Los Alamos National Laboratory
MaRIE: Matter-Radiation Interactions in Extremes Experimental Facility

A Facility for Discovery of Next-Generation Materials

The Matter-Radiation Interactions in Extremes (MaRIE) experimental facility, the first in a proposed new generation of scientific facilities for the materials community, will be used to discover and design the advanced materials needed to meet 21st century national security and energy security challenges.

Specifically, MaRIE will provide the tools scientists need to develop next-generation materials that will perform predictably and on demand for currently unattainable lifetimes in extreme environments.

MaRIE's Capabilities

MaRIE will provide the scientific community with unique capabilities to

  • provide unprecedented time- and space-resolved measurements on scales most acutely needed for modeling and simulation;
  • create extreme conditions of relevance, particularly irradiation environments; and
  • create synthesis and characterization tools needed to design, discover, and control materials on these scales.

MaRIE 1.0 Capabilities

When combined with the emerging computational capability to simulate materials at ultrahigh resolution, MaRIE 1.0 will fill the gap in understanding of micro- and mesoscale materials phenomena and how they affect weapon performance. MaRIE 1.0 will specifically bring two major new capabilities (a) the ability to predict how micro- and mesoscale materials properties evolve under weapons-relevant extreme conditions (including aging) and impact performance, and (b) the ability to predict the microstructure of new materials (or those resulting from new manufacturing processes) and how that will affect weapons performance. A key characteristic of MaRIE 1.0 is the ability to simultaneously apply several in situ diagnostics to observe transient phenomena at high resolution, in real time, under weapons relevant extreme conditions. Of highest significance are subgranular-resolution measurements of phase transformations, heterogeneity, and strength of materials in samples that have been well characterized. These capabilities are realized by building the world’s first very hard x-ray free electron laser and coupling it to the existing proton accelerator at LANSCE in order to perform experiments at the Multi-Probe Diagnostic Hall (MPDH) and the Making, Measuring, and Modeling Materials (M4) Facility.

About Us | Contact Us | Jobs | Library | Maps | Museum | Emergencies | Inside LANL | Inside Phone | Site Feedback

Operated by Los Alamos National Security, LLC for the U.S. Department of Energy's NNSA © Copyright 2009-10 LANS, LLC All rights reserved | Terms of Use | Privacy Policy

This site passed IRM-CAS quality check