluvial Clay Unit Weight: 120 pcf Cohesion: 0 psf

Phi: 31 °

Name: Compacted Fly Ash Unit Weight: 110 pcf Cohesion: 0 psf

Phi: 30 °

Name: Sluiced Fly Ash Unit Weight: 105 pcf Cohesion: 0 psf

Phi: 24 °

Name: Sand Unit Weight: 139 pcf Cohesion: 0 psf

Phi: 37 °

Name: Rip-Rap Unit Weight: 115 pcf Cohesion: 0 psf

Phi: 40 °

John Sevier Fossil Plant
Dry Fly Ash Stack
Slope Analysis Section C-C'
River Pool Elevation 1073.0 ft
Assumed Proposed Additional Rip-Rap and Sub-Drain System

Note:

the borings.

The results of analysis shown here are based on available subsurface information, laboratory

test results, and approximate soil properties. No warranties can be made regarding the

continuity of subsurface conditons between

Method: Spencer Name: Clay Fill

John Sevier Fossil Plant Dry Fly Ash Stack Slope Analysis Section D-D' River Pool Elevation 1067.0 ft

Note:

The results of analysis shown here are based on available subsurface information, laboratory test results, and approximate soil properties. No warranties can be made regarding the continuity of subsurface conditons between the borings.

Name: Clay Fill Unit Weight: 125 pcf Cohesion: 0 psf Phi: 32 °

Name: Starter Dike (Clay) Unit Weight: 126 pcf Cohesion: 0 psf Phi: 31 °

Name: Alluvial Clay Unit Weight: 120 pcf Cohesion: 0 psf Phi: 31 °

Name: Compacted Fly Ash Unit Weight: 110 pcf Cohesion: 0 psf Phi: 32.5 °

Name: Sluiced Fly Ash Unit Weight: 105 pcf Cohesion: 0 psf Phi: 24 °

Name: Bottom Ash Unit Weight: 117 pcf Cohesion: 0 psf Phi: 29 °

Name: Gravel Unit Weight: 139 pcf Cohesion: 0 psf Phi: 36 °

Name: Rip-Rap Unit Weight: 115 pcf Cohesion: 0 psf Phi: 40 °

John Sevier Fossil Plant Dry Fly Ash Stack Slope Analysis Section D-D' River Pool Elevation 1067.0 ft

Note:

The results of analysis shown here are based on available subsurface information, laboratory test results, and approximate soil properties. No warranties can be made regarding the continuity of subsurface conditions between the borings.

Method: Spencer

Name: Clay Fill Unit Weight: 125 pcf Cohesion: 0 psf Phi: 32 °

Name: Starter Dike (Clay)

JS-40 Unit Weight: 126 pcf
Cohesion: 0 psf
Phi: 31 °

Name: Alluvial Clay Unit Weight: 120 pcf Cohesion: 0 psf Phi: 31 °

Name: Compacted Fly Ash Unit Weight: 110 pcf Cohesion: 0 psf Phi: 32.5 °

Name: Sluiced Fly Ash Unit Weight: 105 pcf Cohesion: 0 psf Phi: 24 °

Name: Bottom Ash Unit Weight: 117 pcf Cohesion: 0 psf Phi: 29 °

Name: Gravel Unit Weight: 139 pcf Cohesion: 0 psf Phi: 36 °

Name: Rip-Rap Unit Weight: 115 pcf Cohesion: 0 psf Phi: 40 °

John Sevier Fossil Plant
Dry Fly Ash Stack
Slope Analysis Section D-D'
River Pool Elevation 1067.0 ft
Assumed Proposed Additional Rip-Rap and Sub-Drain System

Note:

The results of analysis shown here are based on available subsurface information, laboratory test results, and approximate soil properties. No warranties can be made regarding the continuity of subsurface conditons between the borings.

Name: Clay Fill Unit Weight: 125 pcf Cohesion: 0 psf Phi: 32 °

Name: Starter Dike (Clay) Unit Weight: 126 pcf Cohesion: 0 psf Phi: 31 °

Name: Alluvial Clay Unit Weight: 120 pcf Cohesion: 0 psf Phi: 31 °

Name: Compacted Fly Ash Unit Weight: 110 pcf Cohesion: 0 psf Phi: 32.5 °

Name: Sluiced Fly Ash Unit Weight: 105 pcf Cohesion: 0 psf Phi: 24 °

Name: Bottom Ash Unit Weight: 117 pcf Cohesion: 0 psf Phi: 29 °

Name: Gravel Unit Weight: 139 pcf Cohesion: 0 psf Phi: 36 °

Name: Rip-Rap Unit Weight: 115 pcf Cohesion: 0 psf

Phi: 40 °

Note:

The results of analysis shown here are based on available subsurface information, laboratory

Method: Spencer

Name: Clay Fill Unit Weight: 125 pcf Cohesion: 0 psf Phi: 32°

Name: Starter Dike (Clay) Unit Weight: 126 pcf Cohesion: 0 psf Phi: 31°

Name: Alluvial Clay Unit Weight: 120 pcf Cohesion: 0 psf

Phi: 31 °

Name: Compacted Fly Ash Unit Weight: 110 pcf Cohesion: 0 psf Phi: 32.5 °

Name: Sluiced Fly Ash Unit Weight: 105 pcf Cohesion: 0 psf Phi: 24 °

Name: Bottom Ash Unit Weight: 117 pcf Cohesion: 0 psf Phi: 29 °

Name: Gravel Unit Weight: 139 pcf Cohesion: 0 psf Phi: 36 °

Name: Rip-Rap Unit Weight: 115 pcf Cohesion: 0 psf Phi: 40 °

John Sevier Fossil Plant Dry Fly Ash Stack Slope Analysis Section D-D' River Pool Elevation 1073.0 ft

Note:

The results of analysis shown here are based on available subsurface information, laboratory test results, and approximate soil properties. No warranties can be made regarding the continuity of subsurface conditions between the borings.

Name: Clay Fill Unit Weight: 125 pcf Cohesion: 0 psf Phi: 32 °

Name: Starter Dike (Clay) Unit Weight: 126 pcf Cohesion: 0 psf Phi: 31 °

Name: Alluvial Clay Unit Weight: 120 pcf Cohesion: 0 psf Phi: 31 °

Name: Compacted Fly Ash Unit Weight: 110 pcf Cohesion: 0 psf Phi: 32.5 °

Name: Sluiced Fly Ash Unit Weight: 105 pcf Cohesion: 0 psf Phi: 24 °

Name: Bottom Ash Unit Weight: 117 pcf Cohesion: 0 psf Phi: 29 °

Name: Gravel Unit Weight: 139 pcf Cohesion: 0 psf Phi: 36 °

Name: Rip-Rap Unit Weight: 115 pcf Cohesion: 0 psf Phi: 40 °

John Sevier Fossil Plant
Dry Fly Ash Stack
Slope Analysis Section D-D'
River Pool Elevation 1073.0 ft
Assumed Proposed Additional Rip-Rap and Sub-Drain System

Note:

The results of analysis shown here are based on available subsurface information, laboratory test results, and approximate soil properties. No warranties can be made regarding the continuity of subsurface conditons between the borings.

Method: Spencer

Name: Clay Fill Unit Weight: 125 pcf Cohesion: 0 psf Phi: 32 °

Name: Starter Dike (Clay) Unit Weight: 126 pcf Cohesion: 0 psf Phi: 31 °

Name: Alluvial Clay Unit Weight: 120 pcf Cohesion: 0 psf Phi: 31 °

Name: Compacted Fly Ash Unit Weight: 110 pcf Cohesion: 0 psf Phi: 32.5 °

Name: Sluiced Fly Ash Unit Weight: 105 pcf Cohesion: 0 psf Phi: 24 °

Name: Bottom Ash Unit Weight: 117 pcf Cohesion: 0 psf Phi: 29 °

Name: Gravel Unit Weight: 139 pcf Cohesion: 0 psf Phi: 36 °

Name: Rip-Rap Unit Weight: 115 pcf Cohesion: 0 psf Phi: 40 °

John Sevier Fossil Plant Dry Fly Ash Stack Slope Analysis Section E-E' River Pool Elevation 1067.0 ft

Note:

The results of analysis shown here are based on available subsurface information, laboratory test results, and approximate soil properties. No warranties can be made regarding the continuity of subsurface conditions between the borings.

Method: Spencer

Name: Clay Fill Unit Weight: 125 pcf Cohesion: 0 psf Phi: 32 °

Name: Starter Dike (Clay) Unit Weight: 126 pcf Cohesion: 0 psf Phi: 31 °

Name: Alluvial Clay Unit Weight: 120 pcf Cohesion: 0 psf Phi: 31 °

Name: Compacted Fly Ash Unit Weight: 110 pcf Cohesion: 0 psf Phi: 32.5 °

Name: Sluiced Fly Ash Unit Weight: 105 pcf Cohesion: 0 psf Phi: 24 °

Name: Bottom Ash Unit Weight: 106 pcf Cohesion: 0 psf

Name: Gravel Unit Weight: 137 pcf Cohesion: 0 psf Phi: 37 °

Name: Sand
Unit Weight: 131 pcf
Cohesion: 0 psf
Phi: 30.5 °

Name: Rip-Rap Unit Weight: 115 pcf Cohesion: 0 psf Phi: 40 °

John Sevier Fossil Plant Dry Fly Ash Stack Slope Analysis Section E-E' River Pool Elevation 1067.0 ft

The results of analysis shown here are based on available subsurface information, laboratory test results, and approximate soil properties. No warranties can be made regarding the continuity of subsurface conditions between the borings.

Name: Clay Fill Unit Weight: 125 pcf Cohesion: 0 psf Phi: 32 °

Name: Starter Dike (Clay) Unit Weight: 126 pcf Cohesion: 0 psf Phi: 31 °

Name: Alluvial Clay Unit Weight: 120 pcf Cohesion: 0 psf Phi: 31 °

Name: Compacted Fly Ash Unit Weight: 110 pcf Cohesion: 0 psf Phi: 32.5 °

Name: Sluiced Fly Ash Unit Weight: 105 pcf Cohesion: 0 psf Phi: 24 °

Name: Bottom Ash Unit Weight: 106 pcf Cohesion: 0 psf Phi: 28 °

Name: Gravel Unit Weight: 137 pcf Cohesion: 0 psf Phi: 37 °

Name: Sand Unit Weight: 131 pcf Cohesion: 0 psf Phi: 30.5 °

Name: Rip-Rap Unit Weight: 115 pcf Cohesion: 0 psf Phi: 40 °

John Sevier Fossil Plant **Dry Fly Ash Stack Slope Analysis Section E-E'** River Pool Elevation 1067.0 ft **Assumed Proposed Sub-Drain System**

The results of analysis shown here are based on available subsurface information, laboratory test results, and approximate soil properties. No warranties can be made regarding the continuity of subsurface conditons between the borings.

Method: Spencer

Name: Clay Fill Unit Weight: 125 pcf Cohesion: 0 psf Phi: 32 °

Name: Starter Dike (Clay) Unit Weight: 126 pcf Cohesion: 0 psf Phi: 31°

Name: Alluvial Clay Unit Weight: 120 pcf Phi: 31 °

Unit Weight: 110 pcf

Unit Weight: 105 pcf Cohesion: 0 psf Phi: 24 °

Unit Weight: 106 pcf Cohesion: 0 psf

Unit Weight: 137 pcf

Unit Weight: 131 pcf

Unit Weight: 115 pcf Cohesion: 0 psf

John Sevier Fossil Plant Dry Fly Ash Stack Slope Analysis Section E-E' River Pool Elevation 1073.0 ft

Note: The roon av

The results of analysis shown here are based on available subsurface information, laboratory test results, and approximate soil properties. No warranties can be made regarding the continuity of subsurface conditons between the borings.

Name: Starter Dike (Clay) Unit Weight: 126 pcf Cohesion: 0 psf Phi: 31 °

Name: Alluvial Clay Unit Weight: 120 pcf Cohesion: 0 psf Phi: 31 °

Name: Compacted Fly Ash Unit Weight: 110 pcf Cohesion: 0 psf Phi: 32.5 °

Name: Sluiced Fly Ash Unit Weight: 105 pcf Cohesion: 0 psf Phi: 24 °

Name: Bottom Ash Unit Weight: 106 pcf Cohesion: 0 psf Phi: 28 °

Name: Gravel Unit Weight: 137 pcf Cohesion: 0 psf

Name: Sand Unit Weight: 131 pcf Cohesion: 0 psf Phi: 30.5 °

Name: Rip-Rap Unit Weight: 115 pcf Cohesion: 0 psf Phi: 40 °

Method: Spencer

Name: Clay Fill Unit Weight: 125 pcf Cohesion: 0 psf Phi: 32 °

Name: Starter Dike (Clay) Unit Weight: 126 pcf Cohesion: 0 psf Phi: 31 °

Name: Alluvial Clay Unit Weight: 120 pcf Cohesion: 0 psf Phi: 31 °

Name: Compacted Fly Ash Unit Weight: 110 pcf Cohesion: 0 psf Phi: 30 °

Name: Sluiced Fly Ash Unit Weight: 105 pcf Cohesion: 0 psf Phi: 24 °

Name: Bottom Ash Unit Weight: 118 pcf Cohesion: 0 psf Phi: 32 °

Name: Sand Unit Weight: 127 pcf Cohesion: 0 psf Phi: 32 °

Name: Gravel Unit Weight: 137 pcf Cohesion: 0 psf Phi: 32.5 °

Name: Rip-Rap Unit Weight: 115 pcf Cohesion: 0 psf Phi: 40 °

The results of analysis shown here are based on available subsurface information, laboratory

Method: Spencer

Name: Clay Fill Unit Weight: 125 pcf Cohesion: 0 psf Phi: 32 °

Name: Starter Dike (Clay) Unit Weight: 126 pcf Cohesion: 0 psf Phi: 31 °

Name: Alluvial Clay Unit Weight: 120 pcf Cohesion: 0 psf Phi: 31 °

Name: Compacted Fly Ash Unit Weight: 110 pcf Cohesion: 0 psf Phi: 30 °

Name: Sluiced Fly Ash Unit Weight: 105 pcf Cohesion: 0 psf Phi: 24 °

Name: Bottom Ash Unit Weight: 118 pcf Cohesion: 0 psf Phi: 32 °

Name: Sand Unit Weight: 127 pcf Cohesion: 0 psf Phi: 32 °

Name: Gravel Unit Weight: 137 pcf Cohesion: 0 psf Phi: 32.5 °

Name: Rip-Rap Unit Weight: 115 pcf Cohesion: 0 psf Phi: 40 °

Method: Spencer

Name: Clay Fill Unit Weight: 125 pcf Cohesion: 0 psf Phi: 32 °

Name: Starter Dike (Clay) Unit Weight: 126 pcf Cohesion: 0 psf Phi: 31 °

Name: Alluvial Clay Unit Weight: 120 pcf Cohesion: 0 psf Phi: 31 °

Name: Compacted Fly Ash Unit Weight: 110 pcf Cohesion: 0 psf Phi: 30 °

Name: Sluiced Fly Ash Unit Weight: 105 pcf Cohesion: 0 psf Phi: 24 °

Name: Bottom Ash Unit Weight: 118 pcf Cohesion: 0 psf Phi: 32 °

Name: Sand Unit Weight: 127 pcf Cohesion: 0 psf Phi: 32 °

Name: Gravel Unit Weight: 137 pcf Cohesion: 0 psf Phi: 32.5 °

Name: Rip-Rap Unit Weight: 115 pcf Cohesion: 0 psf Phi: 40 °

John Sevier Fossil Plant Dry Fly Ash Stack Slope Analysis Section G-G' River Pool Elevation 1067.0 ft

Note:

The results of analysis shown here are based on available subsurface information, laboratory test results, and approximate soil properties. No warranties can be made regarding the continuity of subsurface conditions between the borings.

Name: Clay Fill Unit Weight: 125 pcf Cohesion: 0 psf Phi: 32 °

Name: Starter Dike (Clay) Unit Weight: 126 pcf Cohesion: 0 psf Phi: 31 °

Name: Alluvial Clay Unit Weight: 120 pcf Cohesion: 0 psf Phi: 31 °

Name: Compacted Fly Ash Unit Weight: 110 pcf Cohesion: 0 psf Phi: 30 °

Name: Sluiced Fly Ash Unit Weight: 105 pcf Cohesion: 0 psf Phi: 24 °

Name: Bottom Ash Unit Weight: 105 pcf Cohesion: 0 psf Phi: 29 °

Name: Gravel Unit Weight: 133 pcf Cohesion: 0 psf Phi: 34.5 °

Name: Sand
Too Unit Weight: 130 pcf
Cohesion: 0 psf
Phi: 36 °

Name: Rip-Rap Unit Weight: 115 pcf Cohesion: 0 psf Phi: 40 °

John Sevier Fossil Plant Dry Fly Ash Stack Slope Analysis Section G-G' River Pool Elevation 1067.0 ft

The results of analysis shown here are based on available subsurface information, laboratory test results, and approximate soil properties. No warranties can be made regarding the continuity of subsurface conditons between the borings.

Method: Spencer

Name: Clay Fill Unit Weight: 125 pcf Cohesion: 0 psf

Phi: 32 °

Name: Starter Dike (Clay) Unit Weight: 126 pcf Cohesion: 0 psf Phi: 31 °

Name: Alluvial Clay Unit Weight: 120 pcf Cohesion: 0 psf

Phi: 31 °

Name: Compacted Fly Ash Unit Weight: 110 pcf Cohesion: 0 psf Phi: 30 °

Name: Sluiced Fly Ash Unit Weight: 105 pcf Cohesion: 0 psf Phi: 24 °

Name: Bottom Ash Unit Weight: 105 pcf Cohesion: 0 psf Phi: 29 °

Name: Gravel Unit Weight: 133 pcf Cohesion: 0 psf Phi: 34.5 °

Name: Sand Unit Weight: 130 pcf Cohesion: 0 psf Phi: 36 °

Name: Rip-Rap Unit Weight: 115 pcf Cohesion: 0 psf Phi: 40 °

John Sevier Fossil Plant Dry Fly Ash Stack Slope Analysis Section G-G' River Pool Elevation 1073.0 ft

The results of analysis shown here are based on available subsurface information, laboratory test results, and approximate soil properties. No warranties can be made regarding the continuity of subsurface conditions between the borings.

Method: Spencer

Name: Clay Fill Unit Weight: 125 pcf Cohesion: 0 psf Phi: 32 °

Name: Starter Dike (Clay) Unit Weight: 126 pcf Cohesion: 0 psf Phi: 31 °

Name: Alluvial Clay Unit Weight: 120 pcf Cohesion: 0 psf

Phi: 31 °

Name: Compacted Fly Ash Unit Weight: 110 pcf Cohesion: 0 psf Phi: 30 °

Name: Sluiced Fly Ash Unit Weight: 105 pcf Cohesion: 0 psf Phi: 24 °

Name: Bottom Ash Unit Weight: 105 pcf Cohesion: 0 psf Phi: 29 °

Name: Gravel Unit Weight: 133 pcf Cohesion: 0 psf Phi: 34.5 °

Name: Sand Unit Weight: 130 pcf Cohesion: 0 psf Phi: 36 °

Name: Rip-Rap Unit Weight: 115 pcf Cohesion: 0 psf Phi: 40 °

Note:

The results of analysis shown here are based on available subsurface information, laboratory test results, and approximate soil properties. No warranties can be made regarding the continuity of subsurface conditons between the borings.

Method: Spencer

Name: Clay Fill Unit Weight: 125 pcf Cohesion: 0 psf Phi: 32 °

Name: Starter Dike (Clay) Unit Weight: 126 pcf Cohesion: 0 psf Phi: 31 °

Name: Alluvial Clay Unit Weight: 120 pcf Cohesion: 0 psf

Phi: 31 °

Name: Compacted Fly Ash Unit Weight: 110 pcf Cohesion: 0 psf Phi: 30 °

Name: Sluiced Fly Ash Unit Weight: 105 pcf Cohesion: 0 psf Phi: 24 °

Name: Gravel Unit Weight: 136 pcf Cohesion: 0 psf

Phi: 37 °

John Sevier Fossil Plant **Dry Fly Ash Stack Slope Analysis Section H-H'** River Pool Elevation 1067.0 ft

The results of analysis shown here are based on available subsurface information, laboratory test results, and approximate soil properties. No warranties can be made regarding the continuity of subsurface conditons between the borings.

Method: Spencer

Name: Clay Fill Unit Weight: 125 pcf Cohesion: 0 psf Phi: 32 °

Name: Starter Dike (Clay) Unit Weight: 126 pcf Cohesion: 0 psf Phi: 31 °

Name: Alluvial Clay Unit Weight: 120 pcf Cohesion: 0 psf Phi: 31 °

Name: Compacted Fly Ash Unit Weight: 110 pcf Cohesion: 0 psf

Phi: 30°

Name: Sluiced Fly Ash Unit Weight: 105 pcf Cohesion: 0 psf

Phi: 24 ° Name: Gravel

Unit Weight: 136 pcf Cohesion: 0 psf Phi: 37 °

Note:

The results of analysis shown here are based on available subsurface information, laboratory test results, and approximate soil properties. No warranties can be made regarding the continuity of subsurface conditons between the borings.

Method: Spencer

Name: Clay Fill Unit Weight: 125 pcf Cohesion: 0 psf

Phi: 32 °

Name: Starter Dike (Clay) Unit Weight: 126 pcf Cohesion: 0 psf

Name: Alluvial Clay Unit Weight: 120 pcf Cohesion: 0 psf

Name: Compacted Fly Ash Unit Weight: 110 pcf

Name: Sluiced Fly Ash Unit Weight: 105 pcf

Name: Gravel Unit Weight: 136 pcf

Name: Bedrock (Shale)

John Sevier Fossil Plant Dry Fly Ash Stack Slope Analysis Section H-H' River Pool Elevation 1073.0 ft

John Sevier Fossil Plant Section I-I' Seepage Analysis **Total Head Contours**

Note:

The results of analysis shown here are based on available subsurface information, laboratory test results, and approximate soil properties. No warranties can be made regarding the continuity of subsurfacea conditons betweeen the borings.

Name: Residual Clay

Model: Saturated / Unsaturated K-Function: Residual Fat Clay Vol. WC. Function: Residual Fat Clay

K-Ratio: 0.05 K-Direction: 0 °

Name: Dike (Clay)

Model: Saturated / Unsaturated

K-Function: Fat Clay with Gravel (Embankment Fill)

Vol. WC. Function: Fat Clay with Gravel (Embankment Fill)

K-Ratio: 0.05 K-Direction: 0 °

Name: Bedrock (Shale)

Model: Saturated / Unsaturated

K-Function: Shale Vol. WC. Function: Shale

K-Ratio: 0.1 K-Direction: 0 °

John Sevier Fossil Plant Section I-I' Seepage Analysis **Vertical Gradient Contours**

The results of analysis shown here are based on available subsurface information, laboratory test results, and approximate soil properties. No warranties can be made regarding the continuity of subsurfacea conditons betweeen the borings.

Name: Residual Clay

Model: Saturated / Unsaturated K-Function: Residual Fat Clay Vol. WC. Function: Residual Fat Clay

K-Ratio: 0.05 K-Direction: 0 °

Name: Dike (Clay)

Model: Saturated / Unsaturated

K-Function: Fat Clay with Gravel (Embankment Fill)

Vol. WC. Function: Fat Clay with Gravel (Embankment Fill)

K-Ratio: 0.05 K-Direction: 0 °

Name: Bedrock (Shale)

Model: Saturated / Unsaturated

K-Function: Shale Vol. WC. Function: Shale

K-Ratio: 0.1 K-Direction: 0 °

Note:
The results of analysis shown here are based on available subsurface information, laboratory test results, and approximate soil properties. No warranties can be made regarding the continuity of subsurfacea conditons betweeen the borings.

Name: Residual Clay Unit Weight: 121 pcf Cohesion: 0 psf

Phi: 33 °

Name: Dike (Clay) Unit Weight: 123 pcf Cohesion: 0 psf

Phi: 33 °

John Sevier Fossil Plant

Note:

The results of analysis shown here are based on available subsurface information, laboratory test results, and approximate soil properties. No warranties can be made regarding the continuity of subsurfacea conditons betweeen the borings.

Method: Spencer

Name: Dike (Clay) Unit Weight: 124 pcf Cohesion: 0 psf

Phi: 30 °

Name: Alluvial Clay Unit Weight: 127 pcf Cohesion: 0 psf

Phi: 31 °

Name: Sand Unit Weight: 118 pcf Cohesion: 0 psf

Phi: 30 °

Name: Rip-Rap Unit Weight: 115 pcf Cohesion: 0 psf

Phi: 40 °

Name: Sluiced Fly Ash Unit Weight: 105 pcf Cohesion: 0 psf

Phi: 24 °

The results of analysis shown here are based on available subsurface information, laboratory test results, and approximate soil properties. No warranties can be made regarding the continuity of subsurfacea conditons betweeen the borings.

Method: Spencer

Name: Dike (Clay) Unit Weight: 124 pcf Cohesion: 0 psf

Phi: 30°

Name: Alluvial Clay Unit Weight: 127 pcf Cohesion: 0 psf

Phi: 31°

Name: Sand Unit Weight: 118 pcf Cohesion: 0 psf Phi: 30 °

Name: Rip-Rap Unit Weight: 115 pcf Cohesion: 0 psf

Phi: 40 °

Name: Sluiced Fly Ash Unit Weight: 105 pcf Cohesion: 0 psf

Phi: 24 $^{\circ}$

The results of analysis shown here are based on available subsurface information, laboratory test results, and approximate soil properties. No warranties can be made regarding the continuity of subsurfacea conditons betweeen

Method: Spencer

Name: Dike (Clay) Unit Weight: 124 pcf Cohesion: 0 psf

Phi: 30 °

Name: Sluiced Fly Ash Unit Weight: 105 pcf Cohesion: 0 psf Phi: 24 °

Name: Gravel Unit Weight: 132 pcf Cohesion: 0 psf Phi: 37.5 °

The results of analysis shown here are based on available subsurface information, laboratory test results, and approximate soil properties. No warranties can be made regarding the continuity of subsurfacea conditons betweeen the borings.

Method: Spencer

Name: Dike (Clay) Unit Weight: 124 pcf Cohesion: 0 psf Phi: 30 °

Name: Sluiced Fly Ash Unit Weight: 105 pcf Cohesion: 0 psf

Phi: 24 °

Name: Gravel Unit Weight: 132 pcf Cohesion: 0 psf Phi: 37.5 °

The results of analysis shown here are based on available subsurface information, laboratory test results, and approximate soil properties. No warranties can be made regarding the continuity of subsurfacea conditons betweeen the borings.

John Sevier Fossil Plant Ash Disposal Area J **Slope Analysis Section M-M' Repair** Bench 10 ft & Slope 2:1 River Pool Elevation 1067.0 ft

Method: Spencer

Name: Dike (Clay) Unit Weight: 124 pcf Cohesion: 0 psf Phi: 30 °

Name: Sluiced Fly Ash Unit Weight: 105 pcf Cohesion: 0 psf

Phi: 24 °

Name: Gravel Unit Weight: 132 pcf Cohesion: 0 psf Phi: 37.5 °

Name: Rip-Rap Unit Weight: 115 pcf Cohesion: 0 psf

Phi: 40 °

The results of analysis shown here are based on available subsurface information, laboratory test results, and approximate soil properties. No warranties can be made regarding the continuity of subsurfacea conditons between the borings.

John Sevier Fossil Plant Ash Disposal Area J Slope Analysis Section M-M' Repair Bench 10 ft & Slope 2.5:1 River Pool Elevation 1067.0 ft

Method: Spencer

Name: Dike (Clay) Unit Weight: 124 pcf Cohesion: 0 psf

Phi: 30 °

Name: Sluiced Fly Ash Unit Weight: 105 pcf Cohesion: 0 psf

Phi: 24 °

Name: Gravel Unit Weight: 132 pcf Cohesion: 0 psf Phi: 37.5 °

Name: Rip-Rap Unit Weight: 115 pcf Cohesion: 0 psf

Phi: 40 °

The results of analysis shown here are based on available subsurface information, laboratory test results, and approximate soil properties. No warranties can be made regarding the continuity of subsurfacea conditons betweeen the borings.

John Sevier Fossil Plant Ash Disposal Area J Slope Analysis Section M-M' Repair Bench 12.5 ft & Slope 2:1 River Pool Elevation 1067.0 ft

Method: Spencer

Name: Dike (Clay) Unit Weight: 124 pcf Cohesion: 0 psf

Phi: 30°

Name: Sluiced Fly Ash Unit Weight: 105 pcf Cohesion: 0 psf

Phi: 24 °

Name: Gravel Unit Weight: 132 pcf Cohesion: 0 psf Phi: 37.5 °

Name: Rip-Rap Unit Weight: 115 pcf Cohesion: 0 psf

Phi: 40 °

John Sevier Fossil Plant Ash Disposal Area J Slope Analysis Section M-M' River Pool Elevation 1067.0 ft

Note:

The results of analysis shown here are based on available subsurface information, laboratory test results, and approximate soil properties. No warranties can be made regarding the continuity of subsurfacea conditons betweeen the borings.

Method: Spencer

Name: Dike (Clay)
Unit Weight: 124 pcf
Cohesion: 0 psf
Phi: 30 °

Phi: 30 °

Name: Sluiced Fly Ash Unit Weight: 105 pcf Cohesion: 0 psf

Phi: 24°

Name: Gravel Unit Weight: 132 pcf Cohesion: 0 psf Phi: 37.5 °

The results of analysis shown here are based on available subsurface information, laboratory test results, and approximate soil properties. No warranties can be made regarding the continuity of subsurfacea conditons betweeen the borings.

John Sevier Fossil Plant Ash Disposal Area J **Slope Analysis Section M-M' Repair** Bench 10 ft & Slope 2:1 River Pool Elevation 1073.0 ft

Method: Spencer

Name: Dike (Clay) Unit Weight: 124 pcf Cohesion: 0 psf

Phi: 30 °

Name: Sluiced Fly Ash Unit Weight: 105 pcf Cohesion: 0 psf Phi: 24°

Name: Gravel Unit Weight: 132 pcf Cohesion: 0 psf Phi: 37.5 °

Name: Rip-Rap Unit Weight: 115 pcf Cohesion: 0 psf

Phi: 40 °

The results of analysis shown here are based on available subsurface information, laboratory test results, and approximate soil properties. No warranties can be made regarding the continuity of subsurfacea conditons between the borings.

John Sevier Fossil Plant
Ash Disposal Area J
Slope Analysis Section M-M' Repair
Bench 10 ft & Slope 2.5:1
River Pool Elevation 1073.0 ft

Method: Spencer

Name: Dike (Clay) Unit Weight: 124 pcf Cohesion: 0 psf

Phi: 30 °

Name: Sluiced Fly Ash Unit Weight: 105 pcf Cohesion: 0 psf

Phi: 24 °

Name: Gravel Unit Weight: 132 pcf Cohesion: 0 psf Phi: 37.5 °

Name: Rip-Rap Unit Weight: 115 pcf Cohesion: 0 psf

Phi: 40 °

The results of analysis shown here are based on available subsurface information, laboratory test results, and approximate soil properties. No warranties can be made regarding the continuity of subsurfacea conditons betweeen the borings.

Method: Spencer

Name: Dike (Clay) Unit Weight: 124 pcf Cohesion: 0 psf

Phi: 30°

Name: Sluiced Fly Ash Unit Weight: 105 pcf Cohesion: 0 psf Phi: 24 °

Name: Gravel Unit Weight: 132 pcf Cohesion: 0 psf Phi: 37.5 °

Name: Rip-Rap Unit Weight: 115 pcf Cohesion: 0 psf

Phi: 40 °

John Sevier Fossil Plant Ash Disposal Area J Slope Analysis Section M-M' River Pool Elevation 1073.0 ft

Note:

The results of analysis shown here are based on available subsurface information, laboratory test results, and approximate soil properties. No warranties can be made regarding the continuity of subsurfacea conditons between the borings.

Method: Spencer

Name: Dike (Clay) Unit Weight: 124 pcf Cohesion: 0 psf

Phi: 30°

Name: Sluiced Fly Ash Unit Weight: 105 pcf Cohesion: 0 psf

Phi: 24 $^{\circ}$

Name: Gravel Unit Weight: 132 pcf Cohesion: 0 psf Phi: 37.5 °

Distance (ft)

1.12 ┌

1.11

1.10

1.06

1.05

1.04 125

Elevation (ft) (x 1000)

Note:

The results of analysis shown here are based on available subsurface information, laboratory test results, and approximate soil properties. No warranties can be made regarding the continuity of subsurface conditions between the borings.

Method: Spencer

Name: Dike (Clay) Unit Weight: 124 pcf Cohesion: 0 psf Phi: 30 °

Name: Sluiced Fly Ash Unit Weight: 105 pcf Cohesion: 0 psf

Phi: 24°

Name: Sand Unit Weight: 118 pcf Cohesion: 0 psf

Phi: 30°

Name: Gravel Unit Weight: 132 pcf Cohesion: 0 psf Phi: 37.5 °

Distance (ft)

1.12

1.11

1.08

1.06

1.05 1.04 125

Elevation (ft) (x 1000)

Note:

The results of analysis shown here are based on available subsurface information, laboratory test results, and approximate soil properties. No warranties can be made regarding the continuity of subsurface conditions between the borings.

Method: Spencer

Name: Dike (Clay) Unit Weight: 124 pcf Cohesion: 0 psf Phi: 30 °

Name: Sluiced Fly Ash Unit Weight: 105 pcf Cohesion: 0 psf

Phi: 24 °

Name: Sand Unit Weight: 118 pcf Cohesion: 0 psf Phi: 30 °

Name: Gravel Unit Weight: 132 pcf Cohesion: 0 psf Phi: 37.5 °