CLOSURE/POST-CLOSURE PLAN ASH POND AREA

TENNESSEE VALLEY AUTHORITY KINGSTON FOSSIL PLANT

JULY 1995

Prepared By:

Tennessee Valley Authority
Site and Environmental Engineering Section

Angle iron, NW correr cell 3

Concr. Mon.

KIF Dredge Cells - new diken/existing

CHECKED BY

DATE

Weather: Clear, 35°F

SETUP 1

ASH26

& Begin Str

5.18

16.10

782.64

Dredge Z

Elev

Concr. Monument

5.42

14.30

785.25

Angle iron

TO

FAX COVER

Send To:
Name: <u>Keith Elder</u> Date: 12/18/95
Name: <u>Keith Elder</u> Date: 12/18/95 Company: TVA Fossil & Hydro
Address:
Phone: 751-6370
Fax Number: 751-7094
Verification Number:
Number of pages including cover: 2 Subject: Kingston FP Ash Pond Control
From: Tennessee Valley Authority
Name: Kudy Vincent
Name: Rudy Vincent Organization: G, T. E.
Address:

Tennessee Valley Authority Geographic Information And Engineering

Project: KINGSTON FOSSIL PLANT

ASH POND CONTROL

Projection: TENNESSEE LAMBERT

Horizontal Datum: NAD 27 Order: 4TH

Units: US Survey Feet Units: US Survey Feet Order: 4TH Vertical Datum: NGVD 29

Printing Date: 12-18-1995

Name	Northing	Easting	Elev	Remarks
ASH-26	556411.74	2440890.62	794.13	CONCRETE MONUMENT
DREDGE-2	557154.02	2440208.49	793.56	ANGLE IRON

igh: Coordinates populate te ិភព មែន I plant wit

DREDGE 2 N 557,154,02 E 2,440,208. CELL 3 Elev. 793. E 2,440, 134 X= 106° 35' 34" A5426 N 556,411.714 E 2,440,890.62. Elev. 794.13 begin of Stoge A N 536,448 E 2,440,965

Setup 1 247° 00' 45" 106 35 34 353 35 79 353 36 19 Setup 2 180° 19'00" 169° 41' 08" 349° 60' 08"

350°00′08

- 64 00 39 + 42 34 55 106 34 94 106° 35′34″
- 32 16 03 10 18 52, 10° 18′ 52″ 169° 41′ 08″
- 1) Set on ASH26, sight on DREDGE2, turn 106°35'34" to the right, measure distance of 82.75' should be near elev. 783.0
- 2 Set on DREDGEZ, sight on ASH26, turn 169°41'08" to the left, measure distance of 139.53'
 Should be rearricles. 783.0

12.56

FAX COVER

Send To:

Name: Kieth Elder LYNN PETTY Date: 7/26/95
Company:
Address:
Phone:
Fax Number:
Verification Number:
Number of pages including cover:
Subject:
From: Tennessee Valley Authority
Name: Ed Phillips
Organization: Map & Surveys - TVA
Address:
X-84-16

KIF GW Well Locations

29 March 1990

TENNESSEE VALLEY AUTHORITY MAPS & SURVEYS DEPARTMENT ENGINEERING

KINGSTON STEAM PLANT BORING MONITORING WELLS

DATES OF SURVEY: 4-8 MAY 1989

7 MARCH 1990

BOOKS: ESS-3102 PAGES 18-28

ES-3604 PAGES 2-6,16-17

<u>Designation</u>	NAD 27 4th Order Tenn. Lambert <u>Coordinates</u>	Geodetic Coordinates (Deg-Min-Sec)	Plant Grid Coordinates *
KSW-2	X= 2,439,476.6	35-54-23.274 N	W 14+06 N 26+07
	Y = 554,606.1	84-30-57.569 W	N 20+07
KSW-4A	X= 2,440,561.0	35-54-57.785 N	W 24+06
	Y= 558,112.4	84-30-43.742 W	N 61+38
KSW-4B	X = 2,440,564.1	35-54-57.839 N	W 24+07
	Y= 558,118.0	84-30-43.702 W	N 61+44
KSW-5	X= 2,442,354.5	35-54-43.692 N	W 1+41
	Y= 556,714.7	84-30-22.199 W	N 59+43
	Y- 7,442,367.0	24. 400 S	
		A for A Contract	

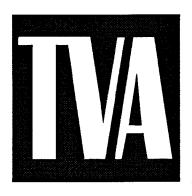
<u>Designation</u>	NAD 27 4th Order Tenn. Lambert Coordinates	Geodetic Coordinates (Deg-Min-Sec)	Plant Grid Coordinates *
KSW-9A	X= 2,439,482.8	35-54-14.978 N	W 9+44
	Y= 553,767.2	84-30-57.649 W	N 19+07
KSW-9B	X= 2,439,492.5	35-54-15.093 N	W 9+42
	Y= 553,779.1	84-30-57.529 W	N 19+22
KSW-10	X= 2,439,725.1	35-54-10.193 N	W 4+79
	Y= 553,287.0	84-30-54.792 W	N 16+36
KSW-10A	X= 2,439,750.4	35-54-10.371 N	W 4+68
	Y= 553,305.4	84-30-54.481 W	N 16+65
KSW-10B	X= 2,439,738.1	35-54-10.282 N	W 4+73
	Y= 553,296.2	84-30-54.633 W	N 16+51
KSW-11B	X= 2,439,013.2	35-54-04.985 N	W 7+84
	Y= 552,749.6	84-31-03.544 W	N 7+97
KSW-12A	X= 2,438,625.3	35-54-16.496 N	W 17+40
	Y= 553,907.7	84-31-08.045 W	N 15+57
KSW-12B	X= 2,438,629.2	35-54-16.799 N	W 17+53
	Y= 553,938.5	84-31-07.993 W	N 15+85
KSW-13A	X= 2,440,338.8	35-54-23.692 N	W 7+13
	Y= 554,661.4	84-30-47.080 W	N 31+23
MSW-13B	X= 2,440,311.1	35-54-23.650 N 84-30-47.417 T	tj they i

<u>Designation</u>	NAD 27 4th Order Tenn. Lambert <u>Coordinates</u>	Geodetic Coordinates (Deg-Min-Sec)	Plant Grid Coordinates *
KSW-16A	X= 2,439,081.6	35-54-42.391 N	W 27+87
	Y= 556,533.3	84-31-02.015 W	N 40+08
KSW-16B	X= 2,439,101.4	35-54-42.566 N	W 27+80
	Y= 556,551.3	84-31-01.772 W	N 40+34

(*) Note: Expected accuracy of plant grid coordinates is approximately two feet.

Descriptions

None Given


<u>Designation</u>	4th Order Elevation (Feet)	<u>Remarks</u>
KSW-2	767.8	
KSW-4A	755.2	
KSW-4B	753.9	
KSW-5	756.0	
KSW-5A	753.1	
KSW-5B	753.7	
KSW-6A	752.2	Top of pipe
KSW-6B	751.8	
KSW-8	770.9	
KSW-9A	772.5	
KSW-9B	772.4	a.
KSW-10	756.8	
KSW-10A	756.3	
KSW-10B	756.4	
	provinces and	

<u>Designation</u>	4th Order Elevation <u>(Feet)</u>	Remarks
KSW-15A	796.1	Top of pipe inside of casing - High side of pipe.
KSW-15B	795.9	Top of pipe inside of casing - High side of pipe.
KSW-16A	768.6	
KSW-16B	768.1	

CLOSURE/POST-CLOSURE PLAN ASH POND AREA

TENNESSEE VALLEY AUTHORITY KINGSTON FOSSIL PLANT

JULY 1995

Prepared By:

Tennessee Valley Authority
Site and Environmental Design Section

				REPORT NO.
CLOSURE/	POST - CLOSU SH POND ARD	RE PLAN		PLANT/UNIT
			±	KINGSTON FOSSIL PLANT
VENDOR	CONTRACT No.	KEY NOUNS		
		ASH POND,	CLOSURE	
APPLICABLE DESIGN	REV		1	MEDS ACCESSION NUMBER
DOCUMENTS	R0		-	
REFERENCES	R1			
· · · · · · · · · · · · · · · · · · ·	R2			

FOSSIL & HYDRO POWER
FOSSIL & HYDRO POWER

John Ling Sket Will

Sound Ling Sket Will

REPLACE PROE.

	Revision 0	R1	R2
Date		·	
Prepared			
Checked			
Submitted			
Reviewed			
Recommended			
Approved			·

CLOSURE/POST-CLOSURE PLAN ASH POND AREA TENNESSEE VALLEY AUTHORITY KINGSTON FOSSIL PLANT

Table of Contents

I.	INT	RODUCTION
	A.	Facility Description
	В.	Operational History
	C.	Expected Year Of Closure
	D.	Operational History
II.	FACI	LLITY CLOSURE
	Α.	Partial Closure Steps
	В.	Complete Closure Steps
		Complete Closure Steps
		2. Drainage System 4
		3. Leachate Collection 5
		4. Gas Collection 6
		5. Final Cover 6
		6. Intermediate Cover 6
		7. Vegetative Cover
		8. Groundwater Monitoring
		(1) Compliance Monitoring Boundary /
		(/) Monitoring System for the Existing
		Facility
		(3) Detection Monitoring Program
		a. Sampling and Analysis Plan
		b. Record Keeping and Reporting 9
		c. Well Plugging
		9. Closure Schedule 9
		10. Notice in Deed to Property
		11. Post-Closure Care Activities
		12. Cost Estimate/Financial Assurance 10
		13. Dredge Cell Stability
III.	QUAI	LITY ASSURANCE/QUALITY CONTROL
	Ã.	General
	В.	Cap Requirements
		Clay Source Verification
		Cap Construction
		Clay Construction Certification
	C. I	Documentation \dots
		1. Daily Logs
		2. Approval Documentation 16
APPE	NDIX	
	Α.	TVA Vegetation Specifications
	В.	TVA Vegetation Specifications TCLP and VOC Testing of KIF Ash
	C.	Groundwater Sample Collection Techniques
	· .	and Quality Assurance Procedures
	D.	Hydrogeologic Evaluation of Ash Pond Area
	ν.	nydrogeorogic Evaluation of Ash Folia Area

I. INTRODUCTION

A. Facility Description

Kingston Fossil Plant (KIF) is located at the base of a peninsula formed by the Clinch and Emory River embayments of Watts Bar Lake about 2.7 miles above the confluence of the Clinch and Tennessee Rivers in Roane County, Tennessee (see Figure 1). The plant has 9 coal fired units with a total generating capacity of 1600 megawatts. On-site construction of the Kingston Steam Plant began in April 1951. The first unit was placed in commercial operation in February 1954 and the final unit began in December 1955.

B. Operational History

The combustion of coal for the purpose of generating electricity results in the production of by-products that include fly ash and bottom ash. The KIF produces approximately 386,000 cubic yards of ash per year. The present coal ash disposal method at KIF is sluicing fly ash and bottom ash to the active ash pond, which is approximately 100 acres in size and is located east of the three dredge cells.

This pand requires periodic formula tree water volume requirement. The ash dredged from this pond has been hydraulically conveyed to settling ponds (dredge cells) west of the active ash pond.

This Closure/Post-Closure Plan is for the Ash Pond Area, including the active ash pond, three dredge cells, and the stilling pool, of approximately 250 acres located northeast of the generating facility.

Expected Year Of Closure

The active ash pond receives ash from the powerhouse. The dredge cells receive ash from the active ash pond. The amount of cubic yards of dredged material removed from the active ash pond each year ranges from 120,000 to 440,000 with an average of 285,000 cubic yards to be dredged. On a yearly basis, approximately 386,000 cubic yards of ash are produced at the KIF. It is estimated that a total of approximately 760,000 cubic yards of volume is available for ash disposal within the dredge cells, in the dredge cells dikes, and in the ash material required to form the crest of the dredge cell area. Additional ash storage will also be available within the active ash pond.

THIS STATEMENT
THIS STATEMENT
IS WRONG LARGE
IS WRONG POOL WATER
PROVING FREE WATER
PROVING FREE WATER
OF OLD IS
OF OLD IS

port understand

aneration Toct dilizations

The projected date of closure for the Ash Disposal facility will be affected by TVA's schedule for completing dredging to the new dredged ash disposal area, filling the active ash pond with ash, and by generation rates. The actual closure date will be affected by both ash production and ash utilization. However, in accordance with the DSWM solid waste regulations (March 18, 1990) TVA proposes to close this area in accordance with plans contained in this document. The proposed closure date is the year 2015.

D. Facility Contact

The names, addresses, and telephone number of the TVA contact for Kingston Fossil Plant is as follows:

Plant Manager Tennessee Valley Authority Kingston Fossil Plant P.O. Box 2000 Kingston, TN 37763 (615) 376-6135

As of date of this report, the plant manager is Mr. Randy M. Cole.

II. FACILITY CLOSURE

A. Partial Closure Steps

This section is for the purpose of explaining the steps that will need to be followed should the Ash Disposal facility be closed prior to the projected closure date discussed in Section I Subsection C, Expected Year of A basic premise for partial closure of the Closure. disposal facility is that this facility, if closed before the projected closure date, will result in final grades that are less than the proposed final grades shown on the plans submitted as part of this Closure/Post-Closure Plan. If such a partial closure is implemented, TVA will be required to submit revisions to the Closure/Post-Closure Plan (to include drawings and narrative). specific items that may need to be modified are listed in Section II Subsection B, Complete Closure Steps. item in Section II Subsection B, Complete Closure Steps should be addressed even if the response would be that no change is necessary.

B. Complete Closure Steps

1. Facility Operation

The ash handling procedure consists of:

- of pipes to a point southwest of the active ash pond. At that location the ashes travel in separate sluice channels to the active ash pond. The heavier bottom ash settles out of the flow along the course of the bottom ash channel. The bottom ash is removed by dragline and pans on a continuous basis to be used to construct the dredge cells. Lighter fly ash continues to be sluiced to the active fly ash pond through a lined channel. This channel is presently synthetically lined but is gradually being replaced with rip rap lining.
- (2) The fly ash and bottom ash waters continue into the active ash pond area. In this area a series of divider dikes and spillway skimmers separate the sluicing water from the transported ash. It is primarily fly ash that is deposited in the active ash pond.
- (3) The sluicing water continues on through the stilling pool before it is discharged into the river. Within the stilling pool the water is treated with lime to control the pH.

- (4) The dredge cell dikes are constructed out of bottom ash material collected from the bottom ash sluice channel. This ash is collected and transported by pans to the dredge cell area. Pans, backhoe/loaders, front-end loaders and dump trucks are then used to shape and construct the dikes in accordance with the drawings included with this plan.
- (5) During normal operation, material is then periodically dredged from the active ash pond and is hydraulically deposited to the interior of the dredge cell dikes.
- (6) The disposal process is an essentially continuous incremental procedure. No daily earth cover will be required. Intermediate cover may be placed in areas of the dredge cell dike that do not achieve final contours and vegetated during inactive phases of operation. The ash is physically stable, nonputrescible, and is not an attractant for disease or animal vectors.
- (7) The dredge cell side-slopes will continue at 3:1 with intermediate benches for erosion control and surface water drainage.
- (8) Dust is controlled by utilizing a water tank truck as required on the haul roads and dikes.
- (9) The ash disposal area dikes are formally inspected each spring.

2. Drainage System

The surface water drainage system will be operated with the same concepts as have proven to be historically successful during the operation of other TVA ash facilities.

The potential run-on from surrounding areas will continue to be intercepted in the existing diversion ditching network. The handling of this extraneous water assists in stormwater management and erosion control within the ash pond area.

The run-off from the dredge cell area will utilize the following method of controlling water. The run-off collection system will utilize side slope benches to control run-off by directing the water downslope along circuitous berm ditches on approximately one-percent (1%) slopes. These slopes and berm ditches aid in

FERMIT NOWES

forces erosive controlling velocities and facilitating the deposition of ash that may accumulate in the run-off. Where the berm ditches are drained to the bottom of the dike area, scour will be controlled by using lining the ditches with rock The ditching from the dredge cell area flows to the active ash pond for additional sediment control. Discharge from the active ash pond is to an existing stilling pool on the site. This stilling pond is an NPDES permitted facility that provides surface water quality control and discharge of all ash dredge pond water used at the KIF (NPDES Permit No. TN0005444 DSN001). 5452

Collection of any accumulated fly ash that settles in the ditches, settling pool or other areas will periodically be removed and placed within the dredge cell for disposal. As the height of the dredge cell dikes is raised on the 3 to 1 side slopes, the placement of final cover material and establishment of vegetative cover will be accomplished as soon as possible. This helps control erosion and maintains an effective drainage system. Past operations have maintained good attention to detail in this regard. This attention to detail will continue in order to keep erodible ash under erosion control.

In areas where final contours are not achieved but will be reserved for later use, an intermediate cover of soil suitable for support of vegetative growth will be placed and seeded to establish vegetation. This material may be removed at a later date when stacking resumes. As with the areas receiving final cover this material will be placed as soon as possible to aid in erosion and dust control.

3 Leachate Collection

This facility currently does not have a leachate collection system. Monitoring and investigations conducted by TVA at other sites and previously furnished to DSWM conclude that during active ash stacking little or no leachate will be produced and site groundwater monitoring does not indicate evidence of leachate contamination.

Therefore, in accordance with the March 18, 1990 regulation (1200-1-7-.04)(1)(b)3. (page .04-1) leachate collection is not required for this facility since the facility currently does not have a leachate collection system and there is no indication of leachate contamination.

Sluicing

4. Gas Collection

Gas collection for ash disposal facilities is not applicable as so stated in DSWM Policy Memorandum SW-91-2. Ash produced from the combustion of coal is the only waste material which will be deposited in this facility. Ash is completely composed of the noncombustible mineral components incorporated in the coal during its formation. Ash is basically inert, noncombustible, nonputrescible, and will not decompose to produced gases.

5. Final Cover

The final cap to be utilized on top of the ash will be as follows (from top layer downward):

- Soil suitable for the support of vegetation (12")
- Drainage layer with permeability 1×10^{-1} cm/sec
- Impervious liner

The footprint for the ash disposal area to receive final cover is shown on drawing 10W426-1. The footprint of the dredged ash stacking area is shown in detail on the 10W425 drawing series. These drawings are submitted as part of this Closure/Post-Closure Plan.

The continued use of the dredge cells, until their closure; will result in an increase in the vertical dimensions but no increase in the footprint. The dredged embankment of ash is proposed to be constructed to an approximate maximum final elevation of 866 msl. The closure of the dredge cell area to this grade, as shown on the drawings, will allow the area of 3 to 1 side slopes to be maximized while minimizing the amount of relatively flat surface area that will be the final top of the area. This final grading will facilitate controlling run-off of precipitation and further minimize the generation of leachate or accumulation of moisture within the ash.

6. Intermediate Cover

Intermediate cover consisting of 6-12 inches of compacted soil suitable for the support of vegetative cover is to be placed on areas that have not achieved final grades and will not receive ash for extended periods. During subsequent stages in the development of the area this cover may be removed and used elsewhere if practical.

7. Vegetative Cover

The conditioning, fertilizing and seeding of the intermediate and/or final cover in order to establish an adequate vegetative cover shall begin immediately upon placement of the intermediate and/or final cover. The applicable seeding methods and types to be used for vegetation will be selected in consideration of seasonal and other factors. TVA specifications for seed mixture application are included in Appendix A.

8. Groundwater Monitoring

(1) Compliance Monitoring Boundary

The compliance monitoring wells designated for the ash pond area as follows:

Upgradient Well - well 16A Downgradient Wells - wells 4B, 6A, and 13B

The location of these wells are shown in Appendix D, Figure 1. The upgradient well (16A) is located on the north side of Swan Pond Road, northwest of the line separating dredge cells 1 and 3. Downgradient well 4B is located on the perimeter of the dike north of dredge cell 2: well 6A is located on the southeast corner of the perimeter dike near the stilling pool; and well 13B is located south of the toe of the dike near the fly ash sluice channel.

The compliance monitoring boundary of the facility will be defined by the segment of the ash pond area perimeter lying between the three down-gradient monitoring wells.

(2) Monitoring System for the Existing Facility

A groundwater monitoring system is in place and was installed to support assessment and permitting activities at Kingston. An evaluation of the monitoring data collected to date is included in Appendix D, Hydrogeologic Evaluation of Ash Pond Area, Kingston Fossil Plant, June 1995.

(3) <u>Detection Monitoring Program</u>

a. Sampling and Analysis Plan

Unfiltered groundwater samples will be collected semiannually from wells 4B, 6A, 13B and 16A. The

groundwater samples will be analyzed for the constituents listed in Table 1.

Water surface elevations will be obtained on the same day on the Kingston reservation prior to sampling.

At the end of 8 sampling events, based on the data, TVA may request a variance from this plan to eliminate constituents that consistently show at or below method detection limits.

Table 1. Chemical Analyses for Groundwater Samples

Field Analyses

Acidity	Alkalinity
Conductivity	Depth to Water
Dissolved Oxygen	ORP
рН	Temperature

Laboratory Analyses, Filtered Samples

Antimony	Chromium	Lead	Silver
Arsenic	Cobalt	Mercury	Thallium
Barium	Copper	Nickel	Vanadium
Beryllium	Fluoride	Selenium	Zinc
Cadmium			

All sample analysis will be performed in accordance with US EPA SW 846 methods.

Monitoring for volatile organic compounds (VOC's) (listed in DSWM Solid Waste Regulations Appendix I) will not be necessary for this facility since these VOC's are not known or suspected to be constituents of coal fly ash. If any of these constituents were present in the coal, which is unlikely, the high temperatures of the combustion process (greater than 2,000 degrees F) would be expected to decompose or drive off all volatile constituents. TVA has conducted tests of fly ash for the presence of VOC's and the results indicated the VOC's were "nondetectible". These data are available for review in Appendix B.

b. Record Keeping and Reporting

A project field notebook will be maintained by the sampling survey leader to record pertinent information and observations. The survey leader will record all physical measurements, field analyses, and any pertinent observations in the project field note book. Auxiliary data that may proved useful in the interpretation of the water quality results will be recorded, e.g. the observation of gas bubbles in the sample line, rapid development of turbidity or color in the sample, equipment problems, and weather conditions. All field and laboratory data will be archived in STORET and reported to the project engineer.

Monitoring data will be reported in writing to the DSWM within 30 days after the completion of the analyses, beginning with the next routine sampling data following approval of this closure plan.

c. Well Plugging

Wells 5A, 5B, and 6B will be closed according to proper well abandonment procedures. Those consist of grouting the well casing by trimie methods with a high-swell bentonite grout, removing the upper 5 feet of well casing and compacting soil in the lifts above the abandon well.

9. Closure Schedule

Upon determination that the closure of the facility is forthcoming a notification of TVA's intent to close the facility must be sent to DSWM sixty (60) days prior to the closure date.

Commencement of construction of closure construction project.

After the final grade of ash has been reached, closure activities, to include final grading and vegetative cover must be complete as soon as possible but are not to exceed 180 days

TVA must notify DSWM in writing of completion of closure of the Ash Pond Area. Such notification must include a certification by TVA that the disposal facility has been closed in accordance with the approved Closure/Post-Closure care plan. Within 21 days of the receipt of such notice DSWM is supposed to inspect the facility to verify that closure has been completed and is in accordance with the approved plan. Within 10 days of such verification, DSWM is supposed to approve the closure in writing to TVA. Closure shall not be considered final and complete until such approval has been made by DSWM.

Notice in Deed to Property

TVA is required to ensure that within 90 days of completion of final closure of the facility and prior to sale or lease of the property on which the facility is located, there is recorded, in accordance with State law, a notation on the deed to the property or on some other instrument which is normally examined during title search that will in perpetuity notify any person conducting a title search that the land has been used as a disposal facility.

11. Post-Closure Care Activities

Post Closure Care Activities - During the post-closure care period, the operator must, at a minimum, perform the following activities on closed portions of his facility:

- 1. Maintain the approved final contours and drainage system of the site such that precipitation run-on is minimized, erosion of the cover/cap is minimized, precipitation on the stack is controlled and directed off the stack, and ponding is eliminated.
- 2. Ensure that a healthy vegetative cover is established and maintained over the site.
- 3. Maintain the drainage facilities, sediment ponds, and other erosion/sedimentation control measures (if such are present at the disposal site), at least until the vegetative cover is established sufficiently enough to render such maintenance unnecessary.
- 4. Maintain and monitor the ground water monitoring system. The monitoring system and sampling and analysis program established in the previous sections shall be continued during the post-closure care period, unless the Closure/Post-Closure plan is modified to establish a different system or program. Monitoring data must be reported in writing to the DSWM within 30 days after the completion of the analysis.

12. Cost Estimate/Financial Assurance

TVA is an agency and instrumentality of the United States created by the TVA Act of 1933, 16 U.S.C. 831-831dd (1988). TVA is not required to provide financial assurance in accordance with DSWM Solid Waste Regulations rule 1200-1-7-.03 (1)(b)(3) page .03-1. If requested, TVA will provide DSWM a copy of its cost estimate for the closure after the project is authorized for construction.

NEW SECTION!

13. Dredge Cell Stability

The stability of the proposed dredge cell slopes was tested by using the UTEXAS3 computer program. Several methods for computing the factor of safety are available in the program. The Spencer method was chosen for this analysis since it satisfies both the force and moment balance for static equilibrium. The program can also perform two stage analyses to simulate undrained loading after a period of consolidation, which is pertinent for a pseudostatic seismic stability analysis.

Both a static analysis and a pseudostatic seismic proposed the performed on were analysis configuration with 3H:1V slopes and berms. The static analysis for long term conditions using R-bar strengths yielded a factor of safety of 1.75. The critical shear surface from the long term static analysis was used as the failure surface in the pseudostatic analysis. maximum horizontal equivalent acceleration (MHEA) was calculated at the base of the critical shear surface and this value was input to UTEXAS3 for the seismic factor. The simulation yielded a factor of safety of 1.17 for the pseudostatic seismic case. A yield factor (K_y) of 0.11g was then calculated using the static critical shear The maximum acceleration (K_{max}) at the base of surface. the critical shear surface and the period (T_0) were calculated using the WESHAKE site response analysis These values were used in the Makdisi & Seed deformation chart (Figure 4 in "Technical Guidance Solid Waste") Tennessee Division of Document, calculate a displacement of 2.3 to 7.6 inches at the base of the critical shear surface. The dredge cells have no liner or leachate collection system with which to compare the deformations, but the deformations are less than onehalf of the thickness (2 feet) of the proposed cover system.

III. QUALITY ASSURANCE/QUALITY CONTROL

A. General

The purpose of this plan is to establish standards that must be followed by the registered professional engineer or geologist in order to insure that the construction of the facility meets the specification given in the design documents. The professional engineer or geologist shall use sound judgment when determining what additional procedures may be required in order to further assure the construction quality.

The Quality Assurance/Quality Control shall be performed by personnel that are knowledgeable and proficient in material placement, sampling, testing and reporting.

Detailed in this plan are the minimum standards for soil selection, minimum testing programs, minimum construction standards, and the minimum documentation required to assure that the requirements of the plans and specifications are met.

Throughout this document, the word "clay" is used to mean material of low permeability. This may include soil classified as clay or mixtures of soil with additives as required to meet the specifications.

B. <u>Cap Requirements</u>

The soil in the lower 12" layer of the final cap for the dredge cell area will meet the following requirements:

- A saturated, vertically oriented hydraulic conductivity no greater than 1 X 10⁻⁷ cm/sec after compaction within the density and moisture content range specified for construction as determined through laboratory testing.
- A classification of CH or CL as determined by the Unified Soil Classification System, ASTM standard D-24887-69.
- Any alternative soil proposed will include documentation proving that the soil can be compacted to achieve the hydraulic conductivity and engineering properties of the soil specified above.

- Insuring that the cap is not subject to desiccation cracking by sprinkling the soil with water not less than twice per day, covering or tarping the soil, or other preventative measures;
- Removing soil which has experienced desiccation cracking before compacting the next lift or installing the next cap system component.
- By removing excessively wet soil or areas determined to be not acceptable by the registered professional engineer or geologist.
- 6. If the construction has areas determined to be not acceptable by the registered professional engineer or geologist, remedial actions shall be taken. As a minimum, additional tests may be required to locate the extent of the unacceptable area. It shall be remedied based on the engineer's or geologist's sound judgment. Actions may include recompaction or removal and replacement of unsatisfactory material with new material, compaction and retesting.

Documentation of these procedures shall be provided by the engineer or geologist.

<u>Clay Construction Certification</u>: A registered professional engineer or geologist will verify that a compacted cap is constructed in accordance with these criteria by performing all of the following quality control tests.

1. density-moisture measurements of the Field immediately after compaction, as specified by ASTM D2922 (nuclear methods), for each 3000 cubic yards placed, with a minimum of 1 test per day of construction of lift of The location of the soil samples will be rotated soil. with each lift to maximize the coverage of the tests. Field in-place density/moisture content tests will be conducted using a nuclear density gauge, sand cone or drive cylinder. If nuclear density methods are used sufficient numbers of the sand cone or drive cylinder tests will be performed to correlate and verify the nuclear gauge results. The moisture content of the fill materials will be kept within a range which allows the earthwork contractor to achieve the required density and When, in the opinion of the certifying permeability. Engineer or Geologist the moisture content of the fill material is too high or too low, the material will be alternately dried or moistened to facilitate compaction to the specified density.

- 2. The undisturbed hydraulic conductivity of a soil sample will be conducted at a minimum once per 5 acres of the cap, by ASTM D5084. Permeability samples will be obtained by extracting a Shelby tube sample from the inplace compacted material and returning this sample to the laboratory for testing. The hole left by the Shelby tube will be carefully backfilled with bentonite mixture, hand tamped and compacted into place.
- 3. Upon completion of the clay construction, a minimum of one hand auger hole per acre will be made to confirm the final thickness of the soil layer. All auger holes will be backfilled as discussed above in section 2.
- 4. Provide documentation of the quality control measures performed with field notes and certifications.
- The soil to be utilized for establishing the vegetative 5. cover shall be capable of sustaining a healthy stand of vegetation, and shall consist of an ML, CL, SM, SC material as determined by ASTM D-24887. Material should contain less than 30% by weight of the fragment retained on a 3/4-inch sieve per ASTM D422. Once this soil has been applied and placed the area shall be seeded as soon as practical in order to minimize soil erosion. The soil such that vegetation shall not be compacted vegetative growth is hindered. The top surface of the soil for vegetation may need to be roughened to create a favorable environment for vegetation to grow in. The seeding and fertilization schedule can be found in Appendix A of this manual.

The TVA specifications shown in Appendix A shall be modified to change the following: (1) reference to topsoil to read soil suitable for vegetative growth, (2) Section 580.3 shall be modified to provide 12" of soil suitable for vegetative growth to match the cap section detail shown on the plans (3) Section 580.4 - seed beds to be roughened or scarified shall be done in such a manner that will not damage the portion of the cap that consists of the 12" of soil with a maximum hydraulic conductivity of 1 x 10^{-7} cm/sec.

C. Documentation

- 1. Daily Logs
- a. The personnel performing Quality Assurance/Quality Control shall prepare a daily log giving the detailed descriptions of the cap construction operations.

- b. The daily log shall include but not be limited to: Construction operations and their locations, operations and locations of other QA/QC engineers or geologists, all tests performed and their designation and location, all the locations and designations of samples taken, locations and findings of core sampling, meteorological conditions, and general comments and observations.
- c. A copy of the daily logs shall be kept on site and made available to TVA, the QA/QC personnel, and the construction contractor.
- d. All field and laboratory test data shall be accompanied by test/sampling data, location, reasons for the location, personnel and any comments.

2. Approval Documentation

- a. All corrective measures taken to bring unsuitable work into conformance with the design specifications must be documented. This document must describe what is at fault and the exact location and test designation(s) that shows the work to be unsuitable, the corrective measures agreed upon to bring it into conformance with design specifications, the dates that corrective work was accepted, and the test designation that shows the work to be acceptable. All work shall be documented as to quality and verified by the engineer or geologist.
- b. The documentation will be organized and indexed to enable easy access and retrieval of original inspection and testing data sheets and reports. During the construction period, originals of the documents will be maintained by the engineer or geologist and copies will be kept by the TVA. Once the construction quality assurance has been certified by a registered engineer or geologist and has been accepted by the Owner, originals of the documentation will be maintained by TVA through the closure and post closure period of the site.

APPENDIX A

TVA Vegetation Specifications

SECTION 580 - Seeding (Pay Item 580)

580.1 -- Description

This specification consists of furnishing and placing seed, commercial fertilizer, and agricultural limestone on roadway slopes, shoulders, borrow pits, channel banks, waste areas, lawns, meadows, beaches, open play areas, and other areas specified by the plans or the Engineer and in accordance with the methods outlined by these specifications.

580.2 -- Materials

1. Seeds

Seeds shall meet the requirements of applicable seed laws and shall be tested in accordance with the most current edition of the U.S. Department of Agriculture Handbook No. 30, Testing Agricultural and Vegetable Seed. Seeds shall be from the last preceding crop and comply with the requirements outlined below for purity and germination. Each variety of seed shall be furnished in separate, strong bags with each bag being fully tagged or labeled to show the variety, weight, purity, germination, and test data prescribed by law. All test results shall be fully certified by the vendor or by a recognized seed testing agency. TVA reserves the right to require that samples be furnished, and to inspect and test the seeds after delivery. Seeds found not to comply with specification requirements shall be subject to rejection.

When mixing or forming seed mixtures, the seeds shall be carefully and uniformly mixed. Seeds shall not be mixed until each variety of seed to be used in the mix has been inspected and/or tested separately and approved.

Seed Varieties	Purity, Minimum %	Germination, Minimum %	
Korean Lespedeza (Lespedeza stipulacea), scarified .	90	85	
Sericea Lespedeza (Lespedeza cuneata), scarified	95	85	
Interstate Sericea Lespedeza (Lespedeza cuneata, variety Intersta scarified	ate), 95	85	
White Clover (Trifolium repens)	95	85	
Alsike Clover (Trifolium repens hybridum)	95	85	

580-1

SITE DEVELOPMENT, HIGHWAY, RAILROAD, AND BRIDGE CONSTRUCTION

T-1 SECTION 580

580.2 -- Materials (Continued)

Seed Varieties	Purity, Minimum %	Germination, Minimum %	
Red Clover (Trifolium pratense)	85	95	
Crownvetch (Coronilla varia), scarified	95	80	
Foxtail Millet (Setaria italica)	80	98	
Bermuda Grass (Cynodon dactylon), hulled	95	80	
Annual Rye (Lolium multiflorum)	90	90	
Perennial Rye (Lolium perenne)	90	90	
Kentucky 31 Fescue (Festuca arundinacea, variety Ky 31) . 95	85	
Rebel Fescue (Festuca arundinacea, variety Rebel)	95	85	1
Hard Fescue (Festuca ovina, duriuscula)	. 95	85	
Kentucky Bluegrass (Poa pratensis) .	95	90	
Creeping Red Fescue (Festuca rubra) .	95	90	
Centipede Grass (Eremochloa ophiuroides)	90	75	
Weeping Lovegrass (Eragrostis curvula)	95	90	
Switchgrass (Panicum virgatum)	80	75	1
Zoysia Grass (Zoysia japonica)	95	80	
Little Bluestem Grass (Andropogon scoporius)	40	60	
Bahia Grass (Paspalum notatum)	75	80	
Buffalo Grass (Buchloe dactyloides) .	85	50	
580-	2		

TVA 10535 (EN DES-7-77)

SITE DEVELOPMENT, HIGHWAY, RAILROAD, AND BRIDGE CONSTRUCTION

T-1 SECTION 580

580.2 -- Materials (Continued)

Seeding materials shall be free from seeds or bulbets of Wild Onion (Allium vineale), Canada Thistle (Cirsium arvense), and Johnson Grass (Sorghum halepense).

Seed species shall not contain more than six seeds per ounce of the seed of any of the following noxious weeds or the seeds of any other weed specifically listed as noxious:

Bindweed (Convolvulus arvensis) Buckthorn (Plantago lanceolata) Corncockle (Agrostemmo githago) Dodder (Cuscuta species) Oxeyedaisy (Chrysanthemum leucantheumum)
Quackgrass (Agropyron repens)
Sorrel (Rumex acetosella)

Seed species shall not contain an excess of 2 percent by weight of weed seeds, noxious or otherwise.

2. Seed or seed mixtures, rates, and seasons

Seeding mixtures, rates, and seasons shall be those specified herein. The types to be used for each area or project will be specified by the drawings or by memorandum. Mixtures or rates of application other than those specified shall be used only when specified by the plans or the Engineer. Seeding shall be planted during the season and between the dates specified. Temporary cover shall be planted when it is required during seasons not suitable for planting the seed specified by the plans.

a. Lawns

- Type 1: Spring or fall seeding (Plant between March 15 and May 1, or between August 15 and October 15).
 - (1) Kentucky 31 Fescue . . . 120 pounds per acre
 - (2) Rebel Fescue 120 pounds per acre(3) Creeping Red Fescue . . 80 pounds per acre

Type 2: Fall seeding (Plant between August 15 and October 15).

- (1) Perennial Ryegrass . . . 120 pounds per acre
- (2) Kentucky Bluegrass . . . 80 pounds per acre

Type 3: Spring seeding (Plant between March 15 and May 1).

Bermuda Grass 40 pounds per acre

580-3

11

580.2 -- Materials (Continued)

b. Meadows

Type 4: Spring seeding (Plant between March 15 and May 1).

Mixture:

- (1) Kentucky 31 Fescue . . . 50 pounds per acre Korean Lespedeza (scarified) 10 pounds per acre Alsike Clover 10 pounds per acre Total mixture . . . 70 pounds per acre
- (2) Bermuda Grass
 (hulled) 40 pounds per acre
 Korean Lespedeza
 (scarified) 10 pounds per acre
 Total mixture . . . 50 pounds per acre
- (3) Sericea Lespedeza
 (scarified) 30 pounds per acre
 Kentucky 31 Fescue . . 30 pounds per acre
 Total mixture . . . 60 pounds per acre
- (4) Interstate Sericea Lespedeza (scarified) 30 pounds per acre Kentucky 31 Fescue . . . 30 pounds per acre Total mixture . . . 60 pounds per acre
- (5) Crownvetch (inoculated and scarified) 30 pounds per acre Kentucky 31 Fescue . . . 30 pounds per acre Total mixture . . . 60 pounds per acre

Type 5: Fall seeding (Plant between August 15 and October 15).

Mixture:

- (1) Kentucky 31 Fescue . . . 50 pounds per acre White Clover 15 pounds per acre Total mixture . . . 65 pounds per acre
- (2) Bluegrass 50 pounds per acre White Clover <u>15 pounds per acre</u> Total mixture . . . 65 pounds per acre

580-4

1

SITE DEVELOPMENT, HIGHWAY, RAILROAD, AND BRIDGE CONSTRUCTION

T-1 SECTION 580

580.2 -- Materials (Continued)

c. Channel Banks, Cuts, Fill Slopes, Waste Areas, and Other Disturbed Areas

Type 6: Spring seeding only (Plant between March 15 and May 15).

Mixture:

- (1) Kentucky 31 Fescue . . . 60 pounds per acre
- (2) Bermuda Grass (hulled) . 40 pounds per acre
- (3) Creeping Red Fescue . . 80 pounds per acre (Shaded slopes only)
- (4) Weeping Lovegrass . . . 15 pounds per acre Korean Lespedeza (scarified) 10 pounds per acre Total mixture . . . 25 pounds per acre
- (5) Sericea Lespedeza
 (scarified) 30 pounds per acre
 Kentucky 31 Fescue . . 30 pounds per acre
 Total mixture . . . 60 pounds per acre
- (6) Interstate Sericea
 Lespedeza (scarified) . 30 pounds per acre
 Rebel Fescue 30 pounds per acre
 Total mixture . . . 60 pounds per acre
- (7) Crownvetch (scarified and inoculated) . . . 30 pounds per acre Kentucky 31 Fescue . . . 30 pounds per acre Total mixture . . . 60 pounds per acre
- (8) Bahia Grass 40 pounds per acre
 Bermuda Grass 20 pounds per acre
 Switch Grass 10 pounds per acre
 Total mixture . . . 70 pounds per acre
- (9) Rebel Fescue 40 pounds per acre
 Hard Fescue 10 pounds per acre
 White Clover 5 pounds per acre
 Total mixture . . . 55 pounds per acre

580-5

1

1

580.2 -- Materials (Continued)

c. Channel Banks, Cuts, Fill Slopes, Waste Areas, and Other Disturbed Areas (Continued)

Type 7: Summer seeding (Plant between May 15 and July 15).

Mixture:

- (1) Bermuda Grass (hulled) . 40 pounds per acre Korean Lespedeza (scarified) 10 pounds per acre Total mixture . . . 50 pounds per acre
- (2) Buffalo Grass 40 pounds per acre Korean Lespedeza (scarified) 10 pounds per acre Total mixture . . . 50 pounds per acre
- Type 8: Fall seeding (Plant between August 15 and October 15).
 - (1) Kentucky 31 Fescue . . . 60 pounds per acre White Clover 15 pounds per acre Total mixture . . . 75 pounds per acre
 - (2) Hard Fescue 10 pounds per acre Rebel Fescue 40 pounds per acre White Clover 5 pounds per acre Total mixture . . . 55 pounds per acre
 - (3) Rebel Fescue 40 pounds per acre Hard Fescue 10 pounds per acre White Clover 5 pounds per acre Total mixture . . . 55 pounds per acre

d. Highway Shoulders

The planting dates and seed mixtures for each type listed here are described above.

- Type 6: Spring seeding [Mixture (1), (2), (3) or (9)]
- Type 7: Summer seeding [Mixture (1) or (3)]
- Type 8: Fall seeding [Mixture (2)]

580-6

1

1

T-1 SECTION 580

580.2 -- Materials (Continued)

e. Temporary Cover

Type 9: Temporary winter seeding (Plant between October 15 and March 15).

Annual Ryegrass 80 pounds per acre
White Clover 10 pounds per acre
Total mixture . . . 90 pounds per acre

Type 10: Temporary summer seeding (Plant between May 1 and August 15).

Mixture:

(1) Korean Lespedeza (scarified) 20 pounds per acre Foxtail Millet 20 pounds per acre Total mixture . . . 40 pounds per acre

(2) Red Clover 20 pounds per acre
Weeping Lovegrass . . . 10 pounds per acre
Total mixture . . . 30 pounds per acre

3. Fertilizer

Fertilizers shall be those readily available commercially. The application of fertilizer shall be at a rate of 200 pounds Ureaform (38-0-0) per acre with either 400 pounds of 15-15-15 per acre or 600 pounds of 6-12-12, unless specified otherwise by the drawings or memorandum.

Ammonium nitrate (NH_4NO_3) may be used for supplemental fertilization when specified by the Engineer.

4. Agricultural Limestone

Limestone shall contain no less than 85 percent calcium carbonate by weight. It shall be crushed so that at least 85 percent will pass a No. 10 sieve. The application of limestone shall be at the rate of 2 tons per acre unless specified otherwise by the drawings or memorandum. Hydrated lime may be substituted at a rate of 1 ton per acre.

580.3 -- Topsoil

All lawn areas to be seeded shall have a 2-inch minimum depth of topsoil immediately below finish grade. Topsoil requirements for other areas, if any, will be determined by field inspection and shall comply with Section 581.3.

580-7

SITE DEVELOPMENT, HIGHWAY, RAILROAD, AND BRIDGE CONSTRUCTION

580.4 -- Soil Preparation

Areas to be seeded shall have approved cross sections and grades. Objects such as large roots, stones, stumps, coarse vegetation, debris, or any other items that might impede mechanical mowing shall be removed and disposed of satisfactorily.

Seedbeds shall be plowed, disked, harrowed, scarified, or cultivated to the approved depth. In areas where it is practical, this work shall be done with farm-type equipment. On steep slopes, preparation of seedbeds shall be done with the tools and methods specified by the Engineer. It is strongly recommended that scarifying and preparation of seedbeds on cut and fill slopes be accomplished with tools or equipment specially designed for this purpose. Small furrows or grooves formed in the slopes shall be horizontal or as nearly horizontal as practical. The work shall be performed only when the ground is in a workable and tillable condition as determined by good farming practices.

580.5 -- Special Hydroseeding Equipment

Equipment to be used for the hydraulic application of planting materials shall be a Finn Hydro-Seeder, Bowie Hydro Mulcher, Toro Environmental Control Unit, or an approved equal. The equipment shall have mixing tanks with built-in agitators having operating capacities sufficient to agitate, suspend, and homogeneously mix slurries of water and planting materials. Tanks shall have capacities of 1000 gallons or more, and shall be mounted on traveling units that can be either self-propelled or towed by a separate vehicle. The slurry distribution lines shall be large enough to prevent clogging or stoppage. Discharge lines shall be equipped with sets of different sized hydraulic spray nozzles capable of providing for even distribution of varying slurry mixtures on areas to be seeded. Slurry mixture rates are described in Section 580.6.

580.6 -- Seeding Methods

Seeds shall be sown with approved mechanical power-drawn drills or seeders, hand cyclone seeders, or with special hydroseeding equipment. Rates specified in Section 580.2 shall be maintained in a manner that will guarantee uniform coverage. Seeding operations shall not be performed when drought, high winds, and excessive moisture or other factors may defer satisfactory results.

On slopes where the use of drills or seeders is not practical and in other areas specified by plans or by memorandum, seeding shall be accomplished using hydroseeding equipment.

Drill seeding shall be performed in rows with spacing suitable for the type of seed or mixture used. Fertilizer may be drilled simultaneously if drills are equipped for this type of operation. Where fertilizer is not drilled, it may be applied during the cultivation operation described in Section 580.4. When fertilizer and seed are applied separately, the fertilizer shall be spread uniformly over the prepared seedbeds prior to final filling. Rates of application shall be those specified by the plans or the Engineer or those specified in this section. It shall be thoroughly mixed with soil for a depth of 1/2-inch.

580-8

580.6 -- Seeding Methods (Continued)

Care shall be taken to ensure that seed and fertilizer remain uniformly and thoroughly mixed in the seeding equipment. Additional mixing shall be performed if necessary to avoid segregation of the seed or seed and fertilizer.

Hydroseeding is the method of applying lime, fertilizer, seed, and mulch combined with water in a single operation. Using the equipment described in Section 580.5, mixing tanks shall be filled with water to the level indicated inside of the tanks. With the engines turned on and the agitators running, the following materials shall be added: (1) limestone at the specified rate of 1/5 per acre (finely ground); (2) fertilizer; (3) seed (Section 580.2); and (4) wood fiber mulch (Section 582.2), for each 1000 gallons of water. The resulting slurries shall be applied to seedbeds at a rate of 5000 gallons per acre.

When hydroseeding slopes are 2:1 or steeper, a vinyl or plastic mulch (Section 582.2) shall be added to the slurries at the rate specified by the manufacturer.

Discharge lines are activated by opening bypass valves with hand levers that allow the slurries to spray through the nozzles. Slurries shall be sprayed on the seedbeds as the spraying vehicles move slowly across the area. Care shall be taken to ensure that all areas are evenly covered. If wind or rough terrain causes skips to occur, additional applications shall be made before moving to other areas. To provide for the even distribution of a slurry, hydroseeding should be performed with the wind or preferably with no wind at all.

For steep slopes, even coverage is best obtained when an application is begun at the top and worked down a slope with successive overlapping passes. When a hydroseeder is located on top of a slope, the reverse is true.

Seed not sown by drills or hydroseeders shall be covered to a depth of approximately 1/4-inch by lightly harrowing or raking. Raking or harrowing shall follow contours as closely as practical.

Where mulching is to be done, the mulch shall be applied immediately after the seeding is completed to avoid the loss of soil moisture or possible erosion. Mulching shall comply with Section 182.

When specified by the Engineer, one or more applications of fertilizer shall be made after a stand of grass has been obtained and allowed to grow for a period of from 3 to 6 weeks. The grade and rate of application of the fertilizer will be specified by the Engineer. When ammonium nitrate or a similar soluble fertilizer is used alone, areas shall be thoroughly soaked as soon as an application is completed.

SITE DEVELOPMENT, HIGHWAY, RAILROAD, AND BRIDGE CONSTRUCTION

T-1 SECTION 580

580.7 -- Maintenance

Seeded areas shall be maintained until a satisfactory cover of plant material is secured, unless stipulated otherwise. All areas shall be preserved, repaired, and protected as specified for this purpose. Areas having poor stands of plant material shall be seeded again and fertilized at the proper rates.

Watering shall be accomplished during the maintenance period to the extent necessary.

580.8 -- Method of Measurement

Seeded areas will be measured in square yard units and include the seeded areas along slopes.

580.9 -- Costs

Costs for Pay Item 580 shall include all materials, labor, tools, equipment, and incidentals necessary to complete the work for this item.

580-10

APPENDIX B

TCLP and VOC Testing of KIF Ash

KINGSTON FOSSIL PLANT ASH ANALYSIS

CHEMICAL ANALYSIS	FLY ASH 01/10/92 UNIT 5	FLY ASH 03/10/88 UNIT 7	FLY ASH 02/19/81 UNIT 6
SiO2	49.45	69.29	55.73
Al2O3	27.83	17.01	26.19
Fe2O3	13.16	7.15	6.53
CaO	2.29	. 1.2	2.72
MgO	0.88	1.66	1.11
SÕ3	0.03	0.36	0.29
Na20	0.74	0.12	
K20	2.32	1.2	
L.O.I.	5.35	0.04	

KINGSTON FOSSIL PLANT BY-PRODUCT TCLP ANALYSIS

PARAMETER	DRINKING WATER STANDARD	TCLP BOTTOM ASH 12/90 5-SAMPLES	TCLP DREDGED ASH 03/92 KIF-92-1	TCLP FLY ASH 10/93 KFP FA 93
ARSENIC, (mg/L)	0.05	<0.05	0.23	2.2
BARIUM, (mg/L)	1	0.31-0.91	2.1	0.72
CADMIUM, (mg/L)	0.01	< 0.01	0.005	0.001
CHROMIUM,(mg/L)	0.05	< 0.01	0.005	< 0.01
LEAD, (mg/L)	0.05	< 0.05	0.025	0.002
MERCURY, (mg/L)	0.002	< 0.0005	< 0.002	< 0.0002
SELENIUM, (mg/L)	0.01	<0.01	0.011	0.049
SILVER, (mg/L)	0.05	< 0.01	< 0.01	< 0.01
На		7.6		

Chattanooga, Tennessee | TVA Environmental Chemistry 15:04 03/02/92 FINAL DATA REPORT 1 ======= Lab Sample Number :92/01018 Project Leader :David M. Varnell Sample ID Information :KIF-92-1 :KINGSTON DREDGED ASH Sample comments Sample type/matrix :WASTE Sample login date Sample received by lab :920128 :920129 Sample account number :8616-767000-X1340H | Alt. IDC | Analysis Performed | result | units D004'AS Arsenic, TCLP Extract 230. ug/L Selenium, TCLP Extract 11. ug/L D010'SE D006'CD Cadmium, TCLP Extract 5. ug/L D008'PB Lead, TCLP Extract 25. ug/L Chromium, TCLP Extract D007'CR 5. ug/L Barium, TCLP Extract Silver, TCLP Extract D005'BA 2100. ug/L D011'AG < 10. ug/L D009'HG Mercury, TCLP Extract < 2.0 ug/L Tox. Char. Leach. Metals 02/04/92 TCLP'MET mg/L RES'RCRA Residue, RCRA Waste 980000.

7.6

PH'RCRA

pH on RCRA Waste

pH Units

APPENDIX C

Groundwater Sample Collection Techniques and Quality Assurance Procedures

Appendix C.

Groundwater Sample Collection Techniques and Quality Assurance Procedures

Groundwater Sampling Procedures

The following groundwater sampling procedures are based on TVA's Field Engineering Procedures Manual, Section ES-41.6, "Groundwater Sample Collection Techniques". The pump handling procedures do not apply to the dedicated sampling equipment installed in wells 13B and 16A.

Prior to any sampling or pumping, the depth to water surface (Dws) will be measured from the top of each well casing measured to the nearest centimeter with a tape and plunker or electronic water level indicator. The depth of the well (Dw) will be measured with a tape and plunker. Data, observations, and computations will be recorded on the appropriate field worksheet. The volume of water in the well (Vw), in liters, is calculated using the formula shown below:

Vw =
$$(Dm)^2 \times \pi/4 \times 10^{-3} \times (Dw - Dws)$$
 or
= $(Dm)^2 \times 7.854 \times 10^{-4} \times (Dw - Dws)$

Dm = well casing internal diameter in millimeters (mm);

Dw = Depth of well in meters,

Dws = Depth to water surface in meters.

(Note: Dm of wells 4B and 6A is 102 mm; Dm of wells 13B and 16A is 51 mm.)

"Good housekeeping" practices will be employed to minimize the potential for contamination caused by contact of the ground with the pump and pump tubing. Any equipment that enters a well will be placed on a clean tarpaulin or sheet of plastic. Prior to placing the pump into the well, the outside of the pump and the first few feet of tubing will be rinsed with distilled water.

The pump will be lowered to approximately 0.5 meters below the water surface before pumping commences. The pump will be lowered with the drop in water surface. This ensures that no stagnant water remains in the well after pumping. Ideally, at least two well volumes of water should be purged before sampling. For wells with slow recharge, the pump rate will need to be reduced to minimize the drawdown of the level in the well. If possible, drawing the water level down below the level of the screen will be avoided. Pumping rate and distance to the

water surface will be recorded throughout the pumping procedure. If insufficient water for sampling exists after purging, the wells can be allowed to recover, but sampling should take place as soon after purging as possible. To lessen the chance of contamination, the same pump should be used for purging, monitoring of field parameters, and sampling. While pumping, temperature, pH, DO, ORP, and conductivity will be continuously monitored using a calibrated Hydrolab® flow through cell system to avoid air contact and recorded approximately every five minutes.

When the Hydrolab® readings have stabilized and at least two well volumes have been pumped, samples will be collected for the parameters listed in Table 1 of section II. B. 8. (3). The sample bottles must be labeled with the proper identification number. When filling the various sample bottles, care will be taken to minimize sample aeration by lowering the pumping rate if necessary. Some of the sample containers and bottles may contain a measured amount of chemical preservative. Consequently, the containers and bottles are not rinsed with sample water before filling. Care will be taken to avoid overfilling and diluting the preservative. It is especially important that TIC samples are collected with zero head space. Good technique includes filling the sample bottles one at a time and recapping before filling the next bottle.

Alkalinities will be titrated to pH 8.3 (phenolphthalein alk.) and pH 4.5 (total alk.); acidities will be titrated to pH 3.7 (mineral acidity) and pH 8.3 (CO2 acidity). All values will be reported as mg CaCO3/L.

Normally, 100 ml of sample are titrated with 0.02 N H2SO4 and 0.02 N NaOH. For highly alkaline or acidic samples, sample volume may be decreased or titrant strength increased. Note that 0.02 N NaOH is stable for only about three days.

Immediately after purging and sampling, the water surface depth will be measured. After the pumps are removed from a well, they should be rinsed and the sampling lines should be purged with clean water. Then any remaining water left in the pump and tubing will be pumped out before proceeding to the next well.

Any problem observed that might affect the quality of these procedures will be identified and noted in the project field notebook and on the appropriate field data sheet with the action(s) taken to resolve it. Problems which might affect quality include clogged sampling tubes, highly turbid samples, defective material or equipment, failure to comply with quality procedures, or other similar deficiencies.

Quality Assurance/Quality Control

Appropriate procedures regarding sample containers, preservation techniques, and holding times will be followed. Properly cleaned sample containers with pre-added preservative (where appropriate) will be used. Immediately following collection, samples will be placed in plastic bags and on ice. All shipping containers will be sealed and closed with strapping tape. Samples will be shipped to the analytical laboratory by an appropriate carrier to ensure that all holding times are met.

The sample collector will be responsible for the care and custody of all samples until they are properly dispatched to the receiving laboratory. When samples are dispatched to the laboratory for analysis, a completed Environmental Chemistry Analysis Request and Custody Record form, and copies of the field worksheets will accompany the samples. The sample collector will retain a copy of these forms. Note that the number and kind of sample bottles being sent to the laboratory are indicated. Sample identification numbers (tag numbers) shown on the Custody record will be clearly and permanently marked on all sample bottles. These sample tag numbers will also be cross-referenced on the field worksheets which record information about well location, date and time of collection, name of sample collector(s), water quality field data (physical and chemical), etc. All field and laboratory results are referenced to their unique sample tag numbers, thus maintaining sample traceability. The Sample Custody Record will also record the name and telephone number of the sample collector/shipper. The carrier's shipping record receipts for will be retained by the sample collector/shipper as part of permanent chain of custody documentation. Upon receipt, the laboratory will inspect for broken seals on shipping containers and will inspect the samples for breakage, missing samples, tampering, etc. The laboratory will verify by cross-referencing tag numbers between the Sample Custody Record and the sample bottles received that samples have been received complete and intact. The sample collector will be immediately notified by telephone of any discrepancies.

All samples will be analyzed by the Environmental Chemistry Laboratory for the constituents identified in the Sampling and Analysis Plan in section II. B. 8. (3). The analyses will be conducted according to the methods listed in Table 1 below.

The Laboratory will adhere to all quality assurance measures stated in the document, "TVA Environmental Chemistry Quality Assurance Program Operating Procedures Manual, Revision 1", December 1993. This manual is available for review upon request.

A sample Environmental Chemistry Analysis Request and Custody Record form is included in Appendix C.

Table 1. <u>Sample Analysis Methods</u>

Samples will be analyzed according to the methods listed below:

<u>Parameter</u>		<u>Instrument</u>	Method
Total Inorgan	ic Carbon	Carbon Analyzer	Oi 0524B
Chloride		Colorimeter	1-EPA 326.1
Sulfate		Colorimeter	1-EPA 375.1
Total Dissolv	ed Solids		1-EPA 160.1
Al, B, Ba, Be	, Ca, Cu,	ICP	2-EPA 6010
Fe, Mg, Mn,	Sr, V, Zn	ICP	. "
As		GFAA	2-EPA 7060
Sb		GFAA	2-EPA 7041
Cd		GFAA	2-EPA 7131
Cr		GFAA	2-EPA 7191
Pb		GFAA	2-EPA 7421
Ni		FAA	1-EPA 249.1
K		FAA	2-EPA 7610
Na		FAA	2-EPA 7770
		Method Key	
Code	Reference	· · · · · · · · · · · · · · · · · · ·	
OI 0524B		nd Procedures Manual. Ocean Section VII-IX, 1976.	ography International

Methods for Chemical Analysis of Water and Wastes, EPA-600/4-79-020,

Test Methods for Evaluating Solid Waste, Physical/Chemical Methods,

1-EPA

2-EPA

Revised March 1983.

SW-846, Revision 2, June 1990.

10010	2 2 2 2	
FORM	CONTROL #	
TENNESSEE VALLEY AUTHORITY WATER MANAGEMENT	ENVIRONMENTAL CHEMISTRY ANALYSIS REQUEST AND CUSTODY RECORD	

	LAB	LAB USE ONLY			
PROJECT ID	TES	TEST IDC'S			
]					
REFERENCE: WORKPLAN OTHER	I'HER -				
NO.					
DATE REQUIRED					
RESULTS TO	DATE	DATE RECEIVED		DAYS DUE	
	PROJ	PROJECT LEADER		NO. LABELS	
LAB USE ONLY LAB ID FIELD ID		SAMPLE DESCRIPTION	SAMPLE DATE/TIME NO. OF MATRIX COLLECTED BOTTLES	NO. OF BOTTLES	ADDITIONAL IDC'S
	- 114				
		The second secon			
		The second secon			
					では、10mmのでは、1
FIELD COMMENTS	To the second se				
ANALYSIS REQUESTED					
SUBMITTED BY	— DATE/TIME —	LABORATORY COMMENTS			
RECEIVED BY	DATE/TIME				
DISTRIBUTION OF COPIES					
1 - LABORATORY 2 - RETURN TO REQUESTOR	3 - RETAINED BY REQUESTOR				

PP.

PAGE

APPENDIX D

Hydrogeologic Evaluation of Ash Pond Area

TENNESSEE VALLEY AUTHORITY RESOURCE GROUP, ENGINEERING SERVICES NORRIS ENGINEERING LABORATORY

HYDROGEOLOGIC EVALUATION OF ASH POND AREA KINGSTON FOSSIL PLANT

Report No. WR28-2-36-124

Prepared by
J. Mark Boggs, P.G. (TN #3671)
Andrew J. Danzig
and
Jami A. Schroeder

Norris, Tennessee June 1995

EXECUTIVE SUMMARY

A hydrogeological investigation was conducted to evaluate the long-term effects of the ash pond area on local groundwater and surface water resources following the expected closure of the facility in the year 2015. The study examined local hydrogeologic conditions, groundwater quality, and groundwater use within a two-mile radius of the site. Hydrogeologic and water quality data were primarily derived from previous groundwater investigations at the plant site.

The ash pond area occupies a peninsula bounded by Watts Bar Reservoir on the north and east sides, and by Pine Ridge on the west side. Total area of the facility is approximately 244 acres. At closure, the surface of the area will be graded to promote runoff. A 1-ft surface cap of low permeability (1 x 10^{-7} cm/s) clay will be constructed over the entire surface area to minimize surface infiltration. A 1-ft layer of vegetated top soil will then be placed over the clay cap to prevent erosion.

The area is underlain by shale bedrock of the Conasauga Group and the Rome formation. A mantle of predominantly alluvial soils consisting of clay, silt, and sand with occasional gravel lies above bedrock. Thickness of the alluvium is highly variable, ranging from about 5 to 65 ft. Ash and ash-soil fill materials ranging up to 70 ft in thickness are present above the alluvium. Ash deposits are composed almost entirely of fly ash; bottom ash is estimated to comprise less than ten percent of the ash fill. The water table currently lies within the ash deposits in the ash pond area, and is expected to lie within the ash after facility closure. Groundwater movement at the site generally follows topography with groundwater flowing eastward and southeastward from Pine Ridge toward the reservoir. Groundwater originating on, or flowing beneath, the ash pond area ultimately discharges to the reservoir without traversing private property.

Background groundwater quality as measured in two up-gradient monitoring wells is generally characterized by near-neutral pH, low TDS, and ionic distributions dominated by calcium, magnesium, and carbonate. No exceedances of primary MCLs have been observed in background wells, although secondary MCLs have been exceeded for aluminum, iron, and manganese in some background samples. Groundwater in the immediate vicinity of the ash pond area is affected by ash leachate, and typically exhibits acidic pH, high levels of iron and manganese, and moderate to high levels of sulfate and TDS. Evidence suggests that pyrite oxidation contributes to the high dissolved iron concentrations observed in groundwater. The presence of heavy metals at levels above MCLs is rare. Only arsenic consistently exceeded its MCL in several shallow wells screened in or near ash deposits. Sampling results from depth-staged monitoring wells located around the perimeter of the facility indicate that the effects of ash leachate on groundwater quality are limited to shallow depths.

EPA's HELP2 code [Schroeder et al., 1989] was used to estimate the overall water balance, including leachate production, for the ash fill during a 30-yr period following closure. Results indicated that leachate discharge gradually increases during the first 10 years of the post-closure period reaching a quasi-steady rate of approximately 6.3 million cfy (cubic feet per year)

thereafter. The overall water balance for the ash fill in terms of percent of total incident precipitation was as follows: surface runoff, 18.8 percent; evapotranspiration, 64.1 percent; lateral seepage from top-soil layer, 1.0 percent; net change in water storage, 2.3 percent; and leachate reaching the water table, 13.8 percent. To assess the impact of ash leachate on reservoir water quality, a dilution ratio was estimated by comparing the predicted average leachate flowrate to the mean flow in the reservoir just downstream of the plant outfall. Full mixing of leachate influx and reservoir water was assumed. The mean flow in the Clinch River immediately below the plant outfall is estimated to be approximately 7,000 cfs. The resulting dilution ratio for the quasi-steady leachate discharge predicted during the last 20 years of the water budget simulation of 6.3 million cfy (0.20 cfs) is 1:35,000.

Incremental increases in chemical concentrations in Watts Bar Reservoir due to the influx of ash-leachate effected groundwater were estimated by multiplying the dilution ratio by the mean parameter concentrations. Groundwater quality data for wells located on the perimeter of the disposal area which exhibited exceedances for primary and secondary drinking water standards were selected for the calculation. Parameters exceeding drinking water MCLs included arsenic, nickel, iron, manganese, sulfate, and TDS. Predicted incremental increases in reservoir concentrations were negligible for all constituents except iron which showed a slight increase of $29 \mu g/L$. However, the iron present in groundwater appears to be in a reduced state, and on entering the oxidizing environment of the reservoir is expected to precipitate out of solution.

A survey of water use in the site vicinity in March 1995 identified six residential wells located within approximately one mile of the center of the ash pond area. Two of these wells lie north of Swan Creek embayment and are hydrologically isolated from the site. The remaining four wells lie up-gradient of the Kingston reservation. There is no evidence that pumping from these wells or any of the more distant wells in the site vicinity has induced off-site ash leachate movement from the ash pond area. No adverse off-site groundwater impacts associated with the ash pond are indicated under present conditions or expected under post-closure conditions.

TABLE OF CONTENTS

		Pa	ıge
	Executive Summary		. i
	List of Figures		iv
	List of Tables		iv
1.	Introduction		. 1
	Background		. 1
2.	Site Hydrogeology		. 3
	Geology Soils and Ash Fill Hydraulic Properties Groundwater Levels and Movement Precipitation and Recharge	· ·	. 5 . 5 10
3.	Groundwater Quality		10
	Methods and Approach Background Water Quality Ash Pond Area Groundwater Quality Ash Leachate Composition Summary		14 14 38
4.	Local Groundwater Use		39
5.	Evaluation of Potential Water Quality Impacts		42
	Post-Closure Ash Fill Water Budget Analysis		44
6.	References		49
	Appendix I. Lithologic Logs	1	02

TABLE OF CONTENTS

(continued)

LIST OF FIGURES

		Page
1-1.	Site Location Map Showing Monitoring Well and Corehole Locations	2
2-1.	Site Geologic Map	
2-2.	Top-of-Rock Elevation Contour Map	
2-3.	Hydrogeologic Sections Through Ash Pond Area	
2-4.	Soil Thickness Contour Map	8
2-5.	Water Table Contour Map	
2-6.	Groundwater Hydrographs	
3-1.	Ionic Distributions for Ash Pond Area	
3-2.	Ionic Distributions for Metal Cleaning Pond and Coal Yard Areas	
3-3.	Key to Box and Whiskers Plots	. 21
3-4.	Arsenic Groundwater Data Through April 1995	
3-5.	Barium Groundwater Data Through April 1995	
3-6.	Boron Groundwater Data Through April 1995	. 24
3-7.	Calcium Groundwater Data Through April 1995	. 25
3-8.	Iron Groundwater Data Through April 1995	
3-9.	Lead Groundwater Data Through April 1995	. 27
3-10.	Manganese Groundwater Data Through April 1995	
	pH Groundwater Data Through April 1995	
	Strontium Groundwater Data Through April 1995	
3-13.		
3-14.		
3-15.	Total Organic Carbon Groundwater Data Through April 1995	. 33
4-1.	Wells and Springs Within Two Miles of Ash Pond Area	
5-1.	Subregion Areas and Profiles Used in HELP2 Simulations	. 43
5-2.	Predicted Leachate Discharge From Ash Pond Area During 30-Year	
	Post-Closure Period	. 45
5-3.	Locations of Residential Wells in Relation of Groundwater Flow Patterns in	
	Ash Pond Area	. 48
	LIST OF TABLES	
2-1. 3-1.	Summary of Hydraulic Conductivity Data	9

TABLE OF CONTENTS

(continued)

	P	age
3-2.	Comparison of Groundwater Data With Primary Water Quality Standards - Number of Samples Exceeding an MCL/Total Number of Samples, For Each	
	Parameter, For Each Well	16
3-3.	Comparison of Groundwater Data With Secondary Water Quality Standards -	
	Number of Samples Exceeding an MCL/Total Number of Samples, For Each	
	Parameter, For Each Well	17
3-4.	Unfiltered (Total Concentration) vs. Filtered (Dissolved Concentration)	
	Samples Collected on December 7-10, 1992	18
3-5.	Fly Ash Leachate Characteristics Based on EPRI Estimates and TVA Data	34
3-6.	Indications of Ash Leachate in Wells in the Active Ash Pond Area at KIF	35
3-7.	Summary of Analyses Indicating Ash Leachate Effects at Kingston Fossil	
	Plant Through December 1994	
4-1.	List of Wells, Springs, and Water Supplies in Site Vicinity	41
5-1.	Material Properties Used in the HELP2 Simulations	44
5-2.	Predicted Increases in Arsenic, Nickel, Iron, Manganese, Sulfate, and	
	TDS Due to Ash Leachate Influx	46

HYDROGEOLOGIC EVALUATION OF ASH POND AREA KINGSTON FOSSIL PLANT

1. INTRODUCTION

Background

The ash pond area at Kingston Fossil Plant is located in Roane County, Tennessee, on Watts Bar Lake (Emory River Mile 2) as shown on Figure 1-1. The ash pond area consists of the active ash pond, three dredge cells, and a stilling pool. Total area of the facility is approximately 244 acres. Final closure of the disposal area is planned for the year 2015. At closure the surface of the area will be graded to promote runoff. A 1-ft surface cap of low permeability (1 x 10^{-7} cm/s) clay will be constructed over the entire surface area to minimize surface infiltration. Then a 1-ft layer of vegetated top soil will be placed over the clay cap to prevent erosion.

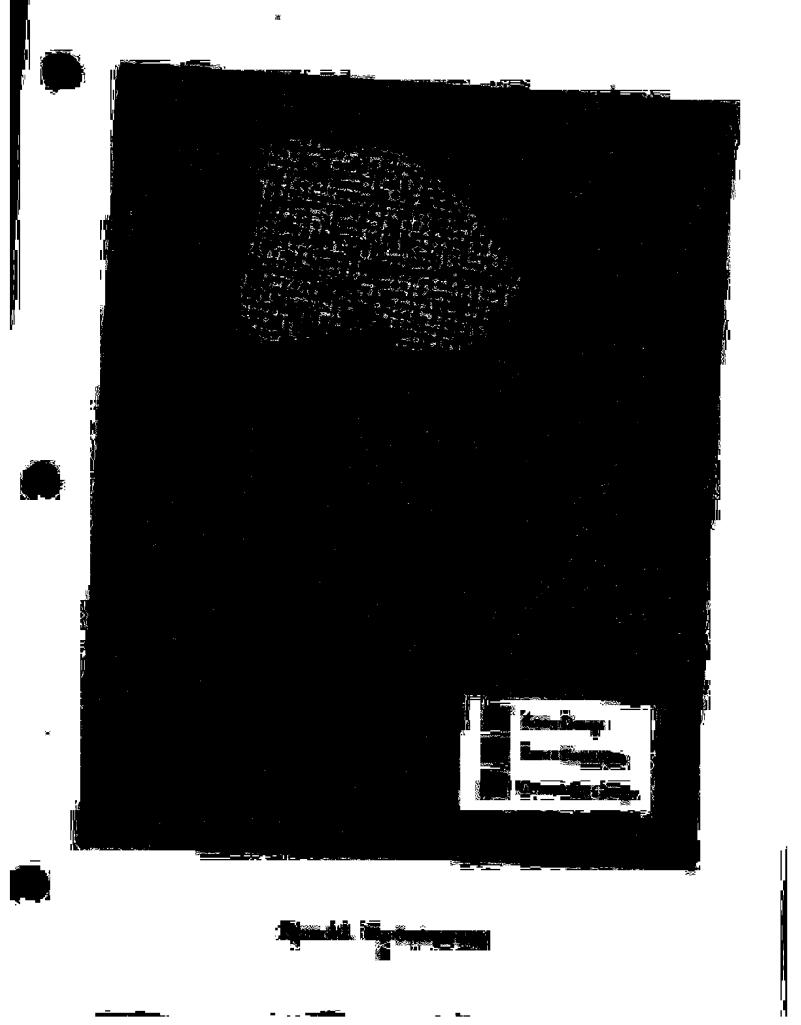
Purpose and Scope

A hydrogeological investigation was conducted to evaluate the long-term effects of the ash pond area on local groundwater and surface water resources following facility closure. The study was initiated with an examination of local hydrogeologic conditions, groundwater quality, and groundwater use in the site vicinity. Hydrogeologic and water quality data were primarily derived from previous groundwater investigations at the plant site. Local groundwater use was established by a survey of residents within a two-mile radius of the disposal site. A water budget simulation of the closed facility was performed to quantify ash leachate production rates during a 30-year post-closure period. The ultimate impact of the closed facility was evaluated using the predicted leachate discharge in conjunction with a knowledge of leachate chemical characteristics and groundwater flow patterns in the site vicinity.

Previous Investigations

The hydrogeologic data and groundwater quality data used in the present investigation are based largely on three previous investigations at the Kingston plant site. The first was an EPA-sponsored study by Milligan and Ruane [1980] to examine the effects of coal ash leachate on groundwater quality. This study was initiated in 1976 with core sampling and monitoring well construction at eight sites, J1 through J8 (Figure 1-1). (Note that the "J" well prefix was dropped in later investigations and does not appear on figure well labels in the present report.) Soil samples were collected using a 2-inch diameter split-spoon sampler through a 12-inch outer diameter hollow-stem auger. Fourteen, four-inch diameter PVC wells, screened over the lower 1.5 ft, were installed through the auger following core sampling. Wells were installed either singly or in staged multiple-well clusters. Lithologic logs for these wells are presented in Appendix I. In addition, laboratory permeameter measurements of the horizontal and vertical components of hydraulic conductivity were performed on selected core samples.

The second investigation consisted of a site-wide assessment of groundwater conditions at the Kingston reservation [Velasco and Bohac, 1991]. Single-well or multiple-well clusters were installed at eight additional sites (sites 9 through 16) in 1988 as part of the investigation. Wells were constructed with 2-inch PVC casing and were screened over the lower 10 ft. Lithologic logs for these wells are given in Appendix I and well construction diagrams are presented in Appendix II. These wells and those installed in 1976 were sampled six times between 1988 and 1990 to examine spatial and temporal trends in groundwater quality at the plant site. Constant-rate injection tests were performed at eight wells to determine bulk hydraulic conductivities of the overburden and shallow bedrock materials. These data were used in development of a groundwater flow model of the site. In June 1992, the original casings of the three wells at site 5 were removed and replaced with near fully-screened PVC casing thereby rendering these wells unsuitable for sampling. Four additional wells (17-20) were installed across the dike at site 5 in July 1992.


A third investigation was conducted by Singleton Laboratories [1994] in the dredge cell area which provided additional useful subsurface information. Two-inch split-spoon and three-inch Shelby tube samples were collected at ten sites for laboratory geotechnical testing. Top-of-rock and groundwater level elevations were established at each site. Appendix I contains lithologic logs for the ten coreholes.

2. SITE HYDROGEOLOGY

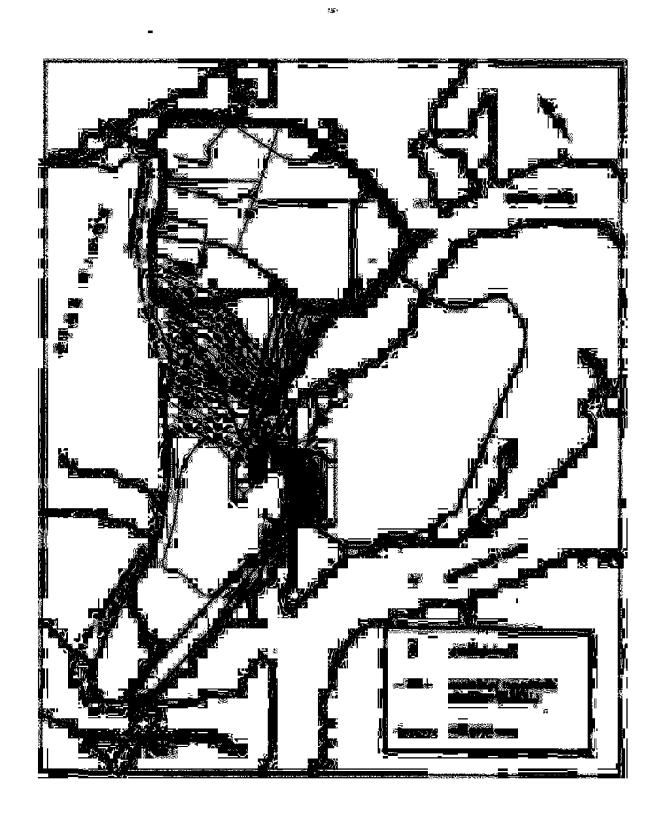
Geology

The Kingston plant site is located in the Valley and Ridge physiographic province of the Appalachian Highlands region. This region is characterized by a sequence of long, narrow ridges and valleys trending northeast-southwest. In general, ridges are formed by relatively resistant sandstone, limestone, and dolomite units while the valleys are underlain by soluble limestones and easily weathered shales. The controlling structural feature of the site is a series of northeast-striking thrust faults which have forced older Cambrian and Ordovician rocks over younger units. Bedrock dips southeast at angles ranging from a few degrees to about 90 degrees [Velasco and Bohac, 1991].

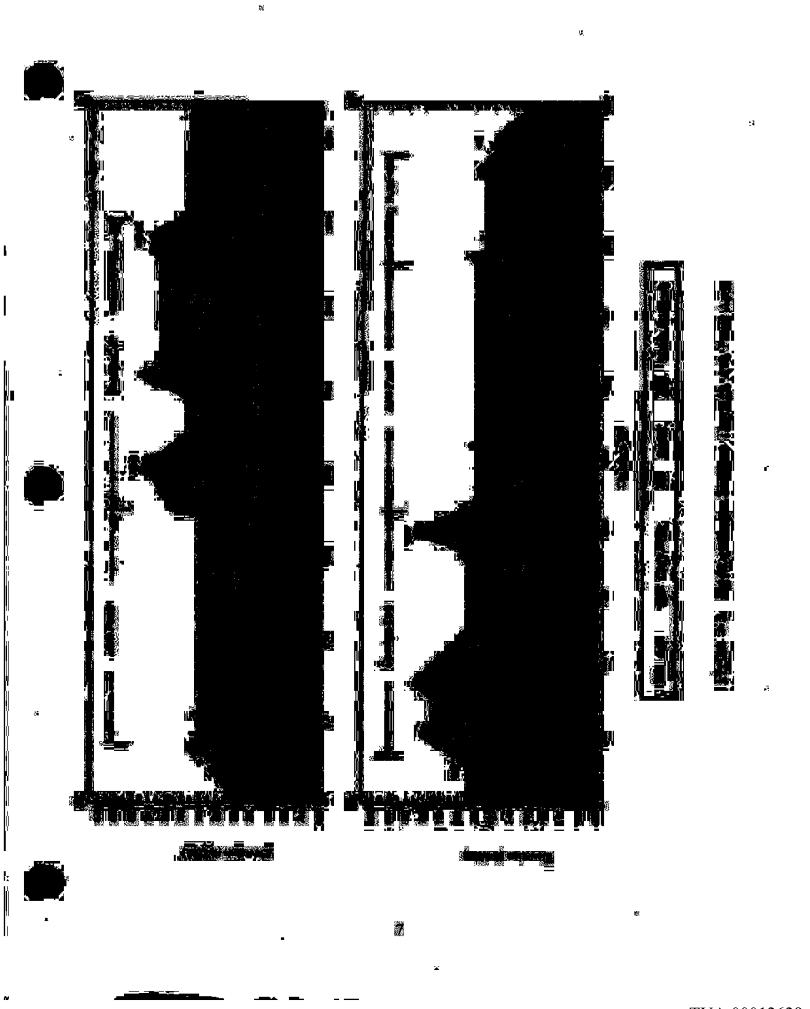
The site geologic map shown on Figure 2-1 indicates that the entire ash pond area is underlain by the Conasauga Group (middle to upper Cambrian age) with exception of the northern tip of the area where the Rome formation (lower Cambrian age) is present. Specific geologic units within the Conasauga Group represented at the site include the Maynardville, Nolichucky, Maryville, Rogersville, Rutledge, and Pumpkin Valley formations. These formations are locally of low water-producing capacity, and predominantly consist of shale with interbedded siltstones, limestones, and conglomerates [Velasco and Bohac, 1991]. Total thickness of the Conasauga Group beneath the site is unknown but is estimated to be approximately 1500 ft [Harris and Foxx, 1980]. Pine Ridge, which borders the ash pond area to the northwest, is underlain by interbedded shale, sandstone, and siltstone of the Rome formation.

The elevation of the top-of-rock directly beneath the ash pond area is relatively uniform, varying from approximately 700 to 715 ft-MSL (Figure 2-2). Outside this area the bedrock surface rises steeply to the west and southwest. The lower bedrock terrace corresponding to the disposal area apparently represents an erosion surface associated with the ancestral Emory River. The upper few feet of bedrock generally consists of a weathered fissile shale with occasional limestone fragments.

Soils and Ash Fill


A mantle of predominantly alluvial soils generally lies above bedrock in the ash pond area as indicated in the two hydrogeologic profiles presented on Figure 2-3 and the soil isopachous map of Figure 2-4. Soil thickness is highly variable, ranging from about 5 ft along a portion of the northern perimeter of the site to a maximum of 65 ft on the western boundary. The alluvial deposits are unconsolidated and lenticular, and consist of clay, silt, and sand with occasional gravel. A thin layer of residuum is occasionally present directly above bedrock. The residuum is composed of clay and silt with weathered shale fragments.

The ash and ash-soil fill materials present above the alluvium/bedrock range up to 70 ft in thickness. Ash deposits consist almost entirely of fly ash; bottom ash is estimated to comprise less than ten percent of the ash fill. Ash pond dikes are constructed of mixtures of fly ash, bottom ash, clay, and silt. As indicated on Figure 2-3 the water table generally lies within the ash deposits.


Hydraulic Properties


Field and laboratory measurements of hydraulic conductivity for soil, ash, and shallow bedrock were performed during previous plant site investigations. A summary of these data are given in Table 2-1. In general, the field conductivity measurements are about an order of magnitude larger than the laboratory estimates for the same material. Such differences between field and laboratory measures are commonly observed and are attributed to differences in measurement scale.

The upper weathered bedrock zone exhibited the highest field-measured horizontal hydraulic conductivity (K_h) with values averaging about $2x10^{-5}$ cm/s. Field estimates of K_h for the "silty clay" alluvium averaged approximately $7x10^{-6}$ cm/s. A conductivity of approximately $2x10^{-5}$ cm/s was indicated for the permeameter-tested fly ash sample.

Ŕ

TABLE 2-1
Summary of Hydraulic Conductivity Data

	Labora	tory Peri	neamete	er Tests		F	ield Test	S
Well	Sample Elevation	`~Kh	Kv	Material	Interval	Elevation (ft-MSL)	Kh	Material
No.	(ft-MSL)	(cm/s)	(cm/s)	Туре	Тор	Bottom	(cm/s)	Туре
2	715.6	7.4E-08	6,3E-08	silty clay	723.4	721.9	9.1E-06	silty clay
4	721.4	8.8E-06	3.1E-06	sand	_	_	-	1
	728,9	6.6E-08	2.8E-07	silty clay	-	-	+	1
48	_	-	_	-	716.3	714.8	6.1E-06	sity clay
5	731.4	2.8E-07	4,0E-07	silty clay	725.4	723.9	9.1E-06	sity clay
6	702.4	1,3E-06	1.4E-06	weathered shale	-	_		1
	725.7	2.5E-06	4.4E-07	silty clay				1
9B	-	-	-	-	697.2	687.2	6 1E-06	shale
13A	-			-	712.6	702.6	3.0E-06	silty clay
13B	_	-	-	-	697.4	685.4	2.1E-05	shale w/ ls. and ss.
15A	+			+	777.9	767.9	3.0E-05	shale
	(surface sample)	2.1E-05	2.1E-05	fly ash	_			-

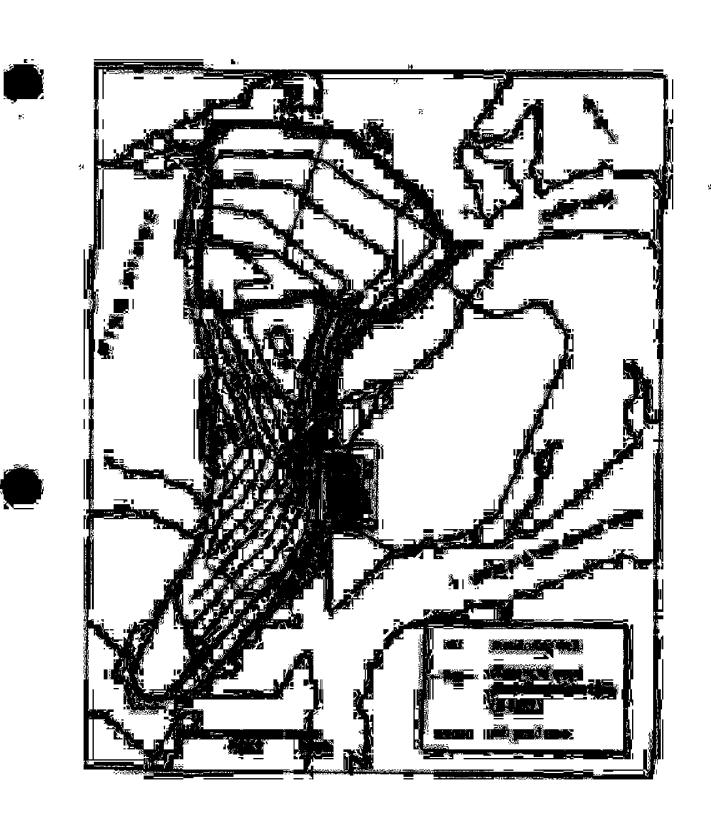
References: soil permeameter test results reported by Milligan and Ruane [1980]; fly ash data from Young et al. [1993], Appendix A; all field test data from Velasco and Bohac [1991].

Groundwater Levels and Movement

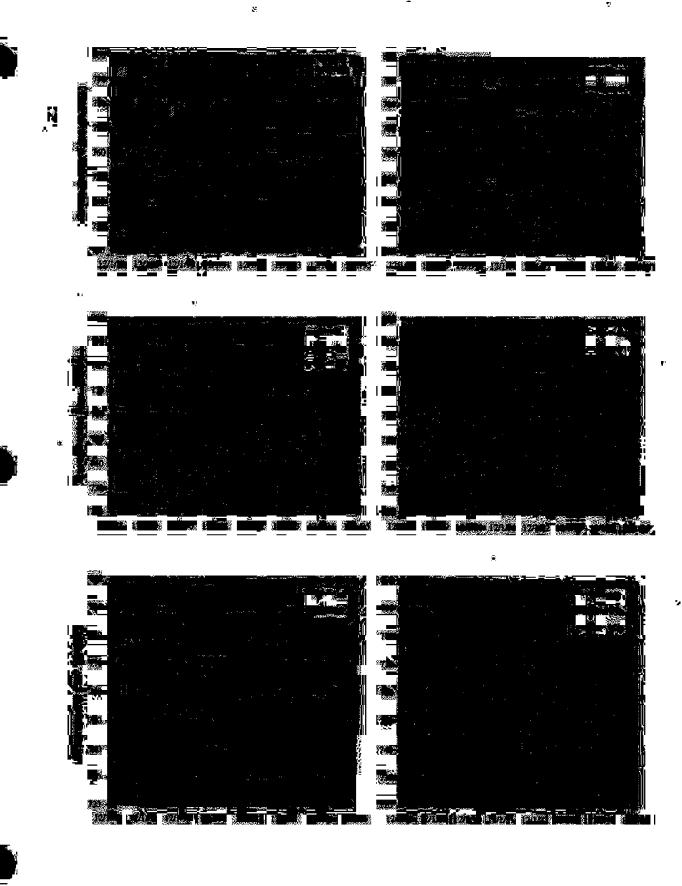
Groundwater movement at the plant site is generally eastward and southeastward from Pine Ridge toward the reservoir as indicated by the water table contour map shown on Figure 2-5. Because the ash pond area occupies a peninsula bounded on two sides by the reservoir, groundwater originating on or upgradient of the disposal area ultimately discharges to the reservoir. Although potentiometric head data for the interior of the disposal area are limited, it is probable that the continuous recharge by ash sluice water in the active ash pond produces local on-site mounding of the water table. Similarly, temporary local mounding of the water table may occur during periodic sluicing/dredging of ash to the three dredge cells.

It is difficult to discern any natural seasonal trends in groundwater levels in the monitoring well hydrographs shown on Figure 2-6. This may be partially due to the infrequency of the measurements, i.e., only four or less observations were made per year. However, given the close proximity of most monitoring wells to the active ash pond, dredge cells, and/or the reservoir, it is likely that these artificial hydrologic features largely control local groundwater levels.

Precipitation and Recharge

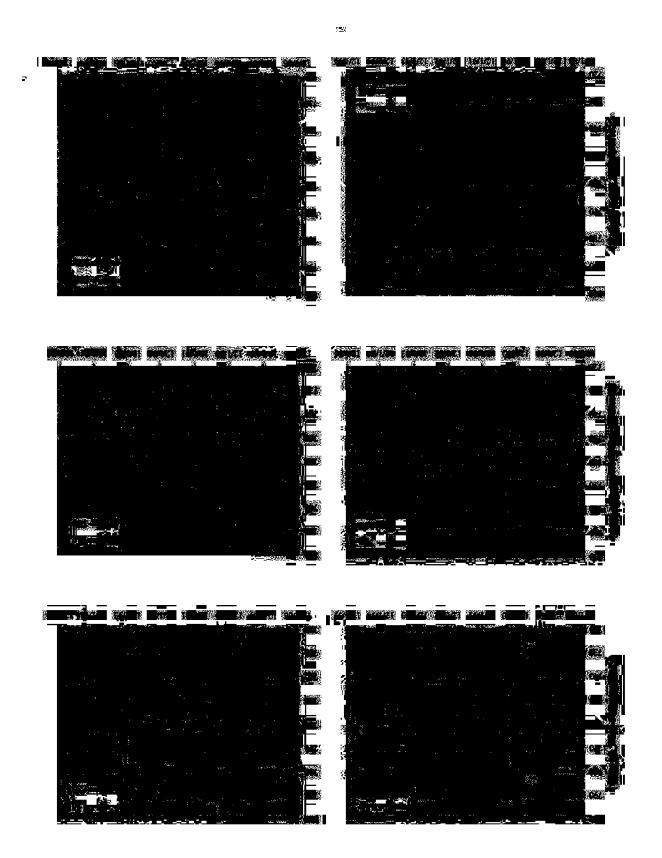

Based on historical meteorological data for Oak Ridge (approximately 20 miles northwest of the site), the annual precipitation at the site is estimated to range from 39 to 70 inches and average approximately 52 inches. Average net groundwater recharge at the site, according to the Kingston groundwater investigation of Velasco and Bohac [1991], is 2.4 inches per year.

3. GROUNDWATER QUALITY


Methods and Approach

From three to 23 samples have been collected from wells at Kingston since 1989. All wells were purged with either a centrifugal, bladder, or peristaltic pump and sampled with either a bladder or peristaltic pump. Wells 2, 4A, 4B, 5, 5B, 6A, and 8 were pumped dry and sampled after they recovered, either later the same day or the next day. Dedicated sampling equipment (QED systems) was installed in wells 10A, 13B, and 16A on January 27, 1993.

While data from all wells sampled at Kingston are presented, this analysis focuses on groundwater quality in the active ash pond area. This area includes wells 2, 4A, 4B, 5, 5A, 5B, 6A, 13A, 13B, 16A, 16B, 17, and 19. The periods of record for each well sampled at Kingston are indicated in the summary tables in Appendix III. These tables also present sample number, mean, median, and range of values for each parameter measured. Results reported as less than the analytical determination limit were recorded at the concentration of that limit. Thus, the



median values listed may be higher than the true values. The number of observations which exceeded Maximum Contaminant Levels (MCLs) for drinking water is also shown.

Groundwater data for wells in the ash pond area were compared to drinking water criteria as one means of evaluating the potential impacts to groundwater quality from the plant's ash disposal activities. (The MCLs are listed in Table 3-1.) Tables 3-2 and 3-3 summarize the number of samples which were above the primary (health-related) and secondary (aesthetic) MCLs for drinking water. The MCLs are shown in parentheses below each parameter. The number above the slash shows the number of samples for which the concentration was observed to be above the particular MCL. The number below the slash shows the total number of analyses available from the well for the parameter in question.

Due to concerns about the effects of turbidity on the results, a number of samples were filtered through a pore size of $0.45~\mu m$. Table 3-4 contains the total and dissolved concentrations from the 12 samples that were both filtered and unfiltered. Figures 3-1 and 3-2 show the ionic distributions, on the basis of equivalents, of the major mineral constituents based on the median values reported in the summary tables (Appendix III). (An equivalent is 1 molecular weight of an element divided by its valence.) For comparison, data obtained from eight stations on the Emory River are included in Figure 3-1 and data from the coal yard drainage basin (CYDB) are included in Figure 3-2.

Figure 3-3 is a key to the quartile plots for twelve indicator parameters (Figures 3-4 through 3-15). Tables 3-5 and 3-6 relate to ash leachate indicators. Table 3-7 summarizes all the analyses considered to gauge impacts to groundwater at Kingston Fossil Plant.

Background Water Quality

The wells at sites 15 and 16 are upgradient of the plant and are considered to provide background water quality. There were virtually no exceedances of primary MCLs observed in these wells and almost all of the secondary MCL exceedances occurred for aluminum, iron, and manganese. These constituents, while not uncommon in groundwater, are also associated with particulate matter in samples. Comparison with other wells, e.g., Figures 3-8 and 3-10 for iron and manganese, shows that these wells contain some of the lowest levels observed at the Kingston site. It is clear from Figure 3-11 that the pH of the groundwater in these wells is near neutral. The ionic distributions of these waters are marked by low ionic levels (which is related to total dissolved solids (TDS)) predominated by calcium, magnesium, and carbonate.

Ash Pond Area Groundwater Quality

Tables 3-2 and 3-3 identify 108 out of 3074 observations that exceeded primary MCLs and 1586 out of a total of 3616 observations that exceeded secondary MCLs. While four-fifths of the primary exceedances are for arsenic, it appears that 5 of the 6 wells that had high arsenic levels were screened in or near ash, i.e. only well 19 was not screened in ash. Of the wells closest to the closure plan area, 13A, 17, and 19 had frequent exceedances of arsenic and 4A

TABLE 3-1			
Maximum Contaminant Levels for Drinking Water - Inorganics			
Parameter	Current Concentration		
Primary	Current Concentration		
·			
Antimony	6 mg/L		
Arsenic	50 mg/L		
Asbestos	7 X 10 ⁶ fibers/L (fibers > 10m)		
Barium	2000 mg/L		
Beryllium	4 mg/L		
Cadmium	5 mg/L		
Chromium	100 mg/L		
Copper	1.3 mg/L ^a		
Cyanide	200 mg/L		
Fluoride	4.0 mg/L		
Lead	50 mg/L ^b		
Mercury	2 mg/L		
Nickel	100 mg/L		
Nitrate (as N)	10 mg/L		
Nitrite (as N)	1 mg/L		
Selenium	50 mg/L		
Sulfate	500 mg/L - Proposed		
Thallium	2 mg/L		
Secondary			
Aluminum	50 to 200 mg/L°		
Chloride	250 mg/L		
Copper	1000 mg/L		
Fluoride	2.0 mg/L		
Iron	300 mg/L		
Manganese	50 mg/L		
pН	6.5-8.5		
Silver	100 mg/L		
Sulfate	250 mg/L		
TDS	500 mg/L		
Zinc	5000 mg/L		
^a EPA established action le December 7, 1992 ^b MCL used by states; EPA ^c Limit is to be determined			
Sources: Federal Register Federal Register Federal Register	y, Vol. 57, No. 138, July 17, 1992 c, Vol. 56, No. 20, January 30, 1991 c, Vol. 55, No. 143, July 25, 1990 c, Vol. 59, No. 243, December 20, 1994		

Kingston Fossil Plant. Data Through December 1994. Comparison of Groundwater Data with Primary Water Quality Standards - Number of Samples Exceeding an MCL/Total Number of Samples, for Each Parameter, for Each Well. TABLE 3.2

																										_
	TOTAL	21/152	6/144	0/158	0/131	0/155	18/137	0/129	21/157	4/156	0/105	0/113	1/114	1/120	22/158	0/126	2/159	1/154	1/141	0/136	0/175	0/150	3/26	2/35	5/43	108/3074
NO3-N	(10)	0/13	0/10	ď/12	0/10	0/12	0/12	0/11	0/12	0/11	0/10	0/11	0/10	0/10	0/12	0/10	0/12	0/11	0/12	0/11	0/14	0/10	0/0	0/0	0/0	0/236
Se	(50)	0/13	0/10	0/12	0/11	0/13	0/13	0/12	0/12	0/12	0/10	0/11	0/10	0/10	0/13	0/10	0/13	0/12	0/14	0/13	0/16	0/10	0/1	0/1	0/0	0/252
Z	(100)	0/4	4/6	9/0	9/0	9/0	0/4	0/4	9/2	9/0	0/3	0/3	0/3	0/4	9/2	0/4	9/0	2/0	0/5	9/0	9/0	9/0	0/3	0/4	4/5	8/115
Pb	(50)	(Hg/L)	0/ 17	0/ 19	0/ 15	0/ 18	0/ 16	0/ 15	0/ 19	3/19	0/ 12	0/ 13	0/ 14	0/ 15	1/19	0/ 16	0/ 20	0/ 19	0/ 16	0/ 16	0/ 21	0/ 19	0/3	0/4	0/5	4/368
Cu	(1.3)	0/ 20	0/ 19	0/21	0/17	0/ 20	0/ 18	0/ 17	0/21	0/21	0/ 14	0/ 15	0/ 15	0/ 16	0/21	0/17	0/21	0/ 20	0/ 18	0/ 17	0/23	0/ 20	0/3	0/ 4	0/5	0/403
స	(100)	0/ 18	0/ 17	0/ 18	0/ 14	0/ 17	0/ 15	0/ 14	0/ 18	0/ 18	0/ 11	0/ 12	0/ 13	0/ 14	0/ 18	0/ 15	0/ 18	0/ 18	0/ 15	0/ 15	0/ 20	0/ 18	0/2	6/3	0/4	0/345
PS	(5)	(Hg/L) 0/20	2/19	0/ 20	0/ 16	0/ 19	0/ 17	0/ 16	0/ 20	0/ 20	0/ 13	0/14	0/ 14	0/15	0/ 20	0/ 16	0/ 20	1/19	1/17	0/ 16	0/ 22	0/ 19	0/ 2	0/ 3	0/4	4/381
Be	(4)	1/4 1/4	0/5	9/0	9/0	9/0	1/4	0/4	9/2	1/5	0/3	0/3	1/3	1/3	0/5	0/3	9/0	9/2	9/2	9/0	0/5	9/0	6/3	0/4	1/5	6/105
Ва	(2.0)	(IIIg/L) 0/18	0/ 17	0/ 19	0/15	0/ 18	0/ 16	0/ 15	0/ 19	0/ 19	0/12	0/ 13	0/ 14	0/ 14	0/ 19	0/ 15	0/ 19	0/ 18	0/ 16	0/ 15	0/ 20	0/ 18	0/3	0/ 4	9/2	0/361
As	(50)	20/ 20	0/ 19	0/21	0/ 17	0/ 20	17/ 18	0/ 17	21/21	0/21	0/ 14	0/ 15	0/ 15	0/ 16	21/21	0/ 17	2/21	0/ 20	0/ 18	0/ 17	0/ 23	0/ 20	3/3	2/4	9/0	86/403
qs	(9)	(µg/L)	0/ 5	0/5	0/ 5	9 /0	4 /0	4 /0	0/5	0/ 5	0/ 3	0/ 3	0/ 3	0/ 3	0/5	0/ 3	0/5	0/5	0/5	0/5	0/5	0/5	0/ 3	0/ 4	0/5	0/105
	MCL	יבור וט י	44	48	6A	80	46	98	5	10A	108	118	12A	12B	13A	138	14A	148	15A	15B	16A	16B	17	19	сурв	TOTAL

TABLE 3.3

Kingston Fossil Plant. Data Through December 1994.
Comparison of Groundwater Data with Secondary Water Quality Standards - Number of Samples
Exceeding an MCL/Total Number of Samples, for Each Parameter, for Each Well.

		TOTAL	63/178	114/171	104/189	100/153	90/178	103/161	25/154	73/188	113/190	78/126	69/135	49/135	68/143	69/188	6/153	115/189	90/179	36/163	45/153	63/205	45/178	18/27	23/35	27/45	1586/3616
Zn	(2000)	(hg/L)	0/20	0/19	0/21	0/17	0/20	0/18	0/17	0/21	0/21	0/14	0/15	0/15	0/16	0/21	0/17	0/21	0/20	0/18	0/17	0/23	0/20	6/0	0/4	9/0	0/403
Mn	(20)	(μg/L)	20/ 20	19/ 19	21/21	17/17	20/ 20	18/ 18	11/17	21/21	21/21	14/14	15/15	14/15	16/ 16	21/21	1/17	21/21	20/ 20	15/18	17/17	23/ 23	20/ 20	3/3	4/4	2/2	377/403
Fe	(300)	(hg/L)	20/ 20	19/ 19	21/21	17/17	19/ 20	18/ 18	3/17	21/21	21/21	14/14	13/ 15	14/ 15	16/ 16	21/21	1/17	21/21	19/ 20	8/18	17/ 17	23/ 23	11/20	3/3	4/4	2/2	349/403
no	(1000)	(µg/L)	0/ 20	0/ 19	0/21	0/ 17	0/ 20	0/ 18	0/ 17	0/ 21	0/21	0/ 14	0/ 15	0/ 15	0/ 16	0/21	0/ 17	0/21	0/ 20	0/ 18	0/ 17	0/ 23	0/ 20	0/3	0/ 4	9/0	0/403
A	(200)	(µg/L)	19/ 20	19/ 19	16/21	15/17	12/20	18/ 18	3/17	14/21	21/21	9/14	9/15	8/15	4/16	20/21	4/17	12/21	11/20	10/18	71/17	16/23	14/20	3/3	4/4	2/2	274/403
TDS	(200)	(mg/L)	2/ 20	19/ 19	21/21	17/17	20/ 20	18/ 18	0/ 17	8/21	14/21	13/14	15/15	10/15	16/16	2/21	0/ 17	20/21	19/ 20	2/18	3/17	0/ 23	0/ 19	3/3	4/4	3/5	229/402
S04	(250)	(mg/L)	0/ 20	19/ 19	20/21	17/17	19/ 19	18/ 18	3/17	9/21	14/21	14/14	15/15	1/15	16/ 16	3/21	0/ 17	20/ 21	19/ 20	1/18	1/17	1/23	0/ 20	3/3	4/4	4/5	221/402
ರ	(250)	(mg/L)	0/ 20	0/ 19	0/ 21	0/ 17	0/ 20	0/ 17	0/ 17	0/21	0/21	0/ 14	0/ 15	0/ 15	0/ 16	0/21	0/ 17	0/21	0/ 20	0/ 18	0/ 17	0/ 23	0/ 20	0/ 3	0/ 4	9/2	0/402
품	(6.5-8.5)	(SU)	2/18	19/19	5/21	17/17	0/ 19	13/ 18	5/18	0/ 20	22/22	14/14	1/15	2/15	0/ 15	2/20	0/ 17	21/21	2/19	0/ 19	0/ 17	0/ 21	0/ 19	3/3	3/3	5/5	136/395
	MCL	WELL ID	2	4A	48	¥9	8	9A	9B	10	10A	10B	11B	12A	12B	13A	13B	14A	14B	15A	15B	16A	16B	17	19	CYDB	TOTAL

Parameter Units Tot Aluminum µg/L 9900 Iron µg/L 40000 Manganese µg/L 20 Calcium µg/L 250 Barium µg/L 250 Barium µg/L 250 Boron µg/L 250 Boron µg/L 250 Boron µg/L 250 Boron µg/L 250 Bryllium µg/L 250 Caronium µg/L 250 Lead µg/L 250 Lead µg/L 250 Lithium µg/L 250 Lithium µg/L 250 Lithium µg/L 120 Total Diss Sol µg/L 150 Total Diss Sol µg/L 26000 Iron µg/L 26000 Manganese µg/L 7700 Calcium µg/L 26000 Manganesium µg/L 26000 Manganesium µg/L 26000 Manganesium µg/L 25000 M	CYDB 000 000 000 000 000 000 000 0	Iltered (Total Sail Sail Sail Sail Sail Sail Sail Sa	Kings Concentration I Concentration Disa Disa Disa 10 250,000 410 71 570 71 570 71 570 71 570 71 570 71 570 71 71 71 71 71 71 71 71 71	ston Ground ation) vs. Figure 1	Water Data Comber 7- Com	Number of Concentration Samples Collected on December 7-10, 1992 Mull D.	Centration) Disa C 50 950,000 66000 C 10 320 C 40 320 C 40 320 C 40 C 2800 C 20 C	3900 47000 35000 57 57	Diss.	10	Dist < 50 6400 6410 6410 6410 6410 6410 6410 641
mmcfcr I Inits Tot. see	CYDB Distriction of the control of	15000 290,000 54000 670 670 670 670 670 670 670 670 670	Disa. Disa. 250,000 250,000 410 71 300 71 570 <10 500 <20 1400 <1 2 2 2 2 4 5 6 6 6 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7	10t 16000 16000 5000 19 60 60 60 60 60 60 60 60 60 60 60 60 60	\$50 \$50 \$60 \$130 \$130 \$130 \$130 \$130 \$130 \$130 \$13	Med Lib. 1,300,000 1,300,000 7000 1,300,000 7000 1,300,000 710 8300 720 720 720 720 720 720 720	Disa	T T	Diss.		1014 < 50 6400 250 < 10
mucier Ilnis Tot. see	CYDB	15000 290,000 54000 54000 670 670 670 670 670 670 670 670 670	Diss. 9800 250,000 48000 < 10 300 711 570 < 10 570 < 20 1400 < 20 1400 < 2	22000000000000000000000000000000000000	280	1	Disa 66000 66000 610 641 100 640 640 640 640 640 640 640 6	101 3900 47000 35000 < 50 300 57	Diss.	Ì.	250 C 10 C
mmeter Units sse	00000000000000000000000000000000000000	1500 290,000 54000 54000 (10 330 670 670 670 670 670 670 670 670 670 67	Diss.	16000 16000 5000 5000 610 720 139 60 60 60 60 60 60 60 60 60 60 60 60 60	280		2800 2900 2900 2900 2900 2900 2900 2900	3900 47000 35000 < 50 300 57	Diss. 1	Tot	250 6400 250 610 610
### #### #### ##### ##################	000 000 000 000 000 000 000 000 000 00	15000 290,000 54000 <10 330 76 670 670 670 <20 <1500 <1500 <1500 <1500 <1500 <1500 <1500 <1500 <1500 <1500 <1500 <1500 <1500 <1500 <1500 <1500 <1500 <1500 <1500 <1500 <1500 <1500 <1500 <1500 <1500 <1500 <1500 <1500 <1500 <1500 <1500 <1500 <1500 <1500 <1500 <1500 <1500 <1500 <1500 <1500 <1500 <1500 <1500 <1500 <1500 <1500 <1500 <1500 <1500 <1500 <1500 <1500 <1500 <1500 <1500 <1500 <1500 <1500 <1500 <1500 <1500 <1500 <1500 <1500 <1500 <1500 <1500 <1500 <1500 <1500 <1500 <1500 <1500 <1500 <1500 <1500 <1500 <1500 <1500 <1500 <1500 <1500 <1500 <1500 <1500 <1500 <1500 <1500 <1500 <1500 <1500 <1500 <1500 <1500 <1500 <1500 <1500 <1500 <1500 <1500 <1500 <1500 <1500 <1500 <1500 <1500 <1500 <1500 <1500 <1500 <1500 <1500 <1500 <1500 <1500 <1500 <1500 <1500 <1500 <1500 <1500 <1500 <1500 <1500 <1500 <1500 <1500 <1500 <1500 <1500 <1500 <1500 <1500 <1500 <1500 <1500 <1500 <1500 <1500 <1500 <1500 <1500 <1500 <1500 <1500 <1500 <1500 <1500 <1500 <1500 <1500 <1500 <1500 <1500 <1500 <1500 <1500 <1500 <1500 <1500 <1500 <1500 <1500 <1500 <1500 <1500 <1500 <1500 <1500 <1500 <1500 <1500 <1500 <1500 <1500 <1500 <1500 <1500 <1500 <1500 <1500 <1500 <1500 <1500 <1500 <1500 <1500 <1500 <1500 <1500 <1500 <1500 <1500 <1500 <1500 <1500 <1500 <1500 <1500 <1500 <1500 <1500 <1500 <1500 <1500 <1500 <1500 <1500 <1500 <1500 <1500 <1500 <1500 <1500 <1500 <1500 <1500 <1500 <1500 <1500 <1500 <1500 <1500 <1500 <1500 <1500 <1500 <1500 <1500 <1500 <1500 <1500 <1500 <1500 <1500 <1500 <1500 <1500 <1500 <1500 <1500 <1500 <1500 <1500 <1500 <1500 <1500 <1500 <1500 <1500 <1500 <1500 <1500 <1500 <1500 <1500 <1500 <1500 <1500 <1500 <1500 <1500 <1500 <1500 <1500 <1500 <1500 <1500 <1500 <1500 <1500 <1500 <1500 <1500 <1500 <1500 <1500 <1500 <1500 <1500 <1500 <1500 <1500 <1500 <1500 <1500 <1500 <1500 <1500 <1500 <1500 <1500 <1500 <1500 <1500 <1500 <1500 <1500 <1500 <1500 <1500 <1500 <1500 <1500 <1500 <1500 <1500 <1500 <1500 <1500 <1500 <1500 <1500 <1500 <1500 <1500 <1500 <1500 <1500 <1500 <1500 <1500 <1500 <1500 <1500 <1500 <1500 <1500 <1500 <1500 <1500 <1500 <1500 <	9800 48000 48000 < 10 300 71 570 < 10 500 < 2 1400 < 1 500 < 2 500 < 1 500 < 2 500 < 1 500 < 1 500 500 500 500 500 500 500 500 500 50	4200 16000 5000 < 10 720 19 60 60 60 60 60 60 60 60 60 60 60 60 60	\$50 \$70 \$70 \$70 \$70 \$70 \$70 \$70 \$70 \$70 \$7	1,300,000 76000 76000 710 710 710 710 710 710 710 710 711 713 713 713 714 715 716 717 717 718 719 719 719 719 719 719 719 719 719 719	<pre><50 950,000 66000 610 810 810 840 800 800 800 800 800 800 800 800 80</pre>	3900 47000 35000 < 50 300 57	80		6400 6400 250 610
ase well a separate to the sep		299,000 54000 <10 <10 330 76 670 670 670 <20 1500 <1	250,000 48000 < 10 < 10 300 71 570 < 10 500 < 20 < 1 2 2 3 3 4 5 6 10 5 7 6 10 5 7 6 10 5 7 6 10 5 7 7 7 7 1 7 1 7 1 7 1 7 1 7 1 7 7 7 7	16000 5000 710 710 720 7500 7500 720 720 720 720 720 720 720 720 720 7	\$60	1,300,000 76000 <10 80 80 240 210 3500 <20 119 119 119 119	950,000 66000 610 710 64 100 100 2800 620 620	47000 35000 < 50 300 57		1000	250 250 100 250 250
um mg/L mg/		54000 < 10 < 10 330 670 670 670 670 670 670 670 67	48000 < 10 300 < 11 570 < 10 500 < 2 < 1 < 1 < 1 < 2 < 1 < 3 < 1 < 1 < 1 < 1 < 1 < 1 < 1 < 1	\$600 \$710 \$710 \$700 \$700 \$700 \$700 \$700 \$7	130 190 190 190 190 190 190 190 190 190 19	76000 ~10 380 69 69 210 210 720 ~10 ~11 119 119 50	6600 < 10 320 < 10 100 2800 < 20 < 20 < 20 < 20 < 30 < 40 < 50 < 40 < 50 <	35000 < 50 300 57	35000	11000	250 0 0 0 0
um mg/L mg/L mg/L mg/L mg/L mg/L mg/L mg/L		<pre></pre>	<pre><10 300 300 71 71 570 <10 <10 400 </pre> <pre></pre> <pre> <pre></pre> <pre><th>0 1 0 2 2 0 2 0 0 0 0 0 0 0 0 0 0 0 0 0</th><th><pre></pre></th><th> 10 380 380 69 210 210 3500 4 1.9 1.9 1.9 210 3500 4 4 1.9 1.9 210 1.9 1.9 1.9 20 20 37 4 4 4 1.9 1.9 20 20</th><th> 10 320 64 100 2800 2900 2900 2900 </th><th>300 37 37</th><th>32000</th><th>310</th><th>01 V</th></pre></pre>	0 1 0 2 2 0 2 0 0 0 0 0 0 0 0 0 0 0 0 0	<pre></pre>	 10 380 380 69 210 210 3500 4 1.9 1.9 1.9 210 3500 4 4 1.9 1.9 210 1.9 1.9 1.9 20 20 37 4 4 4 1.9 1.9 20 20	 10 320 64 100 2800 2900 2900 2900 	300 37 37	32000	310	01 V
um mg/L num mg/L num mg/L num mg/L num mg/L num mg/L num mg/L ss Sol		330 76 670 670 670 620 72 61 73 620 73 620 73 74 75 75 75 75 75 75 75 75 75 75 75 75 75	300 71 570 570 500 500 500 71 61 61	220 19 19 60 60 720 720 720 730 6	190 171 171 172 180 180 190 190 190 190 190 190 190 190 190 19	380 69 240 210 3500 720 710 71 119 113	320 100 4 2800 2900 2900 7	300 57	< 10	< 10	Ş
um mg/L Hg/L Hg/L Hg/L n Hg/L n Hg/L n Hg/L y Hg/L y Hg/L se Sol Hg/L n Hg/L se Hg/L se Hg/L n Hg/L se Hg/L		76 970 870 670 670 1500 1 500 2 2	570 570 500 500 500 71 61 72 73 74 74 75 75 75 75 75 75 75 75 75 75 75 75 75	0.00	7	69 240 240 3500 3500 3500 4 4 4 119 119 13	280 280 290 290 290 4 0 290 4 0	57	250	8	3
Hg/L Hg/L Hg/L H Hg/L Ss Sol Hg/L Hg/L Ss Sol Hg/L		670 30 670 620 1500 61 2	570	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	, , , , , , , , , , , , , , , , , , ,	240 210 3500 <220 3500 4 1.9 1.9 1.3 21 37	100 2800 720 2900 2900	5	51	8.2	7.9
## ## ## ## ## ## ## ## ## ## ## ## ##		30 670 620 1500 61 2	^10 ^20 1400 ^1400 ^1 7 ^1 7 ^1 7	04 00 00 00 00 00 00 00 00 00 00 00 00 0	, , , , , , , , , , , , , , , , , , ,	210 3500 < 220 3500 < 1 4 1.9 1.9 1.3 77 50	2800 2800 2900 2900 4	3	30	<;10	< 10
Hell Hell Hell Hell Hell Hell Hell Hell		670 <20 1500 <1 2.9	500 (220 1400 (1 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	0.500 0.20 0.00 0.10 0.40 0.00 0.00 0.00 0.00 0.0	, , , , , , , , , , , , , , , , , , ,	3500	2800 <20 2900 <1	70	30	8	20
an Hg/L		<pre></pre>	720 1400 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7	720 390 71 6.0 7	, , , , , , , , , , , , , , , , , , , ,	3500 3500 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4	2900 2900 71 4	1600	1500	< \$00	< \$00 < \$00
m Hg/L n Hg/L n Hg/L y Hg/L y Hg/L sp Sol Hg/L ng/L sp Hg/L ng/L		1500 < 1 2.9 2.9	041 04 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	390 2 2 3	\$ 7 - 2 - 2 - 2 - 5	3500 6.1 1.9 1.3 1.3 3.7 50	2900 <1	<20	25	2	2
m		V 65	~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~	\ 0. 1 2. 4. 4. 20		1.9 1.9 1.3 3.7 50	7 √	3100	2900	90	670
m Hg/L y Hg/L y Hg/L n Hg/L ss Sol Hg/L m Hg/L ss Sol Hg/L m Hg/L Tot m Hg/L ss Hg/L ss Hg/L ss Hg/L wg/L ss Hg/L ss Hg/L wg/L ss Hg/L wg/L ss Hg/L wg/L ss Hg/L wg/L wg/L ss Hg/L wg/L ss Hg/L wg/L ss Hg/L wg/L wg/L wg/L wg/L wg/L		2.9	7 7 7 V	0.4.70	7 7 7 7 7 9 9	1.9 1.3 3.7 50	4	0 9	√ 5	V	⊽ \$
## ## ## ## ## ## ## ## ## ## ## ## ##		ì	, <u>^</u> ^	0.0	;	5	† -	120	ò -	180	2 -
m		~	, v	ο (;	2 C 2 S	; ⊽	,	i v	; \ '	, ,
y μg/L μg/L 13 μg/L 13 μg/L 13 ss Sol μg/L 12 μg/L 13 μg/L 13 μg/L 55 μg/L 77		; 21	,		, 10 10 10 10 10	 \$2 \$3	; ⊽	1 61	; 7	; 7	; ⊽
m Hg/L 13 ss Sol Hg/L 12 ss Sol Hg/L 12 m Hg/L 55 m Hg/L 65 m Hg/L 77 csc Hg/L 77 mmg/L 77 mg/L 77		^	\ \	₹	× 10	20	\ \	ī	S	۲ ۲	~
m #g/L ss Sol #g/L ss Sol #g/L ss Sol #g/L m #g/L om mg/L ug/L um mg/L ug/L	•	30	30	< 10	,		40	30	30	110	100
m	`	120	52	Φ ;	7	12	\$ 0.	53	35	4 ;	en ;
sp Sol Hgl. Se Sol Hgl. Mg/L Mg/L Mg/L Mg/L Mg/L Mg/L Mg/L Mg/L	′	۸ 5 5	V 10	× 10	V 10	< 10 < 10	<10	5 5	< 10	0 S	V 10
m Hg/L Hg/L ssc Hg/L mg/L mg/L um mg/L mg/L	r 00	2600		710		4200		1700		280	
m µg/L wg/L wg/L um mg/L wg/L wg/L	104	10D		14.4		148		-1		01	
m Hg/L Hg/L mg/L mg/L mg/L hg/L hg/L hg/L hg/L hg/L hg/L hg/L h	┡		i	ŀ	i	·	i		2	F	į
m µg/L yg/L yg/L yg/L yg/L yg/L mg/L mg/L	4	jo	Diss	ţo.	Diss	lo!	281(io.	13153	ţo,	3
Hg/L Hg/L Hg/L mg/L mg/L Hg/L Hg/L		340	< 20	09	× 20	2200	< 20 < 20	38000	< 20	2400	8
A Tight on mg/L Tight of the magnetic transfer	000 18000 000 5800	18000	15000	130,000	100,000	3000	450 60 60 60 60 60 60 60 60 60 60 60 60 60	3700	3200	390,000	330,000
um mg/L µg/L µg/L		< 10	< 10	< 10	< 10	< 10	< 10	70	< 10	< 10	< 10
ium mg/L µg/L 1 µg/L		150	120	710	290	260	220	430	380	550	460
ug/L ug/L		53	50	120	120	33	27	28	56	46	4
7/27		0 S) V	010	2 5	9 S) V	130	4 5	0.00	120
u9/1. 13		2000	> 500	2095	200 V 200	< 500	× 500	1000	930	3100	2300
denum µg/L		<20	<20	<20	<20	<20	<20	<20	<20	<20	<20
		0.29	550	2300	1900	420	370	2200	2000	3400	2700
m µg/L	^1 ^1	₹'	₹'	∵;		7	₹ 7	7 5	⊽ \$	7∶	∵:
ng/L	_	v o ;	v ć	4 5	42		~ 3	280	88	S .	4 (
Cadmium µg/L <0.1		0.7	₹ ₹	o / v -	V0.1	0.2	7.7	1.4 55	?; \ S	V .1.	7.0
/ 1/8m		; -	; ;	7 7	7.	· .	7 7	8 4	7 7	7 7	7 7
> ~			; ;	; 7	7 7	7 7	; ⊽	'	, ~	;	; -
]/8n		10	< 10	40	4	20	20	230	991	310	300
T/8#		4	-	33	3	7	~	49	6		~
/g/L <	10 <10	< 10	< 10	< 10	< 10	V 10	< 10	130	< 10	V 10	0I V
Total Susp Sol mg/L 7	8 20	747		44 6		36		200		110	

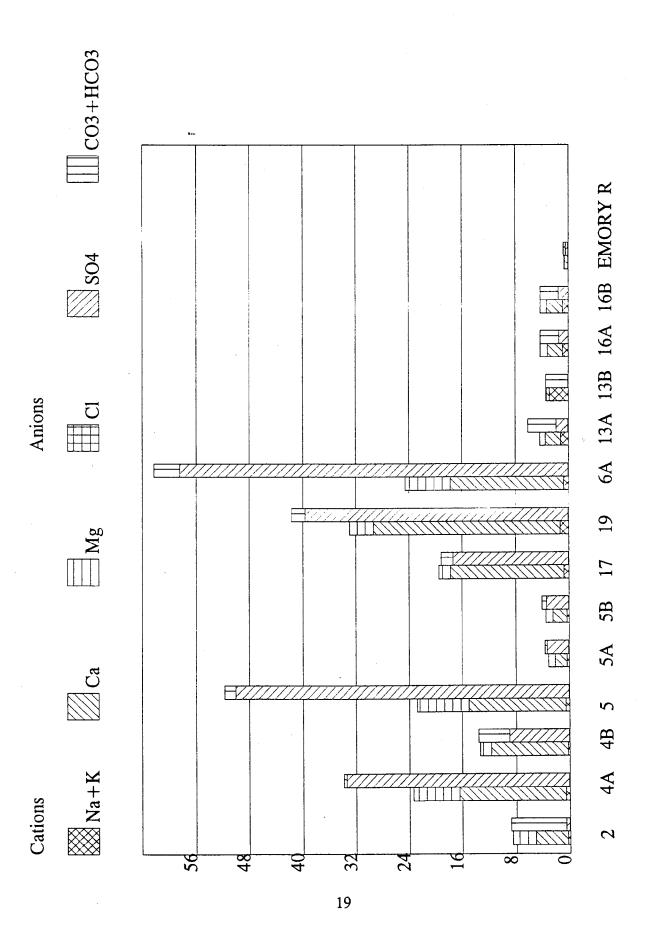


Figure 3-1. Ionic Distributions for Ash Pond Area

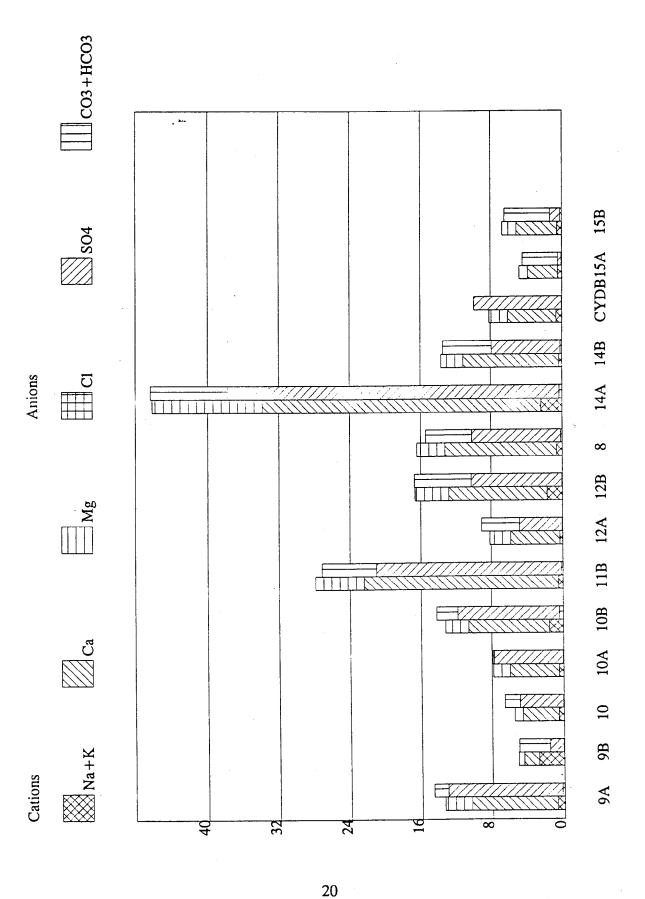


Figure 3-2. Ionic Distributions for Metal Cleaning Pond and Coal Yard Areas

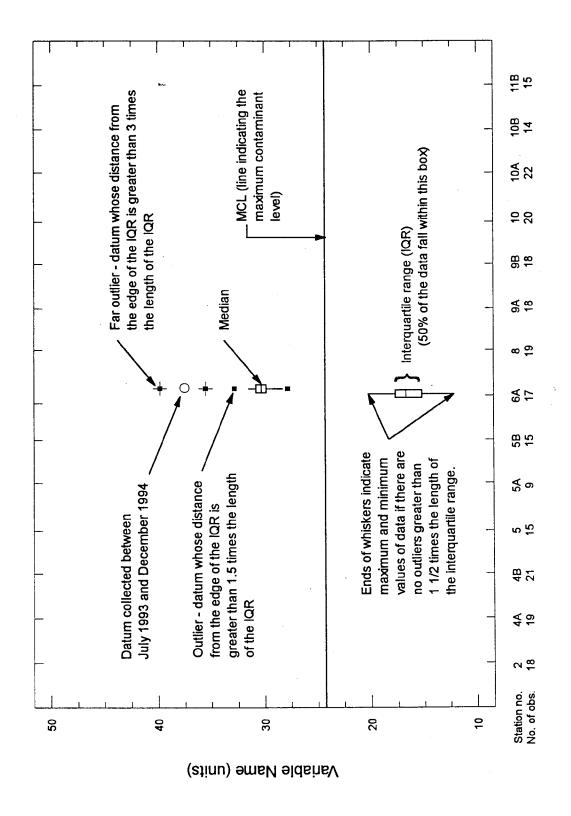


Figure 3-3. Key to Box and Whiskers Plots

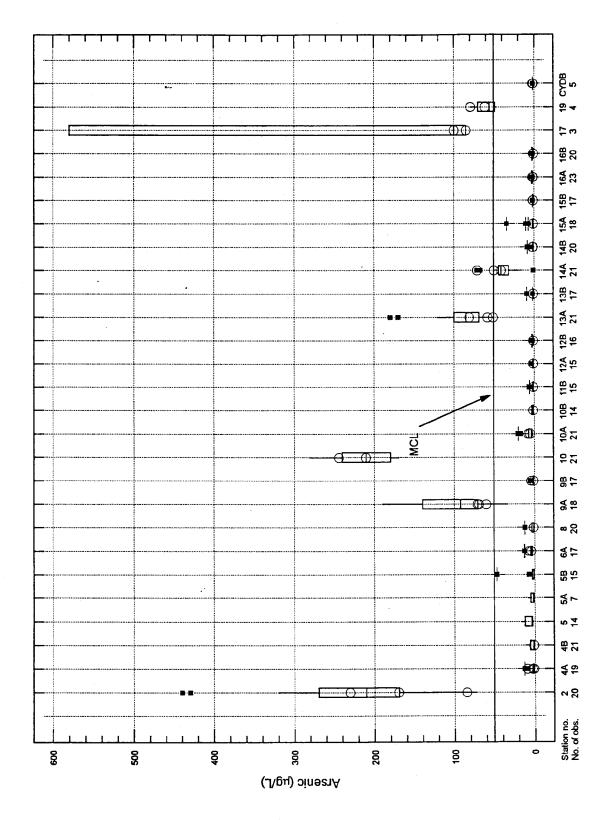


Figure 3-4. Arsenic Groundwater Data Through April 1995

Figure 3-5. Barium Groundwater Data Through April 1995

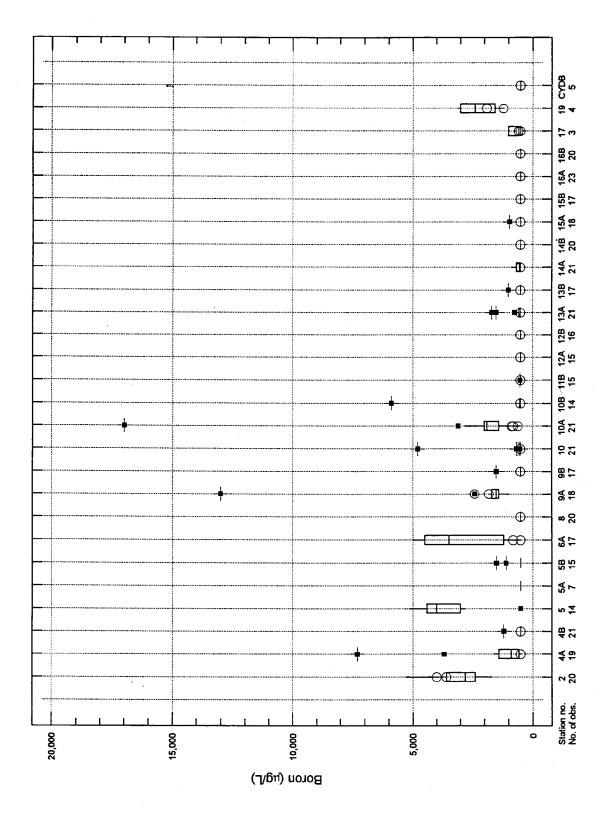


Figure 3-6. Boron Groundwater Data Through April 1995

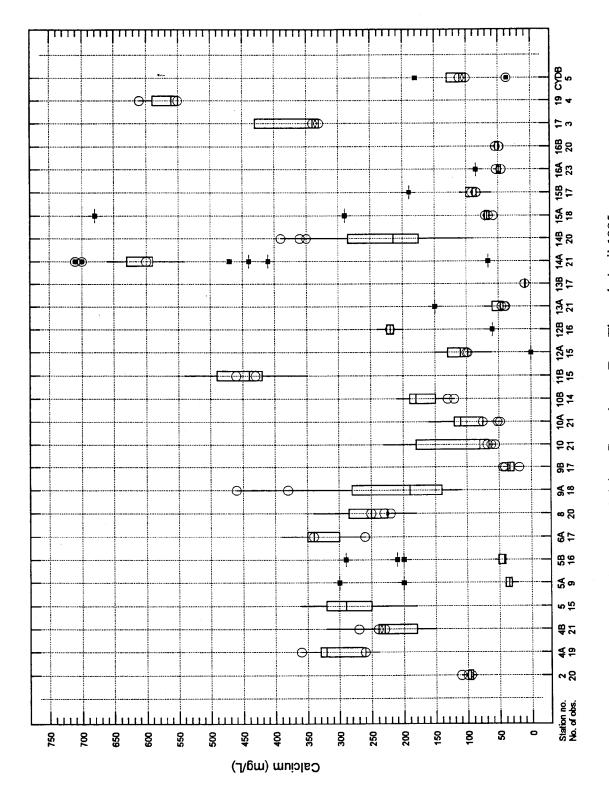


Figure 3-7. Calcium Groundwater Data Through April 1995

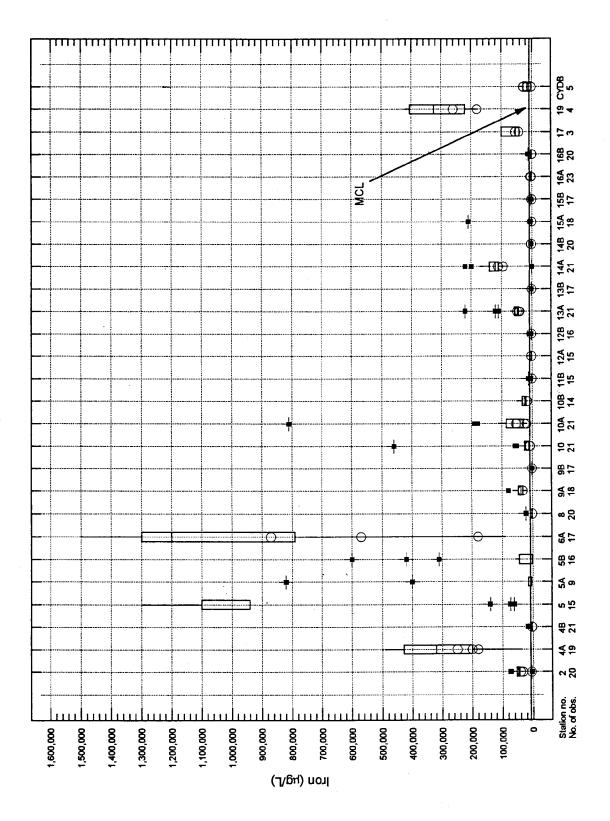


Figure 3-8. Iron Groundwater Data Through April 1995

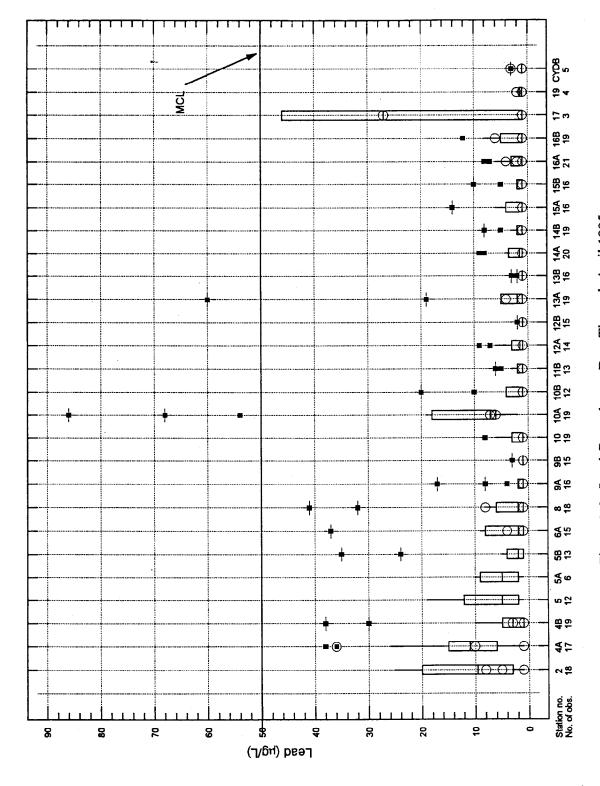


Figure 3-9. Lead Groundwater Data Through April 1995

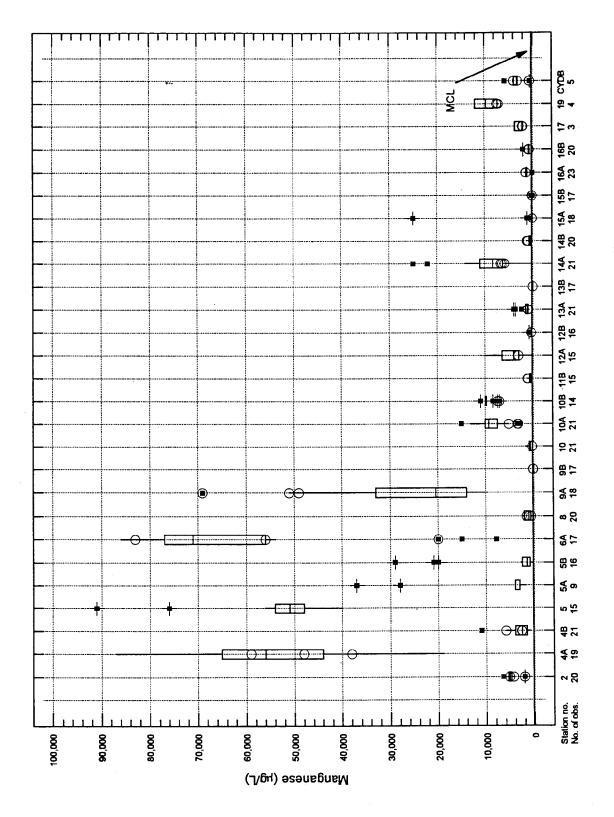


Figure 3-10. Manganese Groundwater Data Through April 1995

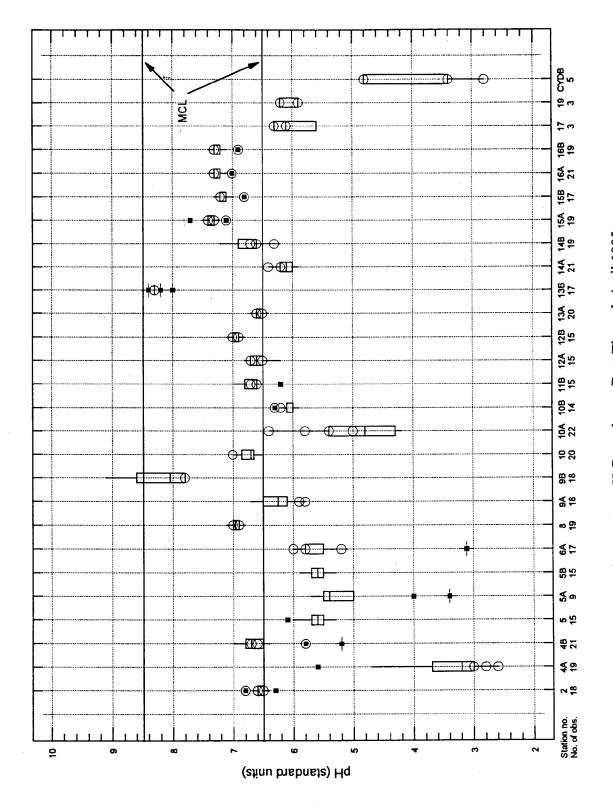


Figure 3-11. pH Groundwater Data Through April 1995

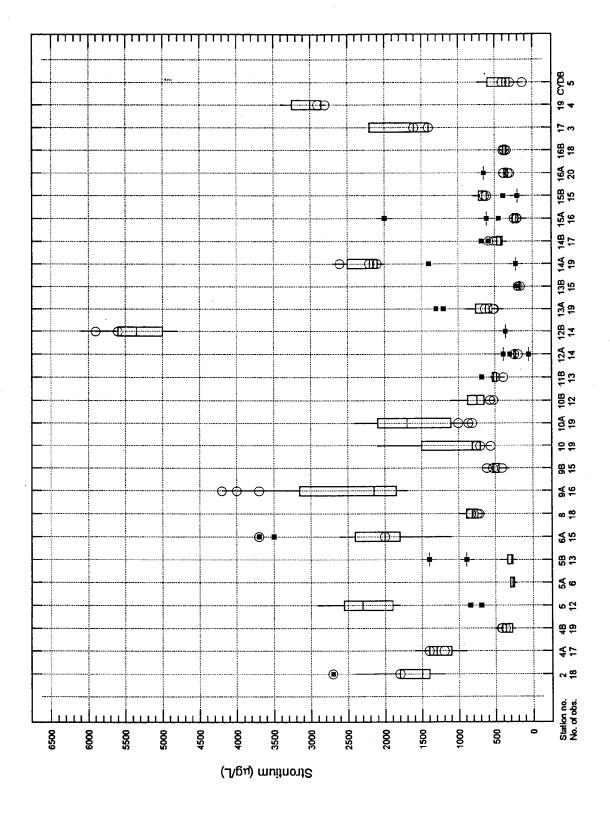


Figure 3-12. Strontium Groundwater Data Through April 1995

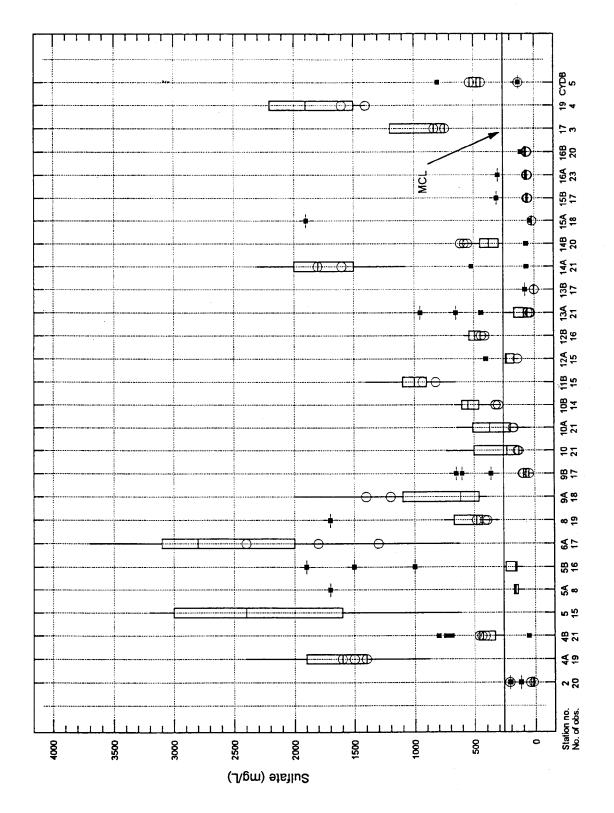


Figure 3-13. Sulfate Groundwater Data Through April 1995

Figure 3-14. Total Dissolved Solids Groundwater Data Through April 1995

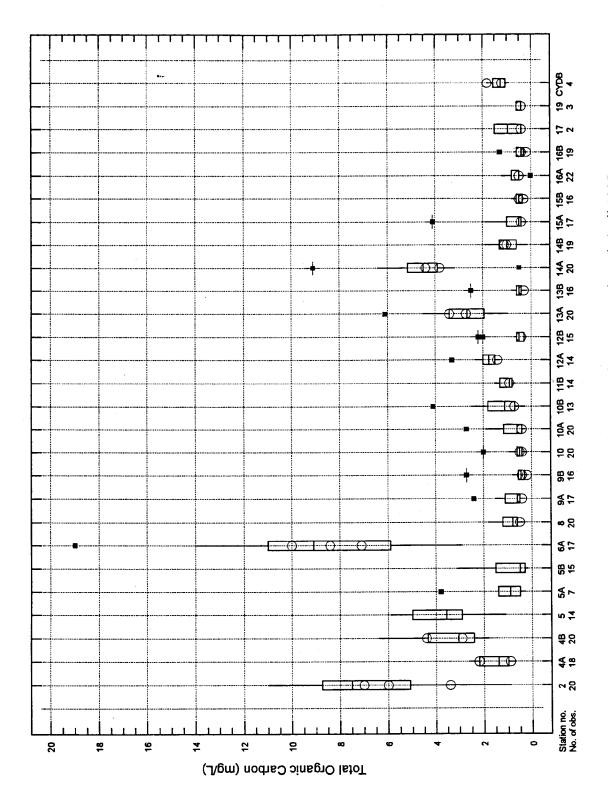


Figure 3-15. Total Organic Carbon Groundwater Data Through April 1995

TABLE 3-5 Fly Ash Leachate Characteristics Based on EPRI Estimates and TVA Data.

	FOV	VĽ Leachat	e Estimate	s ª		TVA	Vell Point da	ata ^b
Constituent	Units		Lead			Minimum	Maximum	Mean
pН	S.U.	4	5	6	7	6.0	9.4	7.6
Al	μ g/ L	4037	523	149	146	50	3500	309
Ва	μg/L	254	255	253	253	30	630	190
Ca	mg/L	395	396	394	394	15	390	92
Cr	μg/L	40	2	2	2	1	4	1
Мо	μg/L	1879	748	679	672	20	6200	688
Si	mg/L	26	26	26	26	1	18	6
Sr	μg/L	1624	1631	1616	1616	220	2700	945
So ₄	mg/L	960	953	946	946	8	990	163
As	μg/L	109	99	99	99	3	3520	945
В	μg/L	2856	3340	3907	4569	500	23000	5270
Cd	μg/L	34	8	2	2	0.1	6	1
Cu	μg/L	244	24	4	4	10	770	43
Fe	μg/L	511	104	21	5	10	25000	4684
Mg	mg/L	8.9	4.9	2.7	1.5	0.6	41	14
Na	mg/L	8.5	9.7	11	12	90	20	5.8
Ni	μg/L	197	50	13	9	1	65	10
Se	μ g/L	0	0	41	65	1	27	4
Zn	μg/L	747	85	10	10	10	10000	794
TDS	mg/L	772	762	757	758	110	1500	464

 ^a Source: Hostetler et al., 1988
 ^b Based on approximately 40 samples from 17 well points at 4 different TVA fossil plants

Indications of Ash Leachate in Wells in the Active Ash Pond Area at KIF. Comparison of Predicted Threshold Concentrations (FOWL) with Observed Median Values. TABLE 3.6

		-	_	-	_				_	_	_	_	$\overline{}$	_	_
Hd	S.U.	9.9	3.2	6.7	5.6	5.4	5.6	5.8	9.9	8.3	6.1	5.9	7.3	7.3	4 TO 7
TDS	mg/L	455	2800	800	4350	250	260	4900	290	200	1300	3000	250	260	750
Sulfate	mg/L	20.5	1600	430	2400	160	165	2800	88	2	830	1900	70	72.5	950
Strontium	µg/L	1500/1400	1300/1400	360/280	2300/1520	270/50	290/475	200/1250 2000/2000	630/550	170/160	1600/1750	3000/2600	350/340	360/320	1600
Iron	mg/L	48.5/36	320/280	3.6/0.2	1100/500	4.8/7.5	2/125	1200/1250	48/43	0.12/.02	53/58	325/300	1.10/0.70	.33/.01	0.2
Calcium	mg/L	66/96	320/300	230/220	290/290	35/40	43/107.5	340/350	47/44	8.4/8.8	340/360	560/460	49/51	50.5/49	400
Boron	hg/L	2800/2400	890/720	500/500	4000/1900	200/200	500/560	3500/3650	500/500	500/500	580/755	2400/2000	500/500	500/500	3000
Barium	hg/L	530/460	90/20	30/10	330/190	80/50	70/40	310/370	220/170	210/190	140/15	40/20	50/60	50/40	250
Arsenic	hg/L	210/180	2/1	2/1	4/7.5	2/2	1/1	4/2.5	85/82	1/1	100/293	55.5/44	1/1	1/1	100
Well	Number	2	44	48	5	5A	5B	6A	13A	13B	17	19	16A	168	FOWL

^a Total/Dissolved Median Values

Shaded values consistent with FOWL predictions

^b Hostetler et al., 1988

							TA	TABLE 3-7	-7		
S	Summary of Analyses	of A	nalyses		ting A	sh Leac	chate Ef	fects at	Kingston Foss	Indicating Ash Leachate Effects at Kingston Fossil Plant Through December 1994	mber 1994
Well			Re	Regulated Parameters	Parame	ters			Nonregulated Parameters	Ionic Distribution Effects	Nearest Possible Source
		1° ((% > MC	CL)		2°(2°(% > MCL)	L)	·		
	As	Be	Cq	Pb	ï	Hd	S04	TDS			
2	100	25				11		10	B, Sr	No	CTP
4A			10		<i>L</i> 9	100	100	100	Sr	Yes	Dredge Cells
4B						24	92	100		Yes	Dredge Cells
5						100	100	100	B, Sr	Yes	Ash Pond
5A						100	12			Maybe	Ash Pond
5B						100	25	13		Maybe	Ash Pond
6A						100	100	100	B, Sr	Yes	Stilling Pond
~							100	100		Yes	Coal Yard
9A	94	25				72	100	100	Sr	Yes	CTP
9B						28	18		Na	N _o	CTP
10	100						43	38		Maybe	ALD
10A		20		16		100	<i>L</i> 9	<i>L</i> 9	Sr	Maybe	ALD
10B						100	100	93		Yes	ALD
11B						7	100	100		Yes	ALD
12A		33				13	7	<i>L</i> 9		Maybe	Coal Yard
12B		33					100	100	Sr	Yes	Coal Yard
13A	100			5		10	14	10		No	Ash Pond
13B									Na	No	Ash Pond
14A	10					100	95	95	Sr	Yes	CYDB
14B		S				11	95	95		Yes	CYDB
15A		9					9	11		No	Coal Yard
15B							9	18		N _o	Coal Yard
16A							4			No No	Dredge Cells
16B										No	Dredge Cells
17	100					100	100	100	Sr	Yes	Ash Pond
19	20	ć			ć	100	100	90 (B, Sr	Yes	Ash Pond
CYDB		87			2	3	2	2			CYDB
Abbreviations:		ALD =	Anoxic		Limestone Drain		CTP =	Chemic	= Chemical Treatment Plant		CYDB = Coal Yard Drainage Basin

exceeded the MCL for nickel two-thirds of the time. Previous modeling studies [Velasco and Bohac, 1991] suggest that arsenic is readily adsorbed by soil and is not very mobile in groundwater. This is supported by the data from the deeper wells at sites 9, 10, and 13, where high arsenic levels were observed in the shallow wells. The only other MCL exceedances for health-related parameters were for lead at two wells and beryllium at six wells. However, most were single occurrences...

Of the secondary parameters, MCLs were frequently exceeded for pH, sulfate, TDS, aluminum, iron, and manganese. High levels of the three metals mentioned are often attributed to sediment in the samples. About half the wells produced samples with some level of turbidity. Total suspended solids (TSS) is a quantitative measure of the amount of sediments and particulate matter in a sample. Unfiltered samples provide total concentrations of all constituents and are therefore viewed as being the most conservative. However, concerns have been raised that levels of some regulated metals such as arsenic and lead will be abnormally high if they are associated with the sediment and not mobile in the aqueous phase. To remove these biases, it is often suggested to filter all samples through a glass fiber filter of standard pore size, usually 0.45 um, to yield dissolved concentrations. However, false low levels may arise if mobile elements adsorb onto soil particles during filtration. In order to help resolve some of these questions, both filtered and unfiltered samples were collected at the same time at several locations. Table 3-4 contains the total and dissolved concentrations from the 12 samples that were both filtered and unfiltered.

From Table 3-4, it is clear that for the sample from wells 14A and 14B there was very little difference observed between the total and dissolved concentrations. These results would be expected because that sample also had a very low amount of TSS (5 mg/L). In the other samples, where TSS levels ranged from 39 to 1800 mg/L, the greatest differences between total and dissolved concentrations were for constituents associated with sediment, i.e., aluminum, iron, and manganese. In only one instance, beryllium in well 9A, the dissolved value was below an MCL that was exceeded in the unfiltered samples. The higher level of antimony observed in the dissolved 9A sample was assumed to be anomalous.

In four of the five wells on the ash pond dike (wells 4A, 6A, 17, 19), the levels of most metals, such as aluminum, barium, boron, iron, manganese, strontium, and zinc in the filtered samples were usually within 20 percent of the levels in the unfiltered samples. That is, if the total concentration of a constituent was elevated, its dissolved fraction was usually elevated also, albeit at a lower level. Levels of other indicator parameters such as arsenic and lithium were very similar in both filtered and unfiltered samples. These results suggest that while sediment in samples can cause interferences in the levels of some parameters, including some heavy metals, sample filtration is not warranted for the purpose of monitoring ash leachate effects in groundwater. The levels of iron and manganese in wells 4A, 6A, and 19 are particularly noteworthy as they are much higher than would be expected to occur from just fly ash leaching.

Ash Leachate Composition

While pore water samples were not collected at Kingston, in situ samples have been collected at five other TVA fossil plants using a well point leachate collection method developed by Milligan and Bohac [1991]. The range and mean of values observed from these samples is shown in Table 3-5. Also shown in Table 3-5 are the values provided by FOWL, the Electric Power Research Institute's computer code used to estimate ash leachate composition as a function of pH [Hostetler et al., 1988]. Data collected from the TVA ash pond wells reveal that the characteristics of ash leachate may vary at a site, as well as from site to site. Differences are probably due to age of ash and types of coal burned.

The pH of most of the TVA pore water samples was alkaline. However, the pH of the groundwater in the active ash pond area is acidic. Therefore, the Kingston data were compared with the FOWL leachate estimates at the pH 4 to 7 range (Table 3-6). The quartile plots (box and whisker graphs) in Figures 3-4 to 3-15 facilitate ready comparison of all wells at the site for most of the parameters of interest. The median values of eight indicator parameters are shown in Table 3-6. The numbers in the shaded boxes exceed or are near the threshold concentrations predicted by FOWL. Wells 2, 5, 6A, 17, and 19 showed the most evidence of ash leachate. Wells 2 and 17 are screened in ash; wells 5, 6A, and 19 are screened in the ash pond dike which could contain significant amounts of bottom ash.

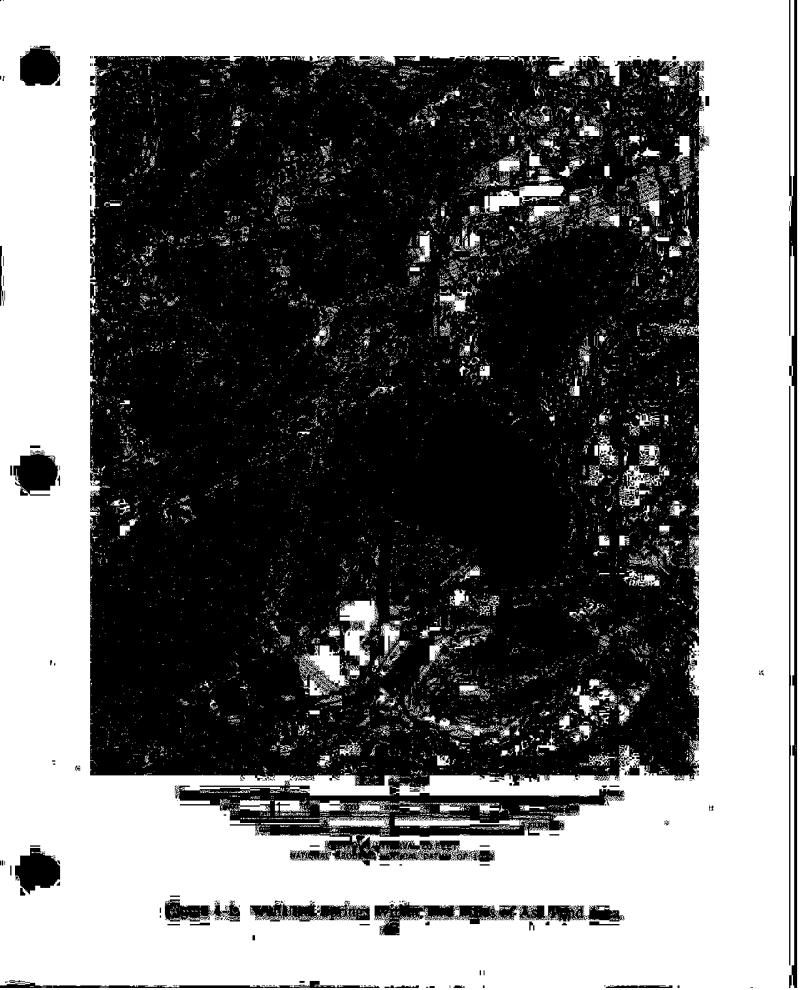
Aside from iron, which was found in all wells, TDS, strontium, sulfate, and boron were the indicator parameters that most frequently exceeded the threshold values. The iron levels were found to be high in wells 4A, 5, 6A, 17, and 19, suggesting the occurrence of pyrite oxidation in the ash pond or in the dikes. The oxidation state of the iron is not known. If this iron-rich water were to enter a surface water, such as the river, its potential impacts would depend on the oxidation state. If it is in the ferric (+3) form, the iron would likely hydrolyze to form insoluble ferric hydroxide and produce 3 moles of acidity for every mole of iron. However, if the iron is in the ferrous (+2) form, the iron will consume acidity as it is oxidized to the ferric form before it is hydrolyzed [Milligan and Ruane, 1980]. The oxidation reduction potential (ORP) values observed in most of the wells along the ash pond dike suggest that the waters are in a slightly oxidizing state. Specific analyses for ferrous and ferric iron would have to be conducted to determine the actual oxidation state of the iron.

In terms of ionic distributions in ash leachate, the predominant anion is sulfate and the predominant cation is calcium. In addition, ash leachate has high TDS. The length of the bars is related to the amount of TDS in the water. Figures 3-1 and 3-2 may be compared to Figure 3-15 in order to associate which bar lengths are most closely related to a TDS level of interest. For example, the MCL of 500 mg/L appears to be associated with a bar length of approximately 8 milli-equivalents (meq), and the level predicted by FOWL (750 mg/L) with a bar length of about 12 meq. The ionic distributions of wells 4A, 4B, 5, 6A, 17, and 19, as well as wells 9A, 10B, 11B, 12B, 8, 14A, and 14B have bar lengths greater than 12 meq. In addition, the predominant anion in all these wells is sulfate. On the other hand, ionic distributions most similar to background were observed in wells 2 and 13A. Several wells, including 5A and 5B have low ionic levels, but the anions are nearly all sulfate. A high predominance of sulfate with low ionic levels may be indicative of pyrite oxidation rather than

ash leachate. The only wells that stand out on the basis of the cation distribution are wells 9B and 13B which were predominated by sodium.

Summary

Table 3-7 presents a well-by-well summary of all the analyses considered herein to gauge potential impacts to groundwater at Kingston Fossil Plant. The percentage of samples that exceeded MCLs for primary (1°) drinking water standards (based on Table 3-2) and the percentage of samples that exceeded MCLs for secondary (2°) parameters pH, SO4, and TDS (based on Table 3-3) are shown. Also listed in Table 3-7 are non-regulated ash leachate indicator parameters that were found at elevated levels, ionic distribution effects, and the nearest possible source. Ash leachate contamination was indicated by acidic pH, high levels of sulfate, TDS, boron, and strontium, and ionic distribution effects. The wells in the active ash pond area exhibiting most of these indicators were 2, 4A, 4B, 5, 6A, 17, and 19. Possible decreasing trends were apparent for iron and pH in well 4A, iron and sulfate in well 6A, and arsenic in well 13A. Unusual levels of sodium were observed in wells 9B and 13B, but this is not considered to be an indicator of ash leachate. Turbid samples persist in several wells. However, analysis of data from filtered and unfiltered samples suggested that sample filtration is not warranted for the purpose of monitoring ash leachate effects in groundwater at Kingston.


4. LOCAL GROUNDWATER USE

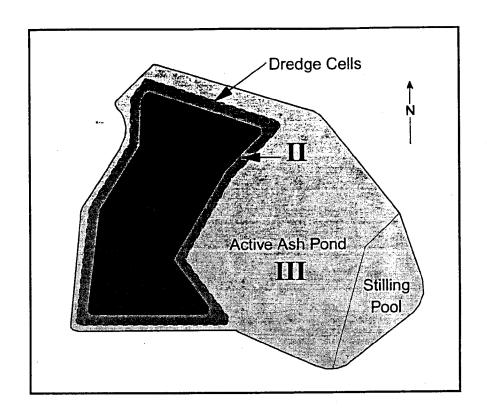
A survey of local groundwater use within an approximate two-mile radius of the center of the ash pond area was conducted in March 1995. The survey included interviews with local residents and utility district managers. Water well records maintained by the State of Tennessee were also examined for wells within the survey region.

A total of 22 residential wells were identified during the survey (Figure 4-1). A listing of these wells and their coordinate locations is given in Table 4-1. Note that wells are numbered 1 through 23 with no well 15. Spring 1 is an untreated water source for 10 to 12 residences along Swan Pond Road and for several residents of the Kingston Heights subdivision. The spring emanates from aquifers of the Knox Group. This spring appears to be the only spring in the survey region used for water supply. There are six wells (numbers 7, 8, 9, 20, 21, and 22) located within approximately one mile of the center of the disposal site and another 15 wells situated between one and two miles of the site. The depths of these residential wells are unknown; however, it is likely that most are completed in the Conasauga formation at relatively shallow depths (i.e., less than 300 ft).

Other residents within the survey region are served by one of the four local water utilities listed in Table 4-1. These utilities provide treated water from intakes on Watts Bar Lake or the Emory River.

	TAI	BLE 4-1				:
	List of Wells, Springs, and	Water Supplies	in Site Vicinity			
Location Identifier	Location Description	Longitude (dg-mn-sc) est	Latitude (dg-mn-sc) est	Inside 1 mile radius	Inside 2 mile radius	Outside 2 mile radius
Well 1	Swan Pond Rd south of Hwy 70	35-53-35 N	84-32-05.5 W		х	
Well 2	Swan Pond Rd south of Hwy 70	35-53-34 N	84-32-09 W		х	
Well 3	Swan Pond Rd south of Hwy 70	35-53-33-N	84-32-10.5 W		х	
Well 4	North of Hwy 70, South of I-40	35-53-41.5 N	84-32-14 W		х	
Well 5	Swan Pond Rd north of Hwy 70	35-53-44.5 N	84-32-09.5 W		х	
Well 6	Swan Pond Rd north of Hwy 70	35-53-45-N	84-32-06 W		х	
Well 7	Swan Pond Circle north of Swan Pond Rd	35-55-18 N	84-31-04.5 W	х		
Well 8	Swan Pond Rd north of Hwy 70	35-54-06 N	84-31-31 W	Х		
Well 9	Swan Pond Rd north of Hwy 70	35-54-07 N	84-31-37 W	х		
Well 10	Swan Pond Rd north of Hwy 70	35-54-00.5 N	84-31-41 W		Х	
Well 11	Swan Pond Rd north of Hwy 70	35-53-58.5 N	84-31-46 W		Х	
Well 12	Swan Pond Rd north of Hwy 70	35-54-00.5 N	84-31-50.5 W		х	
Well 13	Swan Pond Rd north of Hwy 70	35-53-52 N	84-31-47 W		X	
Well 14	Swan Pond Rd north of Hwy 70	35-53-55 N	84-31-50 W		х	
Well 16	Swan Pond Rd north of Hwy 70	35-53-53 N	84-31-53 W		х	
Well 17	Swan Pond Rd north of Hwy 70	35-53-55 N	84-31-56 W		х	
Well 18	Swan Pond Rd north of Hwy 70	35-53-52 N	84-31-58.5 W		Х	
Well 19	Swan Pond Rd north of Hwy 70	35-53-56 N	84-32-00 W		х	
Well 20	Swan Pond Rd west of Swan Pond circle	35-55-06.5 N	84-31-09 W	Х		
Well 21(N)	Swan Pond Rd north of Hwy 70	35-54-11 N	84-31-31.5 W	Х		
Well 22(N)	Swan Pond Rd north of Hwy 70	35-54-05 N	84-31-05 W	х		
Well 23(N)	Hassler Mill Rd west of Swan Pond Rd	35-54-43 N	84-31-54 W		х	
Spring 1	Near intersection of Swan Pond Rd and Frost Hollow Rd (used for portion of municipal supply by City of Kingston)	35-55-07 N	84-31-54 W		х	
City of Kingston	Intake off Hwy 58 south of Kingston on Watts Bar Lake	n/a	n/a			х
Swan Pond U.D.	Purchase water from City of Harriman	n/a	n/a			х
Midtown Utilities	Purchase water from City of Rockwood	n/a	n/a			х
City of Harriman	Intake on Emory River near Mile 13	n/a	n/a			х
City of Rockwood	Intake on Watts Bar Lake near Post Oak Creek	n/a	n/a			х

5. EVALUATION OF POTENTIAL WATER QUALITY IMPACTS


The potential impacts of the closed ash pond area on adjacent groundwater and surface water resources are examined in this section. The focus of the evaluation is on the effect of the facility on reservoir water quality since all shallow groundwater originating on, or flowing beneath, the site ultimately discharges to the reservoir without traversing private property. Estimates of ash leachate flowrates generated during a 30-year post-closure period are compared with historical flows in Watts Bar Reservoir to quantify potential water quality impacts. In evaluating potential impacts to groundwater users, consideration is given to the location of existing residential wells in relation to groundwater flow patterns in the site vicinity.

Post-Closure Ash Fill Water Budget Analysis

EPA's HELP2 code [Schroeder et al., 1989] was used to estimate the overall water balance, including leachate production, for the ash fill during a 30-yr period following closure. For purposes of the simulation, the ash fill was divided into three regions as shown schematically on Figure 5-1. Region 1 corresponds to what is now the active ash pond area. This region is 114.6 acres in area and will have a final average grade of elevation of about 770 ft and surface slope of 5 percent. Region 2 comprises the 3:1 side-slope area of the dredge cells and will be approximately 36 acres in size. The area on top of the dredge cells at closure is represented by Region 3. This region will encompass 58.8 acres and will be sloped at a 5 percent grade. The entire surface of ash fill will be covered with one foot of 10^{-7} cm/s clay followed by one foot of vegetated topsoil.

Table 5-1 lists the hydraulic properties required by HELP2 for each material type shown in Figure 5-1. The hydraulic properties of the Kingston fly ash were obtained from laboratory-measured data for three samples presented in Appendix A of Young et al. [1993]. The field capacity, wilting point, and porosity for the clay cap were those given by Schroeder et al. [1989] for a soil liner. The values for the top soil were those given by Schroeder et al. [1989] for a soil loam. The top soil was represented in the model as a lateral/vertical percolation layer, the clay cap a barrier layer, and the ash a vertical percolation layer. The initial moisture contents for the top soil and clay cap were arbitrarily set at field capacity. Field-measured moisture contents for ash samples collected at TVA's Bull Run [Young, 1992] and John Sevier [Velasco and Boggs, 1992] plants were used to estimate the initial ash moisture content for the simulation.

In addition to the properties in Table 5-1, HELP2 requires a Soil Conservation Service (SCS) curve number, an evaporation depth, and a leaf area index for the vegetative cover. Using information given by Schroeder et al. [1989], the SCS curve number for the top soil was estimated as 75. An evaporation depth of 18 inches was selected for the analysis. These values are consistent with those used in water budget analyses for other ash fills [e.g., Young and Velasco, 1991; Velasco and Boggs, 1992]. A leaf area index of 3.3, corresponding to a "good" grass cover, was assumed.

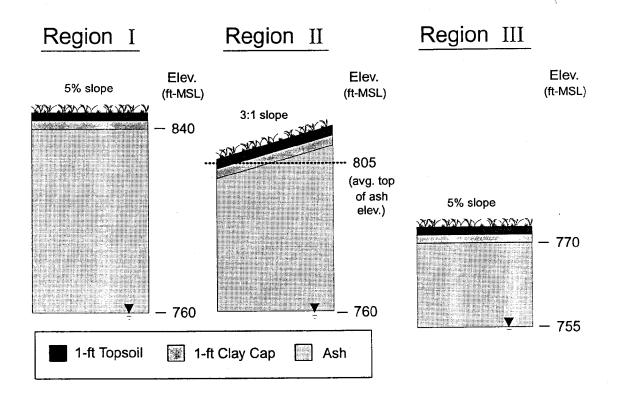


Figure 5-1. Subregion Areas and Profiles Used in HELP2 Simulations 43

		TA	ABLE 5-1									
	Material :	Properties Us	sed in the H	ELP2 Simulations								
Soil Type	Porosity	Field Capacity	Wilting Point	Initial Moisture Content (%)	Hydraulic Conductivity (cm/s)							
Top Soil* .46 .23 .12 .23 3.7 x 10 ⁻⁴												
Clay Cap	.43	.37	.28	.37	1.0 x 10 ⁻⁷							
Fly Ash	.47	.40	.12	.25	2.1 x 10 ⁻⁵							
*Evaporation co	efficient α is	5.1 mm/day	0.5		·							

Meteorological data was compiled from a National Oceanographic and Atmospheric Administration (NOAA) station located in Oak Ridge, Tennessee. This station was selected because of its close proximity to the Kingston plant and because high quality data was available for a continuous 20-year period. The data include daily rainfalls and mean daily temperatures from 1968 to 1987. In order to provide 30 years of rainfall/temperature data for the water budget simulation, data for years 1968-77 were added to the end of the 1968-87 record. Daily solar radiation values were generated using a HELP2 subroutine that incorporates several factors including latitude and daily rainfall.

The yearly combined leachate flowrates from the three subregions of the ash disposal area are shown on Figure 5-2. Leachate discharge gradually increases during the first 10 years of the post-closure period reaching a quasi-steady rate of approximately 6.3 million cfy (cubic feet per year) thereafter. The average leachate discharge for the 30-yr simulation was approximately 5.7 million cfy. The overall water balance for the ash fill in terms of percent of total incident precipitation was as follows: surface runoff, 18.8 percent; evapotranspiration, 64.1 percent; lateral seepage from top-soil layer, 1.0 percent; net change in water storage, 2.3 percent; and leachate reaching the water table, 13.8 percent.

Potential Impacts to Reservoir Water Quality

Groundwater flow patterns indicate that all leachate produced in the ash pond area will ultimately discharge into Watts Bar Reservoir. To assess the impact of ash leachate on reservoir water quality, a dilution ratio was estimated by comparing the predicted average leachate flowrate to the mean flow in the reservoir just downstream of the plant outfall. Full mixing of leachate influx and reservoir water was assumed. Considering that stream flow and leachate production from the ash fill are both functions of meteorological conditions, comparison of their mean flows appears to be a reasonable basis for calculating a dilution ratio. The mean flow in the Clinch River immediately below the plant outfall (approximate river mile 2.5) is estimated to be approximately 7,000 cfs. This estimate was based on the combined drainage-area adjusted mean flows for the Emory River (at Oakdale for the period 1927-93 as reported by Flohr et al.,

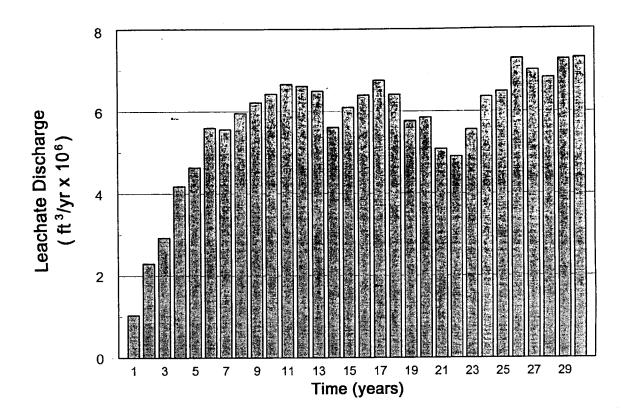
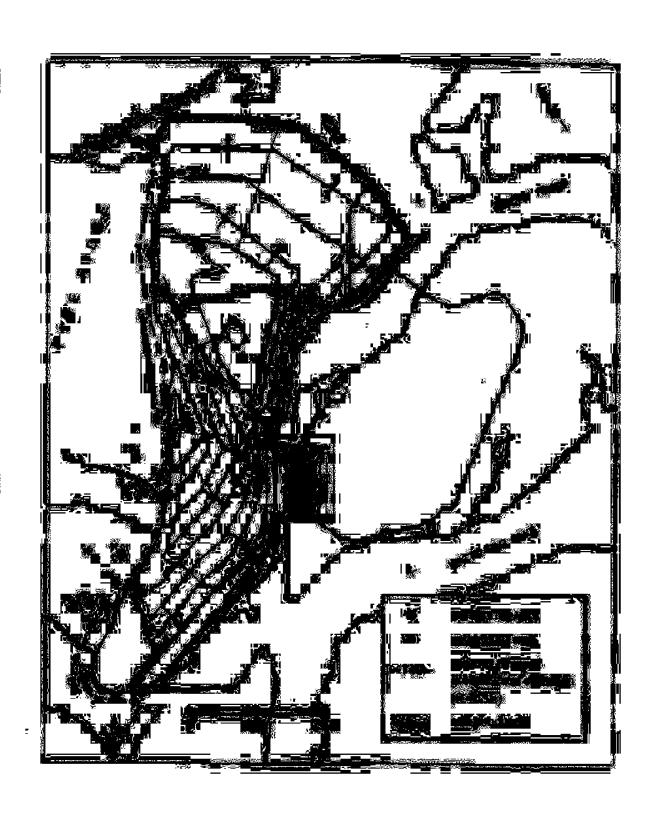


Figure 5-2. Predicted Leachate Discharge From Ash Pond Area During 30-Year Post-Closure Period

1993) and the Clinch River (at Melton Hill Dam for the period 1964-94). The resulting dilution ratio for the quasi-steady leachate discharge predicted during the last 20 years of the water budget simulation of 6.3 million cfy (0.20 cfs) is 1:35,000.


Incremental increases in chemical concentrations in Watts Bar Reservoir due to the influx of ash-leachate effected groundwater were estimated by multiplying the dilution ratio by the mean parameter concentrations. Groundwater quality data for wells located on the perimeter of the disposal area which exhibited exceedances for primary and secondary drinking water standards were selected for the calculation. Parameters exceeding drinking water MCLs included arsenic, nickel, iron, manganese, sulfate, and TDS. The analysis conservatively assumed all ash leachate was contaminated to the highest observed levels. In addition, the method did not account for groundwater dilution of ash leachate, which would reduce constituent concentrations before reaching the reservoir. The results presented in Table 5-2 indicate the predicted incremental increases (Δ C) in reservoir are negligible for all constituents iron which showed a slight increase of 29 μ g/L.

Pred	icted Increases in Arse	•	el, Iro		•	te, and								
	TDS in Reserve	oir Due to	Ash	Leachate	Influx									
Well	Parameter	Units	Nª	MCL	Mean	ΔC^{b}								
13A	Total Arsenic	μg/L	21	50	92	0.003								
4A	Total Nickel	μg/L	4	100	125	0.004								
6A	Total Iron	μg/L	17	300	1.01E06	29								
6A Total Manganese μg/L 17 50 61,282 1.8														
6A														
6A	TDS	mg/L	17	500	4,453	0.13								
	number of MCL exceet mean concentration x		ratio											

The small predicted increase in iron entering the reservoir via groundwater should not represent a problem. Dissolved iron accounts for essentially all of the total iron measurement for well 6A. The iron is expected to be present in a reduced (Fe-II) state given the mean oxidation-reduction potential (77 mV) and mean pH (5.5) [Freeze and Cherry, 1979, page 124] observed at this well. Upon entering the oxidizing environment of the reservoir, iron present in groundwater would be expected to precipitate out of solution.

Potential Impacts to Groundwater Users

There are six residential wells (numbers 7, 8, 9, 20, 21, and 22) located within approximately one mile of the center of the ash pond area (Figure 4-1). Wells 7 and 20 lie north of Swan Creek embayment and are hydrologically isolated from the disposal site. The remaining four wells (numbers 8, 9, 21, 22), located southwest of the site along Swan Pond Road, lie off-gradient of the ash pond area (Figure 5-3). There is no evidence that pumping from these wells and the other 15 residential wells located south of Pine Ridge has induced ash leachate movement from the site. As indicated on Figure 5-3, these wells are generally situated up-gradient of the Kingston plant reservation. No adverse off-site groundwater impacts associated with the ash pond are indicated under present conditions or expected under post-closure conditions.

6. REFERENCES

- Flohr, D. F., F. D. Edwards, J. G. Lewis, and R. A. Orr, 1993, "Water Resources Data, Tennessee, Water Year 1993," U.S. Geological Survey Water-Data Report TN-93-1.
- Freeze, R. A., and J. A. Cherry, 1979, Groundwater, Prentice-Hall, Inc.
- Harris, W. F., and M. S. Foxx, 1982, "Potential Ground-Water Quality Impacts at TVA Steam Plants," TVA Report WR28-2-520-119.
- Hostetler, C. J., R. L. Erikson, and D. Rai, 1988, The Fossil Fuel Combustion Waste Leaching (FOWL™) Code: Version I User's Manual, Electric Power Research Institute, Palo Alto, California, EA-5742-CCM.
- Milligan, J. D., and C. E. Bohac, 1991, "Evaluation of Sampling Techniques for Coal-Ash Leachate and "Red Water" Seeps at TVA's Widows Creek Steam Plant," TVA/WR/WQ-91/6, Tennessee Valley Authority, Water Resources, Chattanooga, Tennessee.
- Milligan, J. D., and R. J. Ruane, 1980, "Effects of Coal-Ash Leachate on Ground Water Quality," EPA-600/7-80-066.
- Singleton Laboratories, Inc., 1994, "Kingston Fossil Plant Dredge Cells/Closure Soil Investigation," SL Report 015-672-142A.
- Schroeder, P. R., A. C. Gibson, and M. D. Smolen, 1989, "Hydrologic Evaluation of Landfill Performance Model (Version 2)," Draft Report, U.S. Army Corps of Engineers Waterways Experiment Station, Vicksburg, Mississippi, Interagency Agreement No. AD-96-F-2-A140.
- Velasco, M. L., and C. E. Bohac, 1991, "Kingston Groundwater Assessment," TVA Report WR28-1-36-115.
- Velasco, M. L., and J. M. Boggs, 1992, "Evaluation of Water Resource Impacts From Proposed Fly Ash Dry Stack at John Sevier Fossil Plant," TVA Report WR28-2-41-126.
- Young, S. C., 1992, "Vertical Moisture Profiles in the Bull Run Dry Stack and Implications to Leachate Generation," TVA Report WR28-1-49-109.
- Young, S. C., R. Schmidt-Petersen, M. Ankeny, and D. B. Stephens, 1993, "Physical and Hydraulic Properties of Fly Ash and Other By-Products From Coal Combustion," Electric Power Research Institute Report TR-101999, Project 2485-05.
- Young, S. C., and M. L. Velasco, 1991, "Water Budget Predictions for an Active Fly Ash Dry Stack Using the HELP2 Model," TVA Report WR28-1-49-106.

APPENDIX I LITHOLOGIC LOGS

[from Milligan and Ruane, 1980] 0-GROUND SURFACE O-GROUND, SURFACE DEPTH (METERS) DEPTH (METERS) 6.01 9.3 8.0 8 SAND SHALE SHALE **CLAY/SILT** 15.0 13.4 8.8 SAND ASH SAND SHALE SHALE CLAY/SILT **CLAY/SILT** 14.5 4. 18.4 13.4 16.0 9 SHALE SAND SAND ASH CLAY/SILT **CLAY/SILT** SHALE 10.2 5 SAND SHALE SHALE CLAY/SILT **CLAY/SILT**

VERTICAL PROFILE OF THE SUBSTRATUM AT PLANT J'S MONITORING WELL LOCATIONS

	Bo	ring	Reco	ord
--	----	------	------	-----

BORING NUMBER	J-9A		
DATE DRILLED _	10-3-88		
JOB NUMBER	K-88195		
PAGE	1 OF	2	

DEPTH (F	T.) DESCRIPTION			ELEV.		PE 10	RATIOI 20 3			OT 100 "N'
	1 /									
	GRAY FLY ASH WHICH CONTAINS COAL FRAGMENTS AND CINDERS. MOISTURE CONTENT INCREASED IN SAMPLES TO A DEPTH OF 13 FEET AT WHICH TIME THE SAMPLES BECAME SATURATED.									
	THE SAMPLES BECAME SATURATED.		13.0							
	·				-					
·										
40.0										

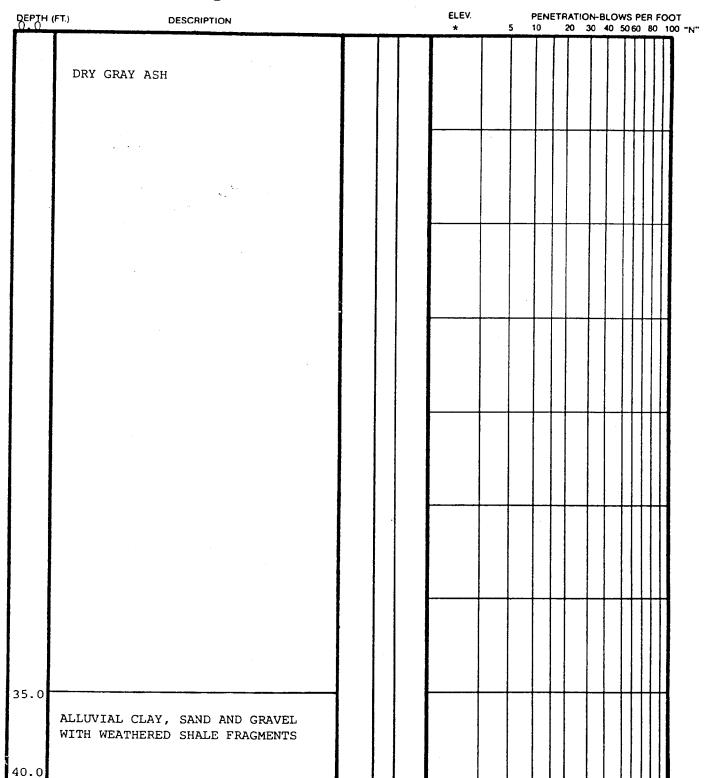
REMARKS: * ELEVATION TO BE PROVIDED BY TVA

BORING NUMBI	ER J - 9A	
	10-3-88	
DATE DRILLED		
JOB NUMBER .	K-88195	
	2	2

Boring Record

DEPTH (FT.) DESCRIPTION		ELEV.	:	р 5 1	TRATIC			TC 00 "N"
	GRAY FLY ASH WHICH CONTAINS COAL FRAGMENTS AND CINDERS. MOISTURE CONTENT INCREASED IN SAMPLES TO A DEPTH OF 13 FEET AT WHICH TIME THE SAMPLES BECAME SATURATED.								
67.7									
	REFUSAL							+	

REMARKS: * ELEVATION TO BE PROVIDED BY TVA



Boring Record

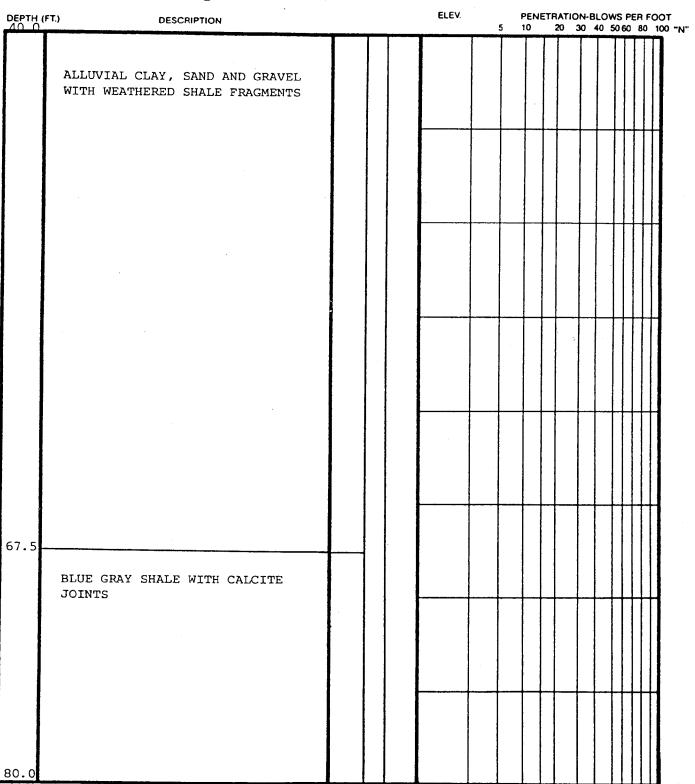
DATE DRILLED 10-3-88

JOB NUMBER K-88195

PAGE _____ 0F ___ 3

REMARKS: BORING DRILLED USING AIR ROTARY EQUIPMENT

* ELEVATION TO BE PROVIDED BY TVA

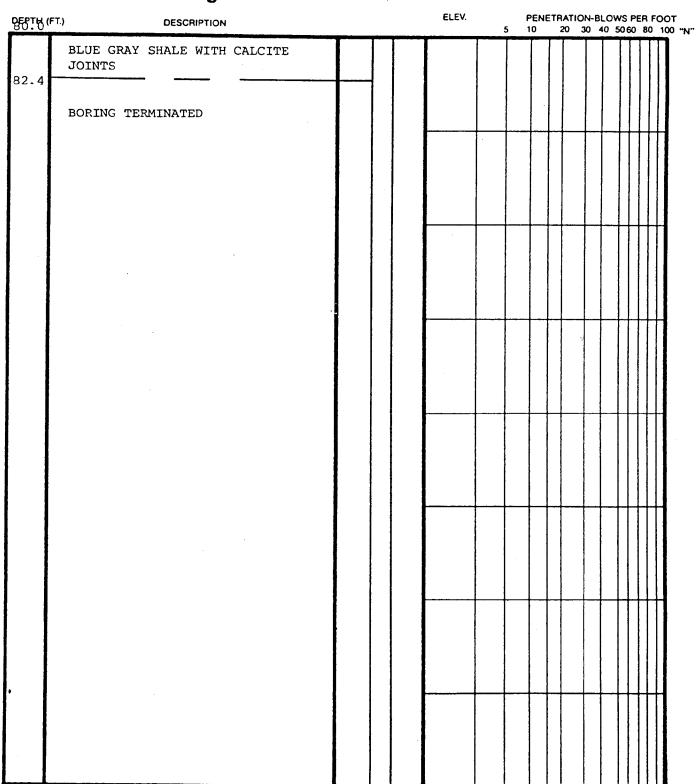


Boring Record

DATE DRILLED 10-3-88

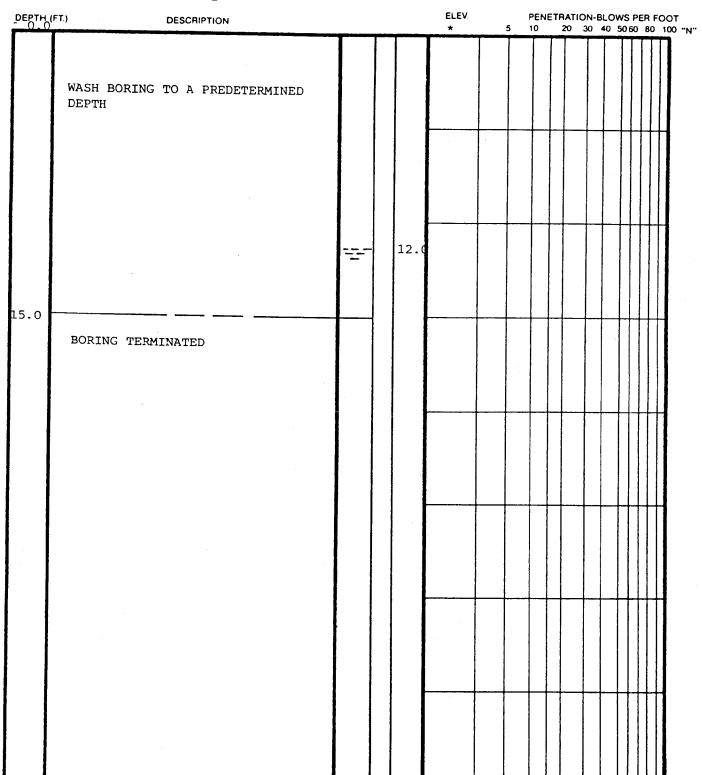
JOB NUMBER K-88195

PAGE 2 OF 3



REMARKS:

Boring Record


BORING NUMBE	B J-9B
DATE DRILLED	10-3-88
JOB NUMBER _	K-88195
PAGE	3 or 3

Boring Record

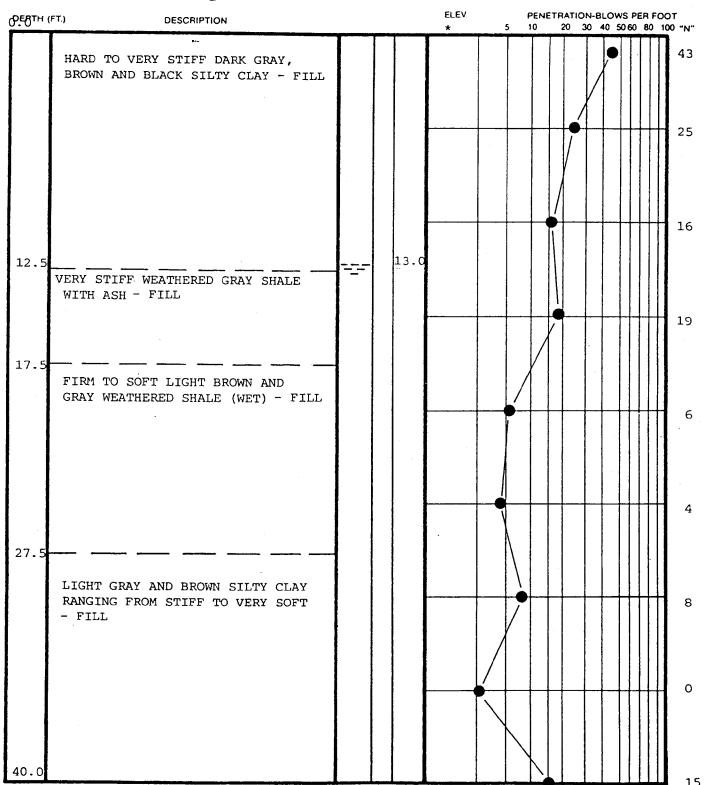
BORING NUMBE			
DATE DRILLED	9-27-88		
JOB NUMBER _	K-88195		
DACE	1 05	1	

Boring Record

BORING NUMBER	J-10A
DATE DRILLED _	9-27-88
JOB NUMBER	K-88195
PAGE	1 05 1

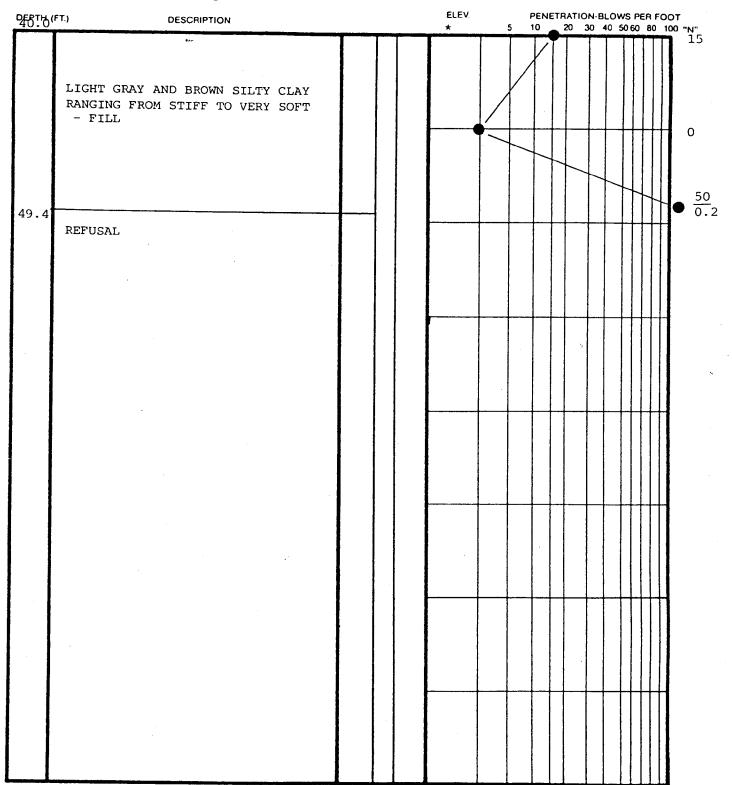
DEPTH (FT.)			····	ELEV.	-	P 5 1	ENET	RATIC 20	N-BL 30 4	OWS	PER 50 8	FOOT 100
1	WASH BORING TO A PREDETERMINED DEPTH	-										
								-				
9.9						٠						
	BORING TERMINATED											

REMARKS:* ELEVATION TO BE PROVIDED BY TVA


Soil Test Boring Record

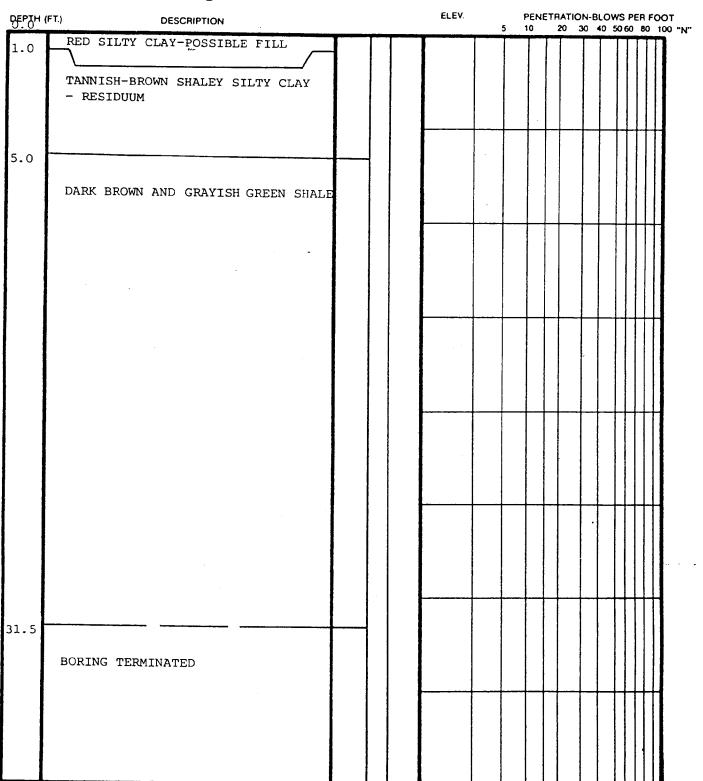
REMARKS: * ELEVATION TO BE PROVIDED BY TVA

DATE DRILLED 9-27-88


JOB NUMBER K-88195

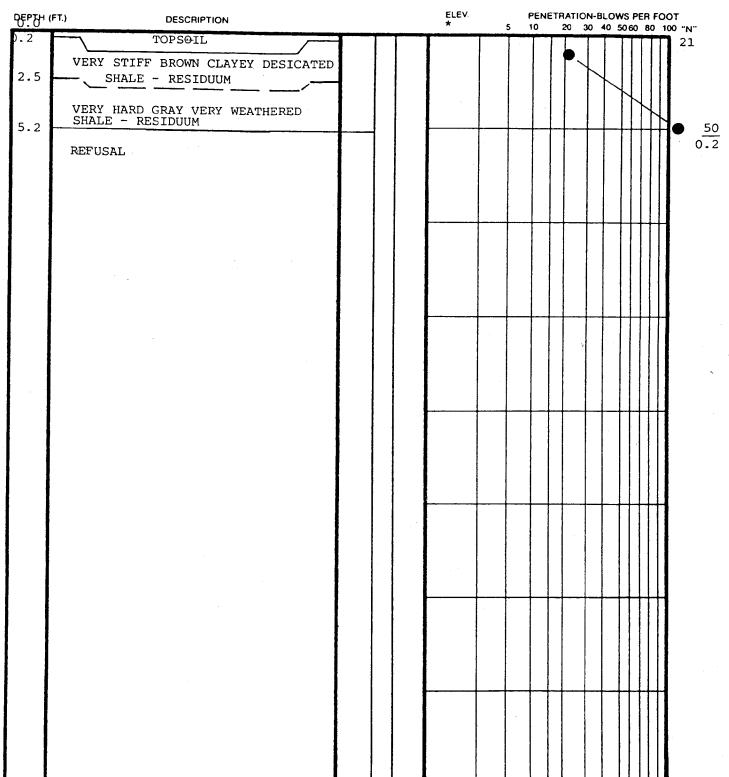
PAGE 1 OF 2

Soil Test Boring Record

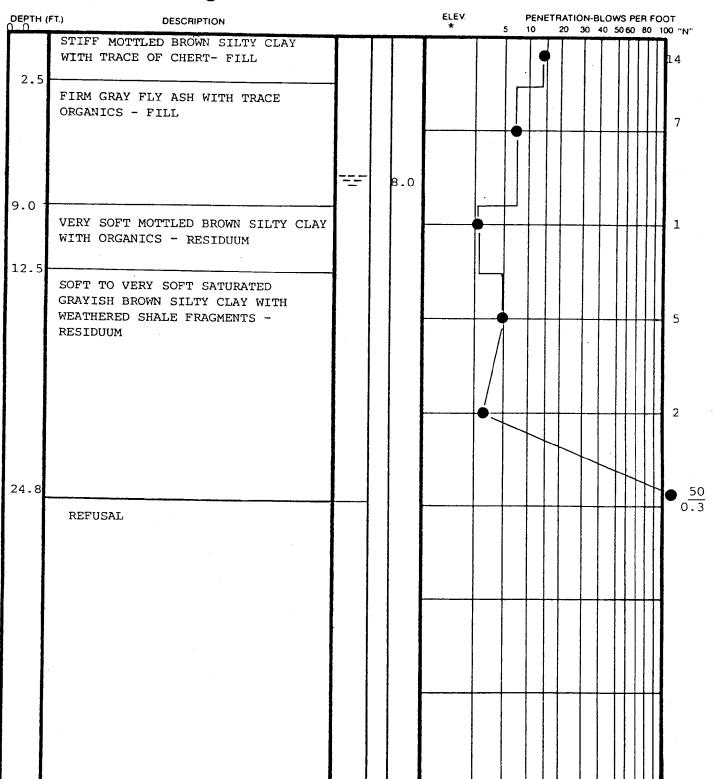


REMARKS: * ELEVATION TO BE PROVIDED BY TVA

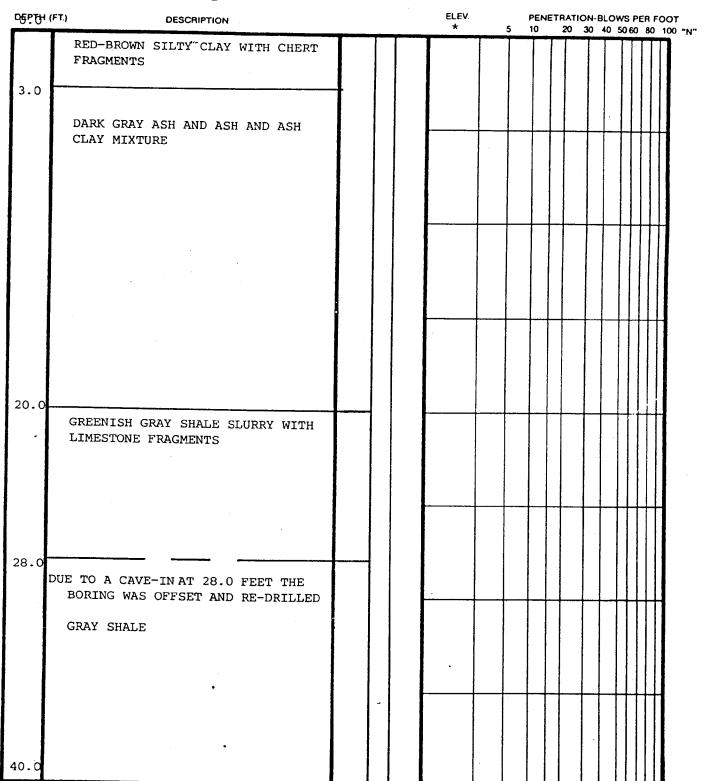
DATE DRILLED 9-19-88: JOB NUMBER K-88195 PAGE 1 0F 1


Boring Record

REMARKS: BORING ADVANCED USING AIR ROTARY EQUIPMENT

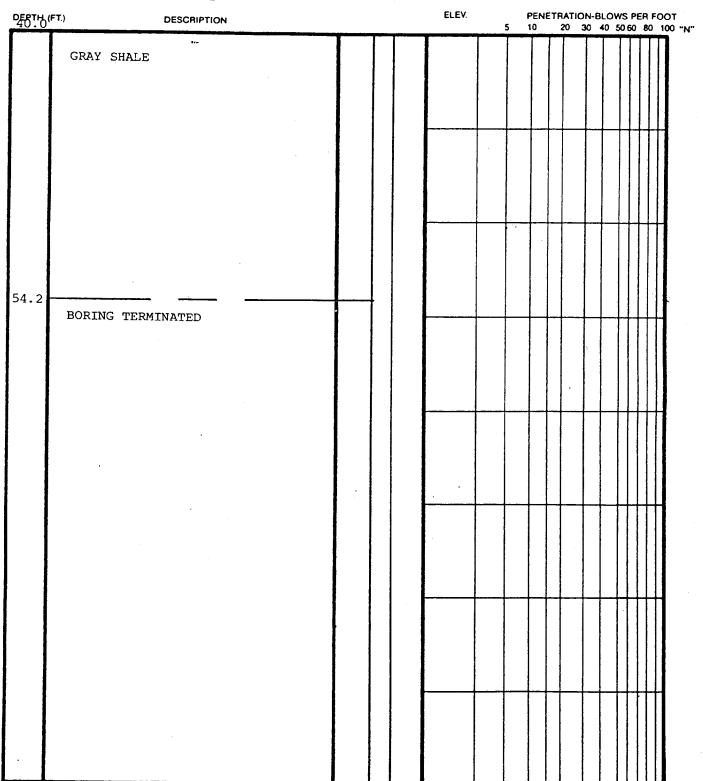

Soil Test Boring Record

REMARKS: *ELEVATION TO BE PROVIDED BY TVA


Soil Test Boring Record

Boring Record

BORING NUMBE	J-12B		
DATE DRILLED .	9-26-88		
JOB NUMBER _	K-88195		
PAGE	1 05	2	


REMARKS: BORING ADVANCED USING AIR ROTARY EQUIPMENT

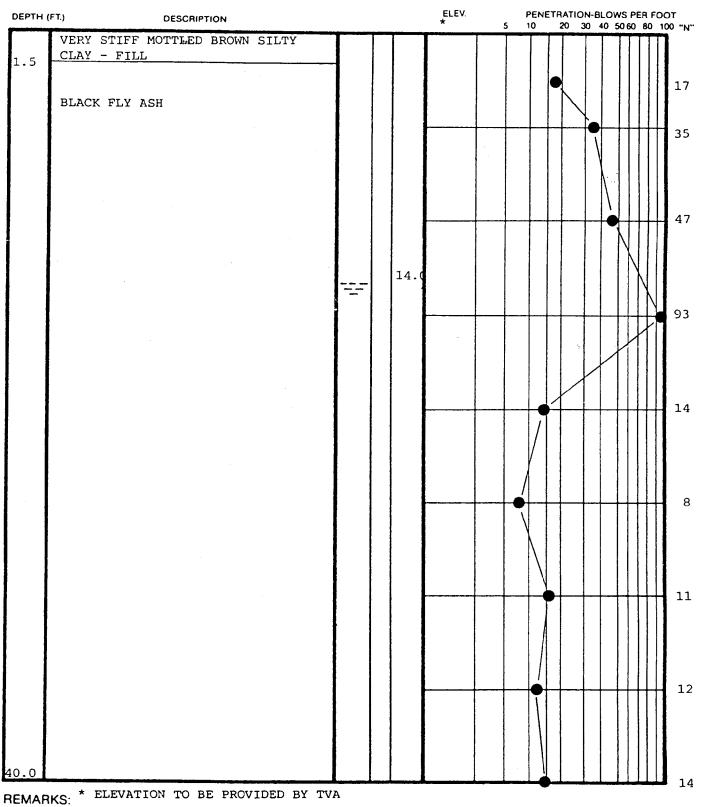
* ELEVATION TO BE PROVIDED BY TVA

Boring Record

BORING NUMBER	J-12B
DATE DRILLED	9-26-88
JOB NUMBER	K-88195
PAGE	2 OF 2

REMARKS:

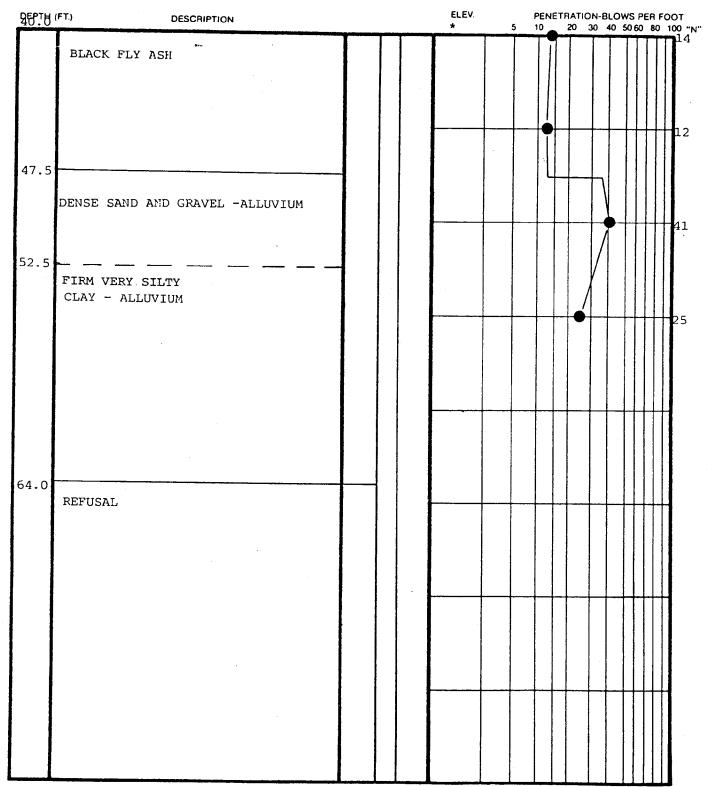
4


Law Engineering

Soil Test Boring Record

DATE DRILLED 9-28-88

JOB NUMBER K-88195


PAGE _______ 1_ of _2____

OFF REVENEET FOR FAIL AND THE RESIDENCE OF THE SECOND

Soil Test Boring Record

REMARKS: * ELEVATION TO BE PROVIDED BY TVA

DATE DRILLED 9/29 - 30/88 JOB NUMBER K-88195 PAGE 1 05 3

Boring Record

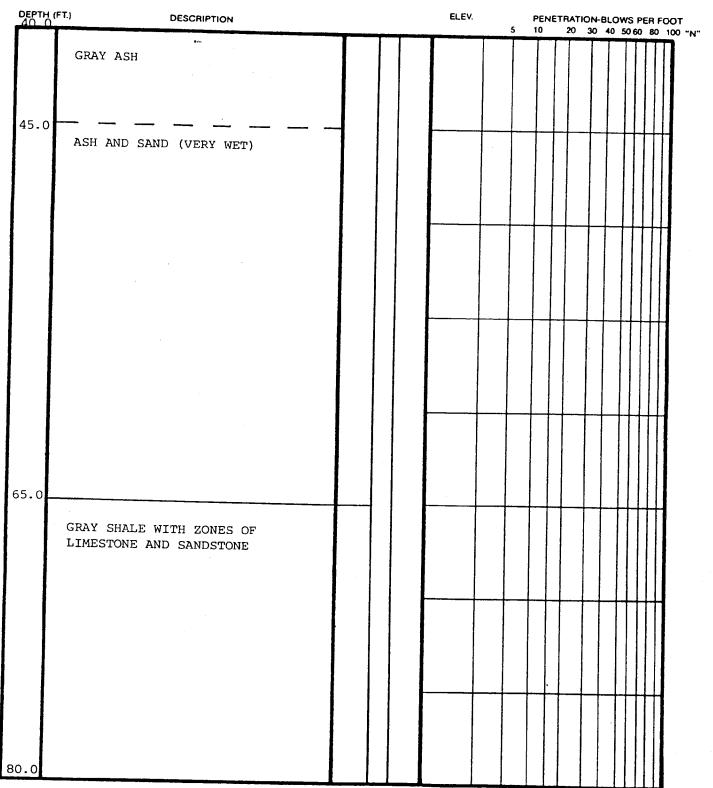
1 (FT.) DESCRIPTION					ELEV.		PENETRATION-BLOWS PER FOO 5 10 20 30 40 50 60 80 10							
TOPSOIL "		1	Τ					T			Ť		П	n
BROWN SILTY CLAY AND WEATHERED SHALE														H
WEATHERED SHALE		l			l									
	·	l		l										Н
		1		J				\perp		Ш		Ш		Ц
GRAY ASH				l					1					
i					İ				Ì		l			
				1	l						-			
		İ												
1			Ì	}	<u> </u>			-	-	\vdash	4	+	4	Н
1					1									
			ļ		İ									
·			l			}		İ						
					 	<u> </u>		+	 		+	H	+	1
·														ı
									ŀ					
													\parallel	I
							l				1	Ш		ı
			l									П	П	1
Ì												П		ı
												П		ı
							l							ı
						<u></u>		-			\bot	\coprod	#	1
														ı
†											ı			ı
														ı
														I
							_	\top		\vdash	十	$\dagger\dagger$	††	1
i												П		
1							ļ					П		
Į												Н		
														I
												П	П	1
	ì													
							1							

REMARKS: BORING ADVANCED USING AIR ROTARY EQUIPMENT

* ELEVATION TO BE PROVIDED BY TVA

REMARKS:

Law Engineering


Boring Record

PEE HEY OWERT EDOLEND AND THOSE TO AND A

DATE DRILLED 9/29-30/88

JOB NUMBER K-88195

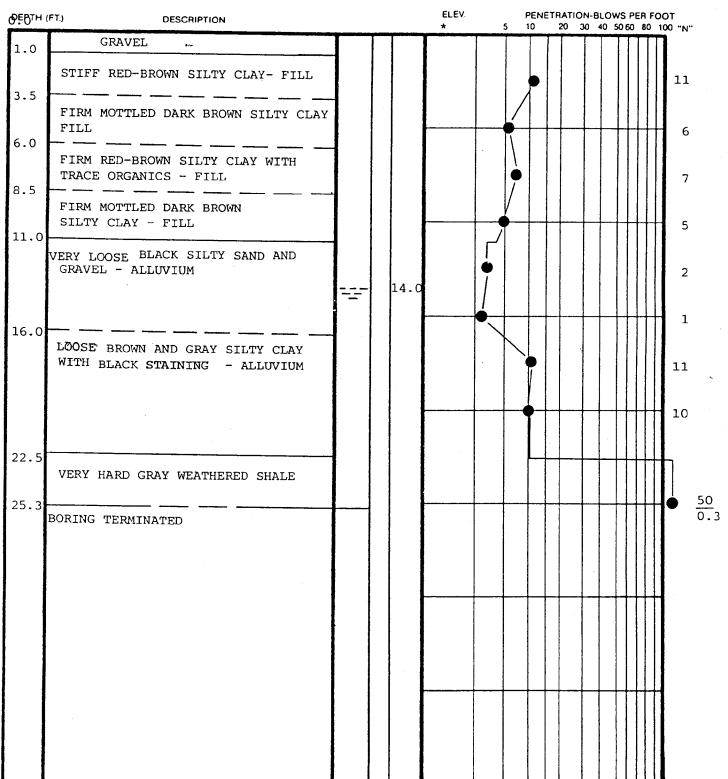
PAGE 2 0F 3

BORING NUMBER	J-13B	
DATE DRILLED .	9/29 -30	/88
JOB NUMBER	K-88195	
PAGE	3 _{OF}	3

Boring Record

PERTH (F		 	ELEV.	:	PE	NETF	RATIO	N-BL0	0WS 50 6	PER 50 8	FO 10 1	OT
82.0	GRAY SHALE WITH ZONES OF LIMESTONE AND SANDSTONE											
62.0	BORING TERMINATED											
											П	
						+				\dagger	H	
						+		\vdash	+	+	H	
					-	+			+	\parallel	╁	
					_	+	-	\sqcup	+	\parallel	\parallel	-
											$\ $	
											\coprod	1

REMARKS:



Soil Test Boring Record

DATE DRILLED 9-23-88

JOB NUMBER K-88195

PAGE 1 OF 1

SECRET CHEET CODITYPIANATION OF CAMBOO STAND TOBOCANT CHEST OF STANDS

REMARKS: *ELEVATION TO BE PROVIDED BY TVA

Boring Record

BORING NUMBER	J-14A		
DATE DRILLED	9-22-88		_
JOB NUMBER _	K-88195		_
PAGE	1 05	1	

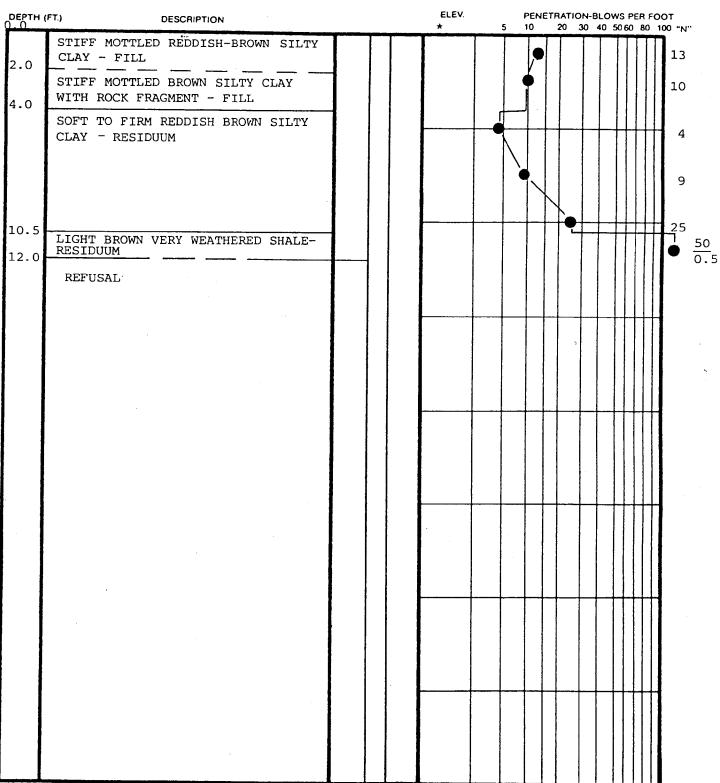
DEPTH (FT.)	DESCRIPTION				ELEV.	F 5 1	TRATIC 20	ON-E 30	LOW 40 5	/S PE	ER F 80	TOOT												
1 1	RED-BROWN AND DARK BROWN SILTY CLAY WITH ROCK FRAGMENTS-FILL (FILL USED FOR CONSTRUCTING THE RAILROAD)																							
1 1	TANISH GRAY SILT WITH TRACE OF ASH - FILL																							
25.0	BORING TERMINATED																							

SEE KEY SHEET FOR EYPLANATION OF SYLDOUG AND ARROS LIATIONS FOR ASSOCIA

REMARKS: BORING ADVANCED USING AIR ROTARY EQUIPMENT
* ELEVATION TO BE PROVIDED BY TVA

Boring Record

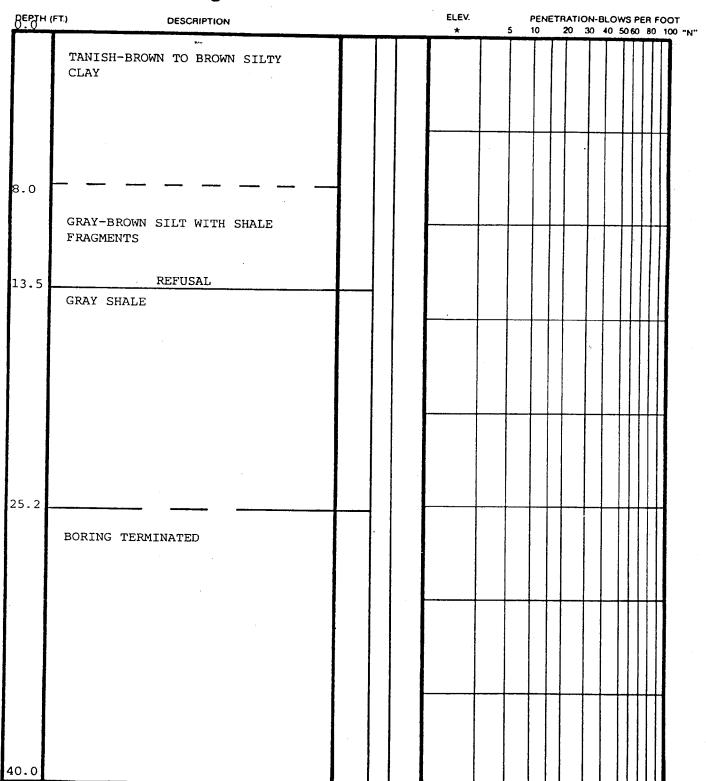
BORING NUMBE	g J-14B		
DATE DRILLED	9-22-88		
JOB NUMBER _	K-88195		
PAGE	1 05	1	


DEPTH (FT.)	DESCRIPTION	 	ELEV.	 5	PENE 10	TRATIO	ЭN-В 30	LOW 40 54	S PE	R FOOT 80 100 "N
	RED BROWN SILTY CLAY -FILL (FILL USED FOR CONSTRUCTING THE RAILROAD)									
	GRAY BROWN SILTY CLAY WITH A TRACE OF ASH									
24.5	REFUSAL									
,	BROWN AND GRAY TO GRAY SHALE WITH CALCITE SEAMS									
40.0	BORING TERMINATED									

REMARKS: BORING ADVANCED USING AIR ROTARY EQUIPMENT

^{*} ELEVATION TO BE PROVIDED BY TVA

Soil Test Boring Record

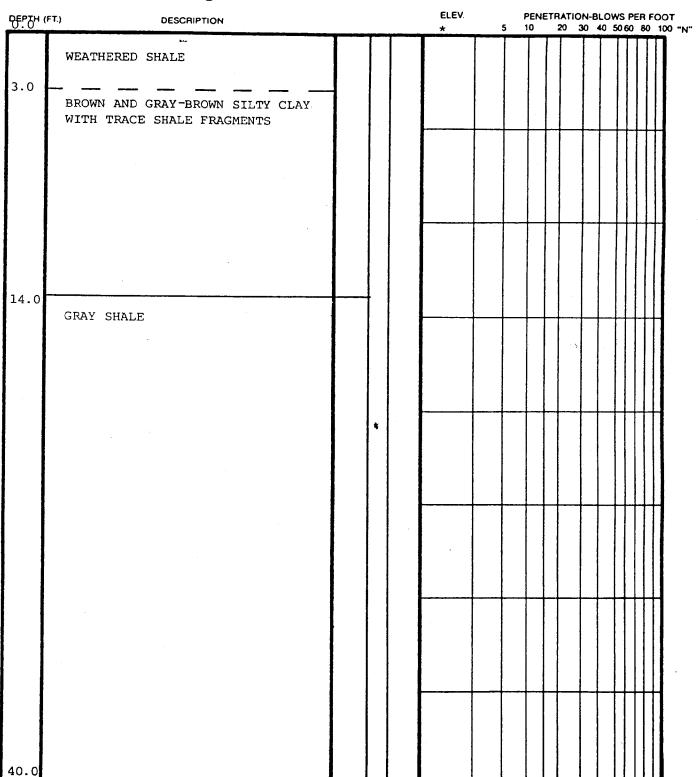

REMARKS:

^{*} ELEVATION TO BE PROVIDED BY TVA

Boring Record

BORING NUMBE	я <u>J-15A</u>		
DATE DRILLED	9-21-88		
JOB NUMBER _	K-88195		
PAGE	1 05	1	

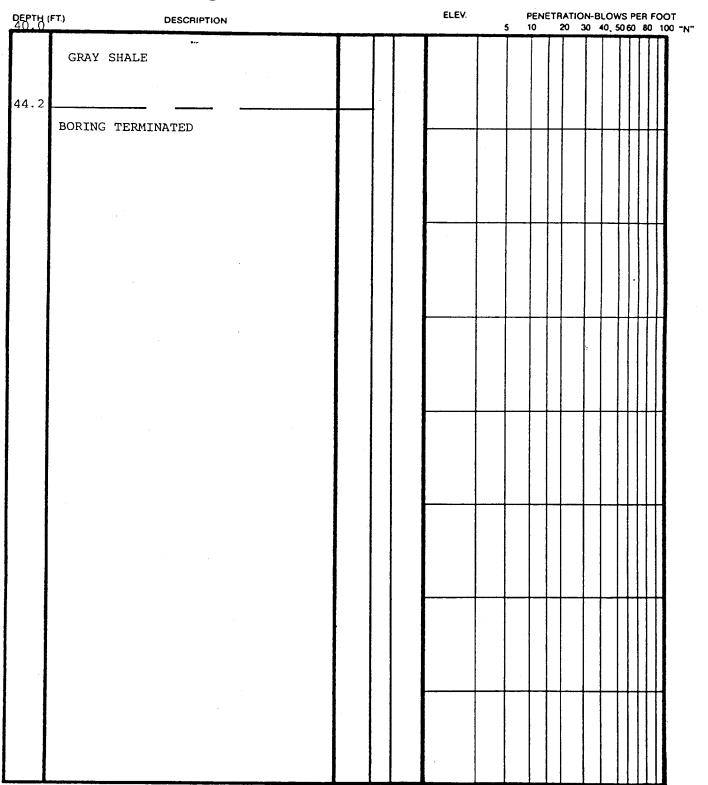
REMARKS:


BORING ADVANCED USING AIR ROTARY EQUIPMENT

* ELEVATION TO BE PROVIDED BY TVA

Boring Record

BORING NUMBE	J-15B R		
DATE DRILLED	9-21-88		
JOB NUMBER _	K-88195		
PAGE	1 OF	2	


REMARKS: BORING ADVANCED USING AIR ROTARY EQUIPMENT

fiftights marketing not be grown as a consistency makes

* ELEVATION TO BE PROVIDED BY TVA

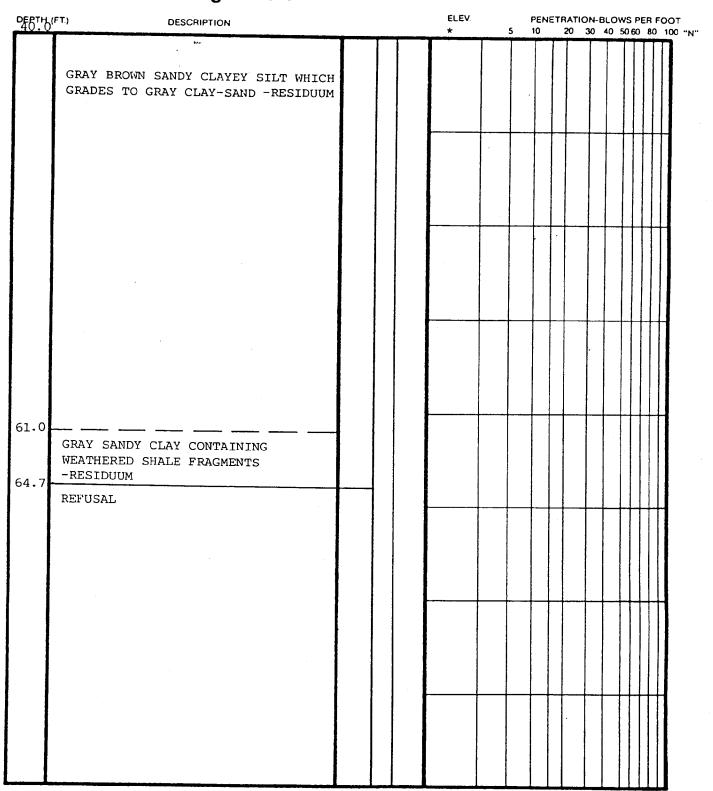
Boring Record

nergy content and ever station, or common stations and station

REMARKS:

BORING NUMB	_{ER} J-16A	
DATE DRILLED	10-5-88	
JOB NUMBER	K-88195	
PAGE	1 OF	2

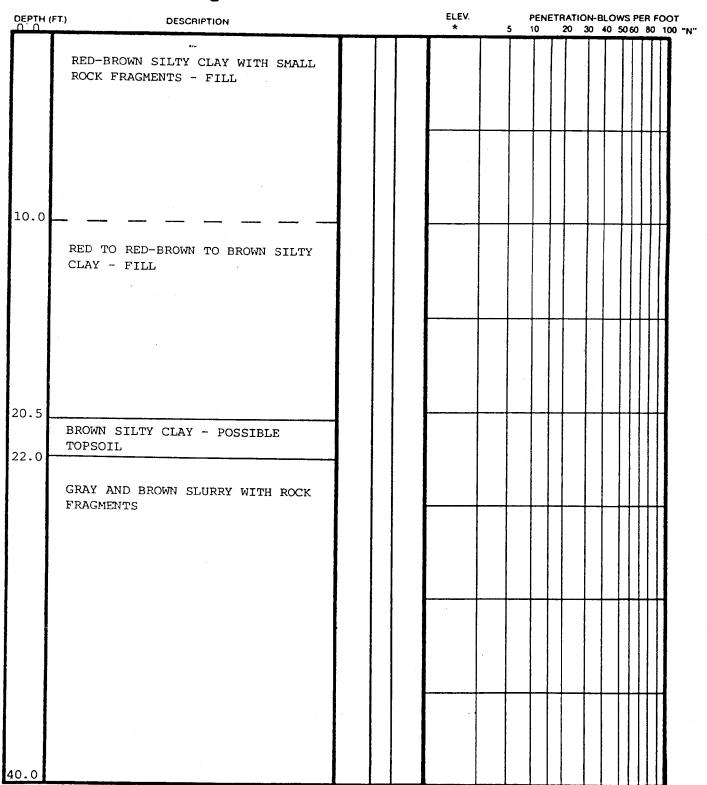
Boring Record


ОЕВ ТН				ELEV.		PE/	NETF	ATION 20 30	-BLO	WS P 5060	ER F0	DOT 100 "N"
0.2	TOPSOIL	T					T		Ť			7
	RED-BROWN AND BROWN SILTY CLAY - FILL											
	·						+		+	\parallel	+	-
13.0	GRAY BROWN SILTY CLAY - FILL		14.0									
	(SOME OF THE SOILS APPEAR TO BE ASSOICIATED WITH AN OLD ROAD SURFACE)											1
18.0												
	RED BROWN SANDY CLAY (SLURRY) - POSSIBLE RESIDUUM											
				·								
40.0												

REMARKS: * ELEVATION TO BE PROVIDED BY TVA

Boring Record

BORING NUMBER	J-16A
DATE DRILLED	10-5-88
JOB NUMBER	K-88195
BACE	2 25 2



REMARKS: * ELEVATION TO BE PROVIDED BY TVA

Boring Record

BORING NUMBER	J-16B		
DATE DRILLED	9-23-88		•
JOB NUMBER	K-88195		
PAGE	1 OF	2	

REMARKS: BORING ADVANCED USING AIR ROTARY EQUIPMENT

* ELEVATION TO BE PROVIDED BY TVA

BOTH REPORTED THE THE AREA ARAT THE OF LAND OF THE SELECTION AT

Boring Record

BORING NUMBER	J-16B	
DATE DRILLED	9-23-88	
JOB NUMBER	K-88195	
PAGE	2 OF	2

96.1 4 (FT.) DESCRIPTION		ELEV.		P6 5 10		RATIC	N-BLC	WS (PERF	OOT 100 "N"
41.0	1/-							П		TT	Π
	CASING "BLEW-OUT" AROUND 41 FEET. THE BORING WAS OFFSET AND REDRILLED										
	RED-BROWN, BROWN AND GRAY SILTY CLAY WITH SHALE FRAGMENTS									+	
										#	
					_	-					
56.0	BROWN AND GRAY SHALE								\parallel		1
	DAGIN TEND GIVAT SHADE										
				,							
73.0	BORING TERMINATED										

REMARKS:

TVA-00012703

SOIL PROFILE: SPLIT-SPOON

SHEET 1 OF 2

PROJECT: KINGSTON FP

FEATURE: DREDGE CELLS

BORING: SS-1 STATION:

HANGE:

SURFACE EL: 752.0

DATE DRILLED: 7/28/94

PREPARED BY: mhd CHECKED BY: TA-

DEPTH ft.	EL	SPT (N)	* '_06	W	LL	PI	GR	FIELD DESCRIPTION
-	- 750							-
5	- 7 45		CL	12.4	31	12	5	TN & GY SI CL. D
10	- 740	And the Control of th	CL	19.2	26	8	9	LT BRN SI CL w/TR GY TS, MST
- 15 - -	- 7 3 5		CL	17.0	26	8	6	BRN SI CL, D
20 	- 730		CL	27.1	26	8	9	BRN & GY SI CL. V MST
25 	- 725		CL	24.1	26	8	9	BRN & GY SI CL, Y MST
30 	- 720		SM	19.5	NP	NP	10	GY SI SC TR GV, MST (FA)
1=2.		* LAB	CLASS	iF.				

SOIL PROFILE: SPLIT-SPOON

SHEET 2 OF 2

PROJECT: KINGSTON FP

BORING: SS-1 STATION: RANGE:
DATE DRILLED: 7/28/94 PREPARED BY: mhd

FEATURE: DREDGE CELLS

SURFACE EL: 752.0

	DUTERED	. //20/54		rn	EPAHE	D 51.	mnd CHECKED BY: /AC
DEPTH ft.	EL	SPT *	W	LL	PI	GR	FIELD DESCRIPTION
	- 715	SM	27.6	NP	NP	10	GY SI SD, V MST (FA)
40 	710		.				REFUSAL GROUND WATER LEVEL = 8'9"
45 50	- 7 05						*
- 50 55	- 700						-
- 50 60	695						
- 65	- 690						-
- - - - 70	- 685						
1''=5'		* LAB CLAS	SIF.				

SOIL PROFILE: SPLIT-SPOON

SHEET 1 OF 2

PROJECT: KINGSTON FP

FEATURE: DREDGE CELLS

BORING: SS-2 STATION: RANGE:

SURFACE EL: 764.0 DATE DRILLED: 7/27/94 PREPARED BY: mhd

DEPTH ft.	EL	SPT (N)	× LOG	Ж	LL	PI	GR	FIELD DESCRIPTION
5	- 7 60	14	MH- CH	21.9	59	28	2	BAN SI CL w/GV, TR TS, D
10 	755	10	MH- CH	22.8	59	28	2	R-BRN SI CL, TR GV, D
15	~ 750	8	MH- CH	28.0	59	28	2	R-BRN SI CL, TR 6V, MST
_ 20	- 7 45	13	SM	25.6	NP	NP	10	GY SI SD w/TR GV (FA), V MST
25	740	_	SM	19.0	NP	NP	10	GY SI SD W/GV (FA), N
- 30	735							BAN SD WI CL (FA), W
- 35	730	_	SM	28.1	NP	NP	3	
1''-5'		* LAB	CLASS:	IF.				

SOIL PROFILE: SPLIT-SPOON

SHEET 2 OF 2

PROJECT: KINGSTON.FP

FEATURE: DREDGE CELLS

BORING: SS-2 STATION:

RANGE:

SURFACE EL: 764.0

DATE DRILLED: 7/27/94 PREPARED BY: mhd

		, 				_	·	7110
DEPTH ft.	EL	SPT (N)	FOE *	Ж	LL	PI	G R	FIELD DESCRIPTION
-		-	CL	33.6	26	8	9	BRN SI CL W/GY SI (FA). V MST
								1
F	725							
40		3	CL	20.1	26	8	9	ORNE & SY SI CL. Y MST
F			CL	. 20.1	20	°	9	
	700							
45	720							CV CD MAN W/DUTE CV C) NOT
-		28	ML	14.0	NP	NP	В	GY SD mix w/PKTS GY CL, MST
- =0	715							-
50		50÷	ML	15.8	NP	NP	В	GY SD mix w/PKTS GY CL. MST
E			LJ					REFUSAL
	710							GROUND WATER LEVEL = 5'8"
55								-
-								<u> </u>
	- 705							+
- 60	705							1
								+
-								1
65	700							
_								7
	695							7
70								-
1''=5'		* LAB	CLASS	IF.				

SOIL PROFILE: SPLIT-SPOON

SHEET 1 OF 2

PROJECT: KINGSTON FP

BORING: SS-3 STATION:

FEATURE: DREDGE CELLS

BORING: SS-3 STATION: RANGE:
DATE DRILLED: 7/28/94 PREPARED BY: mhd

SURFACE EL: 773.0

DEPTH ft.	EL	SPT (N)	¥ LOG	М	LL	PI	GR	FIELD DESCRIPTION
- - -	- 770							
- 5 - -	- 765	25	ML	23.3	NP	NP	12	GY CL SI (FA), MST
10	760	5	SM	23.0	NP	NP	10	GY SD CL, TR GV (FA), V MST
15	755	4	SM	28.6	NP	NP	10	GY SD CL, TR GV (FA), V MST
20 	750	1	SM	28.6	NP	NP	10	GY SD SI CL, TR GV (FA), W
25		2	SM	27.1	NP	NP	10	GY SD SI CL, TH GV (FA), W
- - - -	745	1	SM	27.0	NP	NP	10	GY SD SI CL, TR GV (FA), W
- 35 1''=5'	740	*	CLASS	TE				

SOIL PROFILE: SPLIT-SPOON

SHEET 2 OF 2

PROJECT: KINGSTON FP

BORING: SS-3 STATION: DATE DRILLED: 7/28/94

FEATURE: DREDGE CELLS

RANGE:
PREPARED BY: mhd

SURFACE EL: 773.0

CHECKED BY: バネー

DEPTH ft.	EL	SPT (N)	+ LOG	W	LL	PI	GR	FIELD DESCRIPTION
		2	ML	28.8	NP	NP	12	GY SD SI CL. TR GV (FA). N
-	735							
40		2	SM	22.0	NP	NP	10	GY SD SI CL, TR GV (FA), W
	- 7 3 0 ·							
45		-	ML	33.9	NP	NP	12	GY CL SI, TR GV (FA), W
	- 725							
— 50 —		-	ML	15.7	NP	NP	8	GY CL SI W/GV (FA), V MST
	- 720							
— 55· 		50+	ML	5.8	NP	NP	12	GY CL SI, TR GV
-	715							REFUSAL
- 60 -		·						GROUND WATER LEVEL = 9'8"
-	710							
- 65 -								-
-	705							
— 70		*						
1''=5'		* LAB	CLASS	IF.				

SOIL PROFILE: SPLIT-SPOON

SHEET 1 OF 2

PROJECT: KINGSTON FP

FEATURE: DREDGE CELLS

BORING: SS-4 STATION:

RANGE:

SURFACE EL: 752.0

DATE DRILLED: 7/26/94

PREPARED BY: mhd

DEPTH	F1	SPT	*					
ft.	EL	(N)	LOG	W	LL	PI	GA	FIELD DESCRIPTION
-	750							
- 5 - -	- 7 45	10	CL	14.2	26	8	6	LT BRN SI CL w/TS, D
10 	- 740	3	CL- ML	23.8	26	4	1	BAN & GY SI CL w/TS, MST
- - 15 - -	- 735	8	CL	22.3	31	12	5	TN & GY SI CL (FA), V MST
20	- 730	4	SM	20.9	NP	NP	3	TN SI SD, MST
- 25 	725	-	SM	34.8	NP	NP	3	TN SI SD, MST
- - - -	720	7	SM	21.4	NP	NP	3	TN SI SD, MST
- - 35 1''=5'		* LAB	CLASS:	IF.				

SOIL PROFILE: SPLIT-SPOON

SHEET 2 OF 2

PROJECT: KINGSTON FP

DATE DRILLED: 7/26/94

BORING: SS-4 STATION:

FEATURE: DREDGE CELLS

RANGE: ~

SURFACE EL: 752.0

PREPARED BY: mhd

CHECKED BY: スル

								511E51(E5 E1, 771)
DEPTH ft.	EL	SPT (N)	* LOG	Ж	LL	PI	GA	FIELD DESCRIPTION
	- 715	36	SM	20.4	NP	NP	3	TN SI SD, MST
- 40 - - -	710							REFUSAL GROUND WATER LEVEL = 9'0"
- 45 - -	- 705							
50 - - - - - 55	700							——————————————————————————————————————
- 60	695							
- 65	690							
- - - - 70	685							
1''-5'		* LAB (CLASSI	IF.				

SOIL PROFILE: SPLIT-SPOON

SHEET 1 OF 2

PROJECT: KINGSTON FP

BORING: SS-5 STATION:

DATE DRILLED: 7/27/94

FEATURE: DREDGE CELLS

RANGE: PREPARED BY: mhd SURFACE EL: 764.0

	J. 112220.	,, ,,	•			LI'ANL		uniu CALCALD B1. //
DEPTH	EL	SPT (N)	+ LOG	M	LL	PI	GR	FIELD DESCRIPTION
_ _ _ 5	- 760	18	MH- CH	19.6	59	28	2	A-BAN SI CL w/TR CTH, D
10	- 755	14	MH- CH	24.2	59	28	2	BRN SI CL W/GV. D
15	750	54	CL- ML	23.5	26	4	1	BAN SI CL W/PKTS GY CL SI, TR CHT, MST
20 	- 7 4 5	20	SM	24.3	NP	NP	10	GY SI SD, TR GV (FA), MST
- - 25 - -	- 740	3	CL	20.9	26	8	6	LT BRN SD SI CL, TR GV, V MST
- 30 - -	- 735	14	CL	23.6	31	12	5	TN & GY SI CL, V MST
35 1'' - 5'	- 730	* LAB	CLASS	SIF.				

SOIL PROFILE: SPLIT-SPOON

SHEET 2 OF 2

PROJECT: KINGSTON FP

BORING: 95-5 STATION:

FEATURE: DREDGE CELLS

RANGE:

SURFACE EL: 764.0

DATE DRILLED: 7/27/94 PREPARED BY: mhd

CHECKED BY: 74

	DEPTH	EL	SPT (N)	* LOG	Ж	LL	PI	GA	FIELD DESCRIPTION
	-		16	ML	21.5	NP	NP	7	BAN SI CL W/6Y FA, V MST
	- - 40 - -	- 725	2	SM	24,2	NP	NP	3	ORNG CL SD, V MST
A	- 45 -	720	2	CL	21.9	26	8	9	TN CL SI W/PKTS GY FA, V MST
	- 50 - 50	715	30	SC/ SM	10.8	NP	NP	4	LT BAN SI SD W/GV, V MST
	- - 55 -	710	50+	ML	13.9	NP	NP	12	BRN & GY CL SI, FA, MST -
	- 60	- 705							GROUND WATER LEVEL = 20'
	- 65	700							
	70	· 695							
1	1.,42.		* LAB	CLASS	IF.				

SOIL PROFILE: SPLIT-SPOON

SHEET 1 OF 2

PROJECT: KINGSTON FP

DATE DRILLED: 8/1/94

BORING: SS-6 STATION:

FEATURE: DREDGE CELLS

RANGE:

SURFACE EL: 773.0

PREPARED BY: mhd

DEPTH ft.	EL	SPT (N)	* LOG	Ж	LL	PI	GR	FIELD DESCRIPTION
- - -	- 770							-
- 5 - -	765	24	ML	25.2	NP	NP	12	GY SI (FA), MST
10		5	SM	19.7	NP	NP	10	GY SI (FA), MST
15	760	2	SM	28.8	NP	NP	11	GY SI SD (FA), MST
50	- 755		ML	25.8	NP	NP	12	GY SI (FA), MST
- - - 25	- 750			23.0			* -	
-	745	3	ML	23.3	NP	NP	B	BRN SI CL W/GY FA, TR GV, V MST
30	740	1	ML	32.7	NP	NP	12	GY SI (FA), W
35 1''=5'	740	*						
1''=5'		* LAB	CLASS	IF.				

SOIL PROFILE: SPLIT-SPOON

SHEET 2 OF 2

PROJECT: KINGSTON FP

BORING: SS-6 STATION:

FEATURE: DREDGE CELLS

RANGE:

SURFACE EL: 773.0

DATE DRILLED: 8/1/94

PREPARED BY: mhd

## DEC N SE N SE N SE N SE N SE SE	DEPTH	EL	SPT	F06	H	LL	PI	6R	FIELD DESCRIPTION
- 735 - 40 - 735 - 40 - 736 - 730 - 45 - 725 - 50 - 725 - 50 - 720 - 55 - 745 - 745 - 745 - 745 - 745 - 745 - 745 - 745 - 746 - 770 - 705	ft.						ļ	ļ	'
- 40	+		9	CL	19.6	26	8	9	BHI CL SI IIIX W/: A
- 40	-								-
12 SM 19.4 NP NP 3 BAN SI SD, V MST - 45		735							-
12 SM 19.4 NP NP 3 BAN SI SD, V MST - 45	_ 10						· .		
- 730 - 45 - 725 - 725 - 50 - 720 - 55 - 745 - 745 - 745 - 745 - 745 - 745 - 745 - 745 - 745 - 745 - 745 - 745 - 745 - 745 - 746 - 746 - 747 - 748 - 7	40		12	SM	19.4	NP	NP	3	BRN SI SD, V MST
- 45	-							İ	_
1 SM 29.3 NP NP 3 SHN SI SL, V MST	- 1	- 730							-
1 SM 29.3 NP NP 3 SHN SI SL, V MST	-	i I							-
- 725 - 50 - 720 - 55 - 720 - 55 - 745 - 745 - 745 - 745 - 745 - 750 - 7	45		4	SM	20.3	NP	NP	2	BRN SI SD, V MST
3 SM 21.8 NP NP 3 BRN SD CL, V MST 720 6 ML 22.3 NP NP 8 GY SI SD w/FA, MST 715 60 710 710 REFUSAL GROUND WATER LEVEL = 15' 7"					29.3			5	,
3 SM 21.8 NP NP 3 BRN SD CL, V MST 720 6 ML 22.3 NP NP 8 GY SI SD w/FA, MST 715 60 710 710 REFUSAL GROUND WATER LEVEL = 15' 7"	-	- 72 5							
3 SM 21.8 NP NP 3 SHN SD CL. V MS1 - 720 - 55 - 60 - 715 - 60 - 710 - 65 - 705	- 1								-
- 720 - 720	- 50			-					BBN SD CL. V MST
- 55			3	SM	21.8	NP	NP	3	
- 55		700	}						· ·
6 ML 22.3 NP NP 8 61 SI SD W/FA, MSI - 715 - 715 - 710 - 710 - 755		- /20							
6 ML 22.3 NP NP 8 61 SI SD W/FA, MSI - 715 - 715 - 710 - 710 - 755	55								
- 60 - 710 - 65 - 705 - 705	-		6	ML	22.3	NP	NP	8	GY SI SD W/FA, MST
- 60 - 710 - 65 - 705 - 705	-								-
- 710 50+ ML 9.9 NP NP 12 B1 S1. FA. MS1 - 710 REFUSAL GROUND WATER LEVEL = 15' 7" - 705		715							-
- 710 50+ ML 9.9 NP NP 12 B1 S1. FA. MS1 - 710 REFUSAL GROUND WATER LEVEL = 15' 7" - 705	-					! 			-
- 710 - 65 - 705 - 705	60		50+	ML	9.9	NP	NP	12	GY SI, FA, MST
- 65 GROUND WATER LEVEL = 15' 7" - 705			30.		0.0		1		
- 65 GROUND WATER LEVEL = 15' 7" - 705	-	710		L					
- 705 - 705	-								1
	65								GROUND WATER LEVEL = 16' 7"
		- 70E							
- 70		/ 05							
	70								
	•								
1''-5' LAB CLASSIF.	1''-5'	1''-5' * LAB CLASSIF.							

SOIL PROFILE: SPLIT-SPOON

SHEET 1 OF 3

PROJECT: KINGSTON FP

DATE DRILLED: 8/2/94

BORING: SS-B STATION:

FEATURE: DREDGE CELLS

RANGE:

PREPARED BY: mhd

SURFACE EL: 782.0

CHECKED BY: 74-

DEPTH ft.	EL	SPT (N)	* LOG	₩.	LL	PI	GR	FIELD DESCRIPTION
	- 780							
5	- 775	50+	SM	17.6	NP	NP	10	GY SI (FA), TH GV, D
10	- 770	50+	SM	18.4	NP	NP	10	6Y SI (FA). TH GV. D
15	- 7 6 5	50+	SM	21.9	NP	NP	10	GY SI (FA), TH GV, D
- 20	760	8	SM	43.9	NP	NP	11	GY SI SD (FA), MST
25	755	15	SM	17.9	NP	NP	10	GY SI SD W/GV (FA), MST
30	750		ML	31.7	NP	NP	12	GY SI (FA), W
1''=5'		* LAB	CLASS	IF.				

SOIL PROFILE: SPLIT-SPOON

SHEET 2 OF 3

PROJECT: KINGSTON FP

BORING: SS-8 STATION:

FEATURE: DREDGE CELLS

RANGE:

SURFACE EL: 782,0

DATE DRILLED: 8/2/94

PREPARED BY: mhd

DEPTH	EL	SPT (N)	* LOG	W	LL	PI	GR	FIELD DESCRIPTION
-	745	-	ML	24.4	NP	NP	12	GY SI (FA), MST
40	740	3	ML	23.8	NP	NP	12	GY SI (FA), MST
45	- 7 35	9	ML	31.2	NP	NP	12	GY SI (FA), MST
50	- 730	4	ML	22.3	NP	NP	8	GY CL SI W/LUMPS TN SI CL, MST
- 55	- 7 2 5	13	ML	18.2	NP	NP	7	MOTT BRN/TN/GY SI CL. MST
- 60 - -	- 720	13	ML	18.6	NP	NP	7	MOTT BRN/TN/GY SI CL, MST
65 	- 7 15	4	SC/ SM	27.7	NP	NP	4	TN SI SD, W
1=5.		* LAB	CLASS	iF.				

SOIL PROFILE: SPLIT-SPOON

SHEET 3 OF 3

PROJECT: KINGSTON FP

FEATURE: DREDGE CELLS

SURFACE EL: 782.0

BORING: SS-B STATION:

RANGE:

DATE DRILLED: 8/2/94

PREPARED BY: mhd

CHECKED BY: 771

DEPTH ft.	EL	SPT (N)	F06	Ж	LL	PI	GR	FIELD DESCRIPTION
- ,	- 710	5	SM	24.9	NP	NP	10	GY SD SI (FA), W
75 - -	- 705		SC/ SM	22.7	NP	NP	4	TN SI SD, V MST
- 80 -	- 700							REFUSAL GROUND WATER LEVEL = 11' 3"
85 	- 695							-
90	- 690							
95	· 68 5			;				
100	· 680							
105	·	* LAB	CLASS	IF.				

SOIL PROFILE: SPLIT-SPOON

SHEET 1 OF 3

PROJECT: KINGSTON FP

DATE DRILLED: 8/2/94

BORING: SS-9 STATION:

FEATURE: DREDGE CELLS

RANGE:

PREPARED BY: mhd

SURFACE EL: 795.0

DEPTH ft.	EL 795	SPT (N)	* LOG	н	LL	PI	GR	FIELD DESCRIPTION
<u> </u>								
5	790	20	ML	17.8	NP	NP	12	GY SI (FA), MST
10	- 785	50+	ML	19.5	NP	NP	12	GY SI (FA), MST
15	- 780	44	ML	20.1	NP	NP	12	GY SI (FA), MST
20	- 775	46	ML	18.3	NP	NP	12	GY SI (FA), MST
25	- 770	6	ML	30.2	NP	NP	12	ey si (FA), MST
30	- 765	5	ML	35.2	NP	NP	12	GY SI (FA), W
35	760							
i''=5'	CLASS	IF.						

SOIL PROFILE: SPLIT-SPOON

SHEET 2 OF 3

PROJECT: KINGSTON FP

BORING: SS-9 STATION:

FEATURE: DREDGE CELLS

RANGE:

SURFACE EL: 795.0

DATE DRILLED: 8/2/94 PREPARED BY: mhd

DEPTH	EL.	SPT	+ LOG	Ж	LL	PI	GR	FIELD DESCRIPTION
ft.	760	(N)	ML	ļ	NP	NP	 	6Y SI (FA), W
		2		17.3			12	4
40	- 755	1	ML	31.0	NP	NP	12	GY SI (FA), W
- 45 	750	1	ML	23.0	NP	NP	12	GY SI (FA), D
- 50 -	- 7 45		ML	31.7	NP	NP	12	GY SI (FA), TR GV, W
- 55 -	740	5	ML	30.0	NP	NP	12	GY SI (FA), TR GV, W
- 50 -	735	6	ML	32,6	NP	NP	12	GY SI (FA), TR GV, W
65	730	-	ML	26.9	NP	NP	8	BRN SI CL W/GY SI (FA), MST
70	725			j				4
1''-5'	-	* LAB	CLASS	IF.				

SOIL PROFILE: SPLIT-SPOON

SHEET 3 OF 3

PROJECT: KINGSTON FP

BORING: SS-9 STATION:

FEATURE: DREDGE CELLS

RANGE:

SURFACE EL: 795.0

DATE DRILLED: 8/2/94 PREPARED BY: mhd

DEPTH ft.	EL.	SPT (N)	# LOG	W	LL	PI	GR	FIELD DESCRIPTION
_	725	13	CL	19.2	26	8	9	BRN, TN & GY SI CL, TR CL, MST
- - - 75 -	- 720	19	CL	19.5	26	8	6	ORNG-BRN SI CL, MST
B0	715	4	SM	20.5	NP	NP	10	GY SD SI, W
85 	710	19	SC/ SM	23.1	NP	NP	4	TN SI SD
90	- 705	8	SC/ SM	23.1	NP	NP	4	GY SI SD
95	700							REFUSAL
100	695							
1=2.		* LAB I	CLASS.	IF.				

SOIL PROFILE: SPLIT-SPOON

SHEET 1 OF 3

PROJECT: KINGSTON FP

BORING: SS-10 STATION:

DATE DRILLED: 8/8/94

FEATURE: DREDGE CELLS

RANGE:

PREPARED BY: mhd

SURFACE EL: 797.5

DEPTH ft.	EL.	SPT (N)	* L06	¥	LL	PI	GR	FIELD DESCRIPTION
	- 795							
5	790	50+	ML	17.3	NP	NP	12	GY SI (FA), MST
10		26	ML	24.7	NP	NP	12	GY SI (FA), MST
_ _ _ 15	785							CV CD CI TD CV MCT
	- 7 80	25	ML	15.0	NP	NP	12	GY SD SI, TR GV. MST
- - - - 50	- 775	5	ML	22.1	NP	NP	12	GY SI (FA), MST
25 		4	ML	27.4	NP	NP	12	GY SI (FA), MST
30	770	14	ML	29.1	NP	NP	12	GY SI (FA), MST
 - -	- 765	-	111.	23.1	NE	NE		
1''=5'		* LAB	CLASS	IF.				

SOIL PROFILE: SPLIT-SPOON

SHEET 2 OF 3

PROJECT: KINGSTON FP

BORING: SS-10 STATION: DATE DRILLED: 8/8/94

FEATURE: DREDGE CELLS

RANGE:

SURFACE EL: 797.5

PREPARED BY: mhd

DEPTH ft.	EL	SPT (N)	¥	Ж	LL	PI	6A	FIELD DESCRIPTION
	760	18	SM	31.2	NP	NP	11	GY SD SI (FA) W/GV, W
40	755	9	ML	31.4	NP	NP	12	GY SI (FA), V MST
- - - 45	750		ML	27.0	NP	NP	12	GY SD SI w/GV (FA), V MST
50 	- 745	_	ML	27.2	NP	NP	12	GY SD SI w/GV (FA), V MST
55 	- 740	6	SM	30.7	NP	NP	11	GY PGD SI SD (FA), V MST
- 60	735	9	SM	16.4	NP	NP	11	GY PGD SI SD (FA), V MST
65 	730	25	SM	19.4	NP	NP	11	CRS PGD SI SD w/GV (FA)
- 70 i''-5'		* LAB C	LASSI	F.				

SOIL PROFILE: SPLIT-SPOON

PREPARED BY: mhd

SHEET 3 OF 3

PROJECT: KINGSTON FP

DATE DRILLED: 8/8/94

BORING: SS-10 STATION:

FEATURE: DREDGE CELLS

PANGE:

SURFACE EL: 797.5

CHECKED BY: 77

DEPTH	EL	SPT	* LOG	W	LL	PI	GR	ETELD DECONTRATION
ft.		(N)	200	п		PI	6H	FIELD DESCRIPTION
-	- 725	39	ML	19.0	NP	NP	В	BRN SI CL W/PKTS GY SI (FA), V MST
75 		17	CL	19.2	26	8	9	BRN & GY SI CL, V MST
- - - 80	- 720 _.	18	CL	16.9	26	8	6	ORNG-BRN SD SI CL, MST
- 85	715	16	ML	18.9	NP	NP	В	GY SI SD, MST
	710	10	FIL	10.9	NF	NF	0	
90	705	50+	ML	3.7	NP	NP	8	GY SI SD W/GV
- 95 - -	700							REFUSAL
100	695							
105	uau	u						
1=2.		* LAB	CLASS	IF.				

APPENDIX II

INSTALLATION RECORDS FOR MONITORING WELLS 9A THROUGH 20

[from Velasco and Bohac, 1991]

TYPE II MONITORING W	/ELL INSTALLATION	RECORD
PROJECT KINGSTON FOSSIL PLANT	JOB NUMBER	K-88195
WELL NUMBER J-9 A		10-3 TO 10-4-88
LOCATION PLANT COORDINATES W 9+44 N 19+07		
GROUND SURFACE ELEVATION 769.4' MSL	TOP OF INNER CASING	772.5' MSL
GRANULAR BACKFILL MATERIAL QUARTZ SAND, COARSE	SLOT SIZE	.010 INCHES
CASING MATERIALPVC	CASING DIAMETER	2 INCHES
DRILLING TECHNIQUE POWER AUGER	DRILLING CONTRACTOR	LAW ENGINEERING
BOREHOLE DIAMETER 11 INCHES	FIELD REPRESENTATIVE	H. W. ROBINSON
LOCKABLE COVER ? YES	KEY CODE/COMBINATION	2043
RISER MATERIAL PVC	SCREEN MATERIAL	PVC
COMMENTS	MARKON	
(NOT TO SCALE) VENTED CAP WELL PROTECTOR	COCKABLE COVER G STICKUP 3.1'	ROUND SURFACE 769.4' MLS
DEPTH TO TOP OF BENTONITE SEAL 53.5' DEPTH TO TOP OF GRANULAR MATERIAL 55.5'	LENGTH OF SOLID SECTION	TOTAL DEPTH OF WELL69.0'
GRANULAR BACKFILL CAP	LENGTH OF SLOTTED SECTION 10.0' LENGTH OF 2' TAIL PIPE	STABILIZED WATER LEVEL14.8' BELOW GROUND SURFACE MEASURED ON 0-10-88

TYPE II MONITORING	WELL INSTALLATION REC	ORD
PROJECT KINGSTON FOSSIL PLANT	JOB NUMBER K-88195	
WELL NUMBER		9-29-88
LOCATION PLANT COORDINATES W 8+42, N 18+22		
GROUND SURFACE ELEVATION 769.6' MLS	TOP OF INNER CASING	772.4' MLS
GRANULAR BACKFILL MATERIAL QUARTZ SAND, COARS	E SLOT SIZE010 INCHES	
CASING MATERIAL PVC	CASING DIAMETER 2 INC	CHES
DRILLING TECHNIQUE AIR ROTARY	DRILLING CONTRACTOR HIS	SHLAND DRILLING
BOREHOLE DIAMETER 57/8 (ROLLER CONE)	FIELD REPRESENTATIVE H.	W. ROBINSON
LOCKABLE COVER ? YES	KEY CODE/COMBINATION	2043
RISER MATERIAL PVC	SCREEN MATERIAL	PVC
COMMENTS		
VENTED CAP WELL PROTECTOR	GROUND SU	769.6' MLS
DEPTH TO TOP OF BENTONITE SEAL 67.2' DEPTH TO TOP OF GRANULAR MATERIAL 69.2'	LENGTH OF SOLID SECTION 72.0'	TOTAL DEPTH OF WELL 82.4'
GROUT BENTONITE TOP OF 702.1' MSL ROCK SCREEN	LENGTH OF SLOTTED SECTION 10' 10'	STABILIZED WATER LEVEL14.8' BELOW GROUND SURFACE MEASURED ONI 0-5-88
GRANULAR BACKFILL CAP	LENGTH OF2'	

TYPE II MONITORING W	ELL INSTALLATION RECORD
PROJECTKINGSTON FOSSIL PLANT	JOB NUMBER <u>K-88195</u>
WELL NUMBER J-10	INSTALLATION DATE9-27-88
LOCATION PLANT COORDINATES W 4+79, N 16+36	
GROUND SURFACE ELEVATION753.8'_MLS	TOP OF INNER CASING 758.8' MLS
GRANULAR BACKFILL MATERIAL QUARTZ SAND, COARSE	SLOT SIZE010 INCHES
CASING MATERIALPVC	CASING DIAMETER 2 INCHES
DRILLING TECHNIQUE POWER AUGER	DRILLING CONTRACTOR LAW ENGINEERING
BOREHOLE DIAMETER11_INCHES	FIELD REPRESENTATIVEH. W. ROBINSON
LOCKABLE COVER ? YES	KEY CODE/COMBINATION
RISER MATERIAL PVC	SCREEN MATERIAL PVC
COMMENTS	
	·
VENTED CAP WELL PROTECTOR DEPTH TO TOP OF	GROUND SURFACE STICKUP 3.0' 753.8' MLS
DEPTH TO TOP OF GRANULAR MATERIAL 8.0'	LENGTH OF SOLID SECTION 15.0'
GRANULAR SCREEN	STABILIZED WATER LEVEL 2.8' BELOW GROUND SURFACE MEASURED ON9-29-88 LENGTH OF
BACKFILL CAP	TAIL PIPE

TYPE II MONITORING W	ELL INSTALLATION RECORD
PROJECT KINGSTON FOSSIL PLANT	JOB NUMBERK-88195
	INSTALLATION DATE 9-19 TO 9-27-86
LOCATION PLANT COORDINATES W 4+68, N 16+51	
GROUND SURFACE ELEVATION	TOP OF INNER CASING
GRANULAR BACKFILL MATERIAL QUARTZ SAND, COARSE	SLOT SIZE010 INCHES
CASING MATERIAL PVC	CASING DIAMETER 2 INCHES
DRILLING TECHNIQUE AIR ROTARY & POWER AUGER	DRILLING CONTRACTOR LAW ENGINEERING
BOREHOLE DIAMETER 11 INCHES	FIELD REPRESENTATIVE H. W. ROBINSON
LOCKABLE COVER ? YES	KEY CODE/COMBINATION
	SCREEN MATERIAL PVC
COMMENTS	
VENTED CAP WELL PROTECTOR DEPTH TO TOP OF BENTONITE SEAL 15.7' DEPTH TO TOP OF GRANULAR MATERIALI7.7'	STICKUP _2.8'
GROUT BENTONITE GRANULAR BACKFILL CAP	STABILIZED WATER LEVEL 5.0' BELOW GROUND SURFACE MEASURED ON9-29-88 LENGTH OF

TYPE II MONITORING W	ELL INSTALLATION RECORD
PROJECT KINGSTON FOSSIL PLANT	JOB NUMBER <u>K-88195</u>
	INSTALLATION DATE 9-23-88
LOCATION PLANT CÖÖRDINATES W 4+73, N 16+51	THO MEDITION BATE
GROUND SURFACE ELEVATION	TOP OF INNER CASING 756.4' MLS
GRANULAR BACKFILL MATERIAL QUARTZ SAND, COARSE	SLOT SIZE
CASING MATERIALPVC	CASING DIAMETER 2 INCHES
DRILLING TECHNIQUE POWER AUGER	DRILLING CONTRACTOR LAW ENGINEERING
BOREHOLE DIAMETER 11 INCHES	FIELD REPRESENTATIVE H. W. ROBINSON
LOCKABLE COVER ? YES	KEY CODE/COMBINATION 2043
RISER MATERIAL PVC	SCREEN MATERIAL PVC
COMMENTS	
(NOT TO SCALE)	LOCKABLE COVER GROUND SURFACE
VENTED CAP	
WELL PROTECTOR	STICKUP <u>2.8'</u> 753.6' MLS
DEPTH TO TOP OF BENTONITE SEAL 35.3' DEPTH TO TOP OF GRANULAR MATERIAL 37.0'	LENGTH OF SOLID SECTION
GROUT BENTONITE GRANULAR BACKFILL CAP	STABILIZED WATER LEVEL

TYPE II MONITORING W	/FIL INSTALLATION RE	CORD
PROJECT KINGSTON FOSSIL PLANT		G-88195
		P-19-88
LOCATION PLANT COORDINATES W 7+84, N 7+		
GROUND SURFACE ELEVATION 765.6' MLS	TOP OF INNER CASING	769.1' MLS
GRANULAR BACKFILL MATERIAL QUARTZ SAND, COARSE	SLOT SIZE 0.10 INCHES	
CASING MATERIALPVC	CASING DIAMETER	2 INCHES
DRILLING TECHNIQUE AIR/WATER ROTARY	DRILLING CONTRACTOR	HIGHLAND DRILLING
BOREHOLE DIAMETER 8 INCHES	FIELD REPRESENTATIVE	H. W. ROBINSON
LOCKABLE COVER ? YES .	KEY CODE/COMBINATION _	2043
RISER MATERIAL PVC	SCREEN MATERIAL	PVC
COMMENTS		
VENTED CAP WELL PROTECTOR DEPTH TO TOP OF BENTONITE SEAL 12.6' DEPTH TO TOP OF GRANULAR MATERIAL 14.3' TOP OF 760.6' MSL ROCK RISER	GROUND STICKUP3.5'_ LENGTH OF SOLID SECTION16.4'	TOTAL DEPTH OF WELL 31.5'
GROUT BENTONITE GRANULAR BACKFILL CAP	LENGTH OF SLOTTED SECTION 15' LENGTH OF1' TAIL PIPE	STABILIZED WATER LEVEL 7.8' BELOW GROUND SURFACE MEASURED OA/26/88

TYPE II MONITORING W	ELL INSTALLATION RECORD)
PROJECT KINGSTON FOSSIL PLANT	JOB NUMBER K-88195	
WELL NUMBER	INSTALLATION DATE 9-22-88	
LOCATION PLANT COORDINATES W 17+40, N 15+57		
GROUND SURFACE ELEVATION 764.3' MLS	TOP OF INNER CASING 767.3' MLS	
GRANULAR BACKFILL MATERIAL QUARTZ SAND, COARSE	SLOT SIZE	
CASING MATERIALPVC	CASING DIAMETER 2 INCHES	·
DRILLING TECHNIQUE POWER AUGER	DRILLING CONTRACTOR LAW ENG	BINEERING
BOREHOLE DIAMETER 10.1/4 INCHES	FIELD REPRESENTATIVE H. W. RO	BINSON
LOCKABLE COVER ? YES	KEY CODE/COMBINATION 2043	
RISER MATERIAL PVC	SCREEN MATERIAL PVC	
COMMENTS		· · · · · · · · · · · · · · · · · · ·
(NOT TO SCALE)	GROUND SURFACE	*
WELL PROTECTOR —	1 1 1 1 1 1 1 1 1 1	44.3' MLS
DEPTH TO TOP OF BENTONITE SEAL 10.8' DEPTH TO TOP OF GRANULAR MATERIAL 12.8'	LENGTH OF OF W	al DEPTH ELL 24.8'
GROUT BENTONITE GRANULAR BACKFILL CAP	LE BE	ABILIZED WATER EVEL 3.8' ELOW GROUND URFACE USURED OM-26-88

TYPE II MONITORING W	ELL INSTALLATION RECORD
PROJECT KINGSTON FOSSIL PLANT	
	INSTALLATION DATE 9-27-88
LOCATION PLANT COORDINATES W 17+53, N 15+6	
GROUND SURFACE ELEVATION	TOP OF INNER CASING 767.1' MLS
GRANULAR BACKFILL MATERIAL QUARTZ SAND, COARSE	SLOT SIZE010 INCHES
CASING MATERIAL PVC	CASING DIAMETER 2 INCHES
DRILLING TECHNIQUEAUGER AND AIR ROTARY	DRILLING CONTRACTOR HIGHLAND DRILLING
BOREHOLE DIAMETER AUGER 8° ROTARY 5 7/8° DIA.	FIELD REPRESENTATIVE H.W. ROBINSON
LOCKABLE COVER ? YES	KEY CODE/COMBINATION
RISER MATERIAL PVC	SCREEN MATERIAL PVC
COMMENTS	
(NOT TO SCALE)	LOCKABLE COVER GROUND SURFACE —
VENTED CAP	\
WELL PROTECTOR —	STICKUP 3.0' 764.1' MLS
DEPTH TO TOP OF BENTONITE SEAL 38.1' DEPTH TO TOP OF GRANULAR MATERIAL 39.8'	LENGTH OF SOLID SECTION 42.8' TOTAL DEPTH OF WELL 56'
GROUT BENTONITE GRANULAR BACKFILL CAP	STABILIZED WATER LEVEL 4.1' BELOW GROUND SURFACE MEASURED ON 0/6/88 LENGTH OF .2' TAIL PIPE

TYPE II MONITORING V	WELL INSTALLATION RECORD
PROJECT KINGSTON FOSSIL PLANT	JOB NUMBER K-88195
WELL NUMBER	INSTALLATION DATE 9-28 TO 9-30-88
LOCATION PLANT COORDINATES W 7+13, N 31+23	
GROUND SURFACE ELEVATION 766.5' M.L.S.	TOP OF INNER CASING 769.2' M.L.S.
GRANULAR BACKFILL MATERIAL QUARTZ SAND, COARSE	SLOT SIZE .010 INCH
CASING MATERIAL PVC	CASING DIAMETER 2 INCHES
DRILLING TECHNIQUE POWER AUGER	DRILLING CONTRACTOR LAW ENGINEERING
BOREHOLE DIAMETER APPROXIMATELY 11 INCHES	FIELD REPRESENTATIVE H. W. ROBINSON
LOCKABLE COVER ? YES	KEY CODE/COMBINATION 2043
RISER MATERIAL PVC	SCREEN MATERIAL PYC
COMMENTS	
(NOT TO SCALE)	LOCKABLE COVER GROUND SURFACE
VENTED CAP	\$тскир <u>2.7′</u>
DEPTH TO TOP OF BENTONITE SEAL 50.1'	768.5' MSL
DEPTH TO TOP OF GRANULAR MATERIAL 51.8'	TOTAL DEPTH OF WELL
RISER	STABILIZED WATER LEVELQ.9'
GROUT	BELOW GROUND SURFACE
BENTONITE	LENGTH OF SLOTTED SECTION MEASURED ON 10/5/88
GRANUAR BACKFILL CAP	LENGTH OF
IDNO LAB 10/2/PQ	3B 15 V.I.P.!

THE PLANT COORDINATES FOR

13A + 13B ARE THE SAME

HERE IN THE REPORT. ACCORDING

TO MAPS + SURVEYS 13B

SHOULD BE:

W 7+34

N 31+04

1-26-95

N 31+04

THE CREST THINK BECOMES TO

REPORT 132:

THE CREST THINK BECOMES TO

REPORT 132:

TYPE II MONITORING WELL INSTALLATION RECORD				
PROJECT KINGSTON FOSSIL PLANT	JOB NUMBER	K-88195		
WELL NUMBER J-13 B	INSTALLATION DATE	9-29 TO 9-30-88		
LOCATION PLANT COORDINATES W 7+13, N 31+23				
GROUND SURFACE ELEVATION 767.4' M.LS.	TOP OF INNER CASING	770.5' M.L.S.		
GRANULAR BACKFILL MATERIAL QUARTZ SAND	SLOT SIZE	.010 INCH		
CASING MATERIALPVC	CASING DIAMETER	2 INCHES		
DRILLING TECHNIQUE POWER AUGER	DRILLING CONTRACTOR	LAW ENGINEERING		
BOREHOLE DIAMETER 8° AUGER, 5 7/8° ROLLERCONE	FIELD REPRESENTATIVE	H. W. ROBINSON		
LOCKABLE COVER ? YES	KEY CODE/COMBINATION	2043		
RISER MATERIAL PVC	SCREEN MATERIAL	PVC		
COMMENTS				
(NOT TO SCALE)	LOCKABLE COVER	SURFACE		
VENTED CAP	→			
WELL PROTECTOR	STICKUP	767.4' MSL		
DEPTH TO TOP OF BENTONITE SEAL 64.1' DEPTH TO TOP OF GRANULAR MATERIAL 67.8'	LENGTH OF SOLID SECTION 74.0'	TOTAL DEPTH OF WELL 82.0'		
GROUT BENTONITE GRANULAR BACKFILL CAP	LENGTH OF SLOTTED SECTION 10.0' LENGTH OF2' TAIL PIPE	STABILIZED WATER LEVEL 10.4' BELOW GROUND SURFACE MEASURED ON 10/5/88		

TYPE II MONITORING W	ELL INSTALLATION RECORD
PROJECT KINGSTON FOSSIL PLANT	JOB NUMBER K-88195
WELL NUMBER	INSTALLATION DATE 9-22-88
LOCATION PLANT COORDINATES W 30+46, N 37	+49
GROUND SURFACE ELEVATION 758.3' MLS	TOP OF INNER CASING
GRANULAR BACKFILL MATERIAL QUARTZ SAND, COARSE	SLOT SIZE
CASING MATERIAL PVC	CASING DIAMETER 2 INCHES
DRILLING TECHNIQUE AIRWATER ROTARY	DRILLING CONTRACTOR HIGHLAND DRILLLING
BOREHOLE DIAMETER 8 INCHES	FIELD REPRESENTATIVE H.W. ROBINSON
LOCKABLE COVER ? YES	KEY CODE/COMBINATION
RISER MATERIAL PVC	
COMMENTS	
VENTED CAP WELL PROTECTOR DEPTH TO TOP OF BENTONITE SEAL 10' DEPTH TO TOP OF GRANULAR MATERIAL 12'	STICKUP 3.0' STICKUP 3.0' TOTAL DEPTH OF WELL 25' 13.8'
GROUT BENTONITE GRANULAR BACKFILL CAP	STABILIZED WATER LEVEL 12.7' BELOW GROUND SURFACE MEASURED OR 26/88 LENGTH OF SLOTTED SECTION 10' LENGTH OF

ENG LAB 10/2/80

TYPE II MONITORING	WELL INSTALLATION RECORD
PROJECT KINGSTON FOSSIL PLANT	
	INSTALLATION DATE 9-22-88
LOCATION PLANT COORDINATES W 30+	
GROUND SURFACE ELEVATION 758.3' MSL	
GRANULAR BACKFILL MATERIAL QUARTZ,SAND,COARSE	SLOT SIZE010 INCH
CASING MATERIAL PVC	CASING DIAMETER 2 INCHES
DRILLING TECHNIQUEAIRWATER ROTARY	DRILLING CONTRACTOR HIGHLAND DRILLING
BOREHOLE DIAMETER 8 INCHES	FIELD REPRESENTATIVE H.W. ROBINSON
LOCKABLE COVER ? YES	KEY CODE/COMBINATION 2043
RISER MATERIALPVC	SCREEN MATERIAL PVC
COMMENTS	
VENTED CAP WELL PROTECTOR DEPTH TO TOP OF	GROUND SURFACE STICKUP 3.0' 756.3' MSL
DEPTH TO TOP OF GRANULAR MATERIAL 27.5' RISER	LENGTH OF SOLID SECTION 29.8' TOTAL DEPTH OF WELL 40.0'
GROUT SCREEN	STABILIZED WATER LEVEL 16.1' BELOW GROUND SURFACE LENGTH OF LENGTH OF LENGTH OF
GRANULAR BACKFILL CAP	SLOTTED SECTION 10' LENGTH OF

TYPE II MONITORING V	VELL INSTALLATION RE	CORD
PROJECT KINGSTON FOSSIL PLANT		
WELL NUMBER J-15 A		1-88
LOCATION PLANT COORDINATES W 24+39,N 6+:		
GROUND SURFACE ELEVATION 793.1' MSL		796.1' MSL
GRANULAR BACKFILL MATERIAL QUARTZ SAND, COARSE	SLOT SIZE010 INCH	
CASING MATERIAL PVC	CASING DIAMETER	INCHES
DRILLING TECHNIQUEAIR/WATER ROTARY	DRILLING CONTRACTOR	HIGHLAND DRILLING
BOREHOLE DIAMETER BINCHES	FIELD REPRESENTATIVE	H.W. ROBINSON
LOCKABLE COVER ? YES	KEY CODE/COMBINATION	2043
RISER MATERIAL PVC		
COMMENTS		
(NOT TO SCALE)	LOCKABLE COVER	URFACE
VENTED CAP		
WELL PROTECTOR	STICKUP_3,0'_	793.1' MSL
DEPTH TO TOP OF BENTONITE SEAL 12.2' DEPTH TO TOP OF GRANULAR MATERIAL 13' RISER— TOP OF 779.8' MSL	LENGTH OF SOLID SECTION 15'	TOTAL DEPTH OF WELL
GROUT GRANULAR BACKFILL GRANULAR CAP	LENGTH OF SLOTTED SECTION 10' LENGTH OF 0.2' TAIL PIPE	STABILIZED WATER LEVEL 6.9' BELOW GROUND SURFACE MEASURED ON /28/88

TYPE II MONITORING WELL INSTALLATION RECORD			
PROJECT KINGSTON FOSSIL PLANT	JOR NUMBER K-88195		
	INSTALLATION DATE 9-21-88		
LOCATION PLANT COORDINATES W 24+38,N 6+			
GROUND SURFACE ELEVATION 792.9' MSL	TOP OF INNER CASING		
GRANULAR BACKFILL MATERIAL QUARTZ SAND, COARSE	SLOT SIZE		
CASING MATERIAL PVC	CASING DIAMETER 2 INCHES		
DRILLING TECHNIQUE AIRWATER ROTARY	DRILLING CONTRACTOR HIGHLAND DRILLING		
BOREHOLE DIAMETER 8 INCHES	FIELD REPRESENTATIVE H.W. ROBINSON		
LOCKABLE COVER ? YES	KEY CODE/COMBINATION		
RISER MATERIAL PVC			
COMMENTS			
(NOT TO SCALE)	GROUND SURFACE		
WELL PROTECTOR —	STICKUP 3.0' 792.8' MSL		
DEPTH TO TOP OF BENTONITE SEAL 29.0' DEPTH TO TOP OF GRANULAR MATERIAL 31.5' RISER TOP OF 778.9' MSL	LENGTH OF SOLID SECTION 34' TOTAL DEPTH OF WELL 44.2'		
GRANULAR BACKFILL CAP	STABILIZED WATER LEVEL 5.7' BELOW GROUND SURFACE MEASURED OR/24/88 LENGTH OF 0.2' TAIL PIPE		

TYPE I	I MONITORING W	'ELL INSTALLATION F	RECORD
PROJECT KINGSTON FOSSIL PI	ANT	JOB NUMBER K-881	95
WELL NUMBER	•	INSTALLATION DATE	10-5-88
LOCATION PLANT COORDINATE	S W 27+87,N 40+08		
GROUND SURFACE ELEVATION	756.6	TOP OF INNER CASING	768.6°
GRANULAR BACKFILL MATERIAL	QUARTZ SAND, COARSE	SLOT SIZE01	0 INCH
CASING MATERIALP	vc .	CASING DIAMETER	2 INCHES
DRILLING TECHNIQUE POWER	AUGER	DRILLING CONTRACTOR	HIGHLAND DRILLING
BOREHOLE DIAMETER 11	NCHES	FIELD REPRESENTATIVE	H.W. ROBINSON
LOCKABLE COVER ?	YES	KEY CODE/COMBINATION	2043
RISER MATERIALPVC		SCREEN MATERIAL	
COMMENTS			
	PROTECTOR	STICKUP 3.0'	
DEPTH TO TOP OF GRANULAR MATERIAL 51.0'	RISER	LENGTH OF SOLID SECTION 52.2'	TOTAL DEPTH OF WELL 64.7'
GROUT	SCREEN	LENGTH OF SLOTTED SECTION 10.0'	STABILIZED WATER LEVEL 8.4' BELOW GROUND SURFACE MEASURED ON 0/8/88
GRANULAR BACKFILL	CAP	LENGTH OF	

TARE IL MONITORINIO MATULI INICIALI ATIONI RECORD				
TYPE II MONITORING WELL INSTALLATION RECORD				
PROJECT KINGSTON FOSSIL PLANT				
	INSTALLATION DATE 9-23-88			
LOCATION PLANT COORDINATES W 27+	80.N 40+34			
GROUND SURFACE ELEVATION	TOP OF INNER CASING 768.1' MSL			
GRANULAR BACKFILL MATERIAL QUARTZ SAND, COARS	SLOT SIZE010 INCHES			
CASING MATERIALPVC	CASING DIAMETER 2 INCHES			
DRILLING TECHNIQUE AUGER AND AIR ROTARY	DRILLING CONTRACTOR HIGHLAND DRILLING			
BOREHOLE DIAMETER 8" AUGER,5 7/8" AIR ROTARY	FIELD REPRESENTATIVE H.W. ROBINSON			
LOCKABLE COVER ? YES	KEY CODE/COMBINATION			
RISER MATERIAL PVC	SCREEN MATERIAL PVC			
COMMENTS				
(NOT TO SCALE)				
,	_ LOCKABLE COVER			
·	*			
	GROUND SURFACE			
VENTED CAP	STICKUP _2.7'			
\(\text{\tint{\text{\tint{\text{\tint{\tinit{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\texi}}\tint{\text{\tin}\tint{\text{\text{\text{\text{\text{\text{\text{\text{\texi}}\tint{\text{\text{\text{\text{\texi}}\tint{\text{\tiint{\text{\text{\text{\text{\text{\text{\texi}\tint{\text{\texi}\text{	765.4' MSL			
DEPTH TO TOP OF				
BENTONITE SEAL 57.8'				
	TOTAL DEPTH			
DEPTH TO TOP OF	LENGTH OF OF WELL			
GRANULAR MATERIAL 50.3'	SOLID SECTION 73.0'			
	62.3'			
RISER	-			
TOP OF 699.4' MSL				
ROCK GOS.4 MICE	STABILIZED WATER			
GROUT	LEVEL 8.5' BELOW GROUND			
	SURFACE			
BENTONITE	LENGTH OF SLOTTED SECTION MEASURED ON 0/5/88			
	10.0'			
GRANULAR BACKFILL CAP	LENGTH OF			
				

TYPE II MONITORING WELL INSTALLATION RECORD PROJECT Kingston Fossil Plant **WELL NUMBER** 17 INSTALLATION DATE July 8, 1992 LOCATION Plant coordinates W 1+81, N 58+80 GROUND SURFACE ELEVATION 762.42' MSL TOP OF INNER CASING 765.42' MSL GRANULAR BACKFILL MATERIAL Sand 0.010 * SLOT SIZE CASING MATERIAL 4" SCH 40 PVC CASING DIAMETER 4" SCH 40 PVC DRILLING TECHNIQUE HSA DRILLING CONTRACTOR John Voekel, Law Engr. FIELD REPRESENTATIVE BOREHOLE DIAMETER 4.25" HSA (ID) Mel Wagner LOCKABLE COVER ? FILTER CLOTH AROUND SCREEN? Yes The 4.25" HSA was used first with the continuous sampling barrel. Next, the 6.25" (ID) auger was COMMENTS used to provide room for the sand pack around the screen. (NOT TO SCALE) LOCKABLE COVER GROUND SURFACE -**VENTED CAP** -STICKUP ___3'__ WELL PROTECTOR SLOPED CONCRETE / DEPTH TO TOP OF BENTONITE SEAL 3' (from ground surface) TOTAL DEPTH DEPTH TO TOP OF OF WELL LENGTH OF **GRANULAR MATERIAL** 37.0 SOLID SECTION (from ground surface) 5' (from ground surface) 10' (including stickup) RISER ____10' (including stickup) STABILIZED WATER LEVEL 6.3' BELOW GROUND GROUT SURFACE MEASURED ON **LENGTH OF** SCREEN 30' July 10, 1992 SLOTTED SECTION BENTONITE 30' GRANULAR **CAP** 0.3' BACKFILL

TYPE II MON	IITORING WEL	L INSTALLATION RECO	RD
PROJECT Kingston F	ossil Plant		
WELL NUMBER 1	8	INSTALLATION DATE	July 10, 1992
LOCATION Plant coordinates	W 1+70, N	58+98	
GROUND SURFACE ELEVATION	764.32' MSL	TOP OF INNER CASING	767.32' MSL
GRANULAR BACKFILL MATERIAL	Sand	SLOT SIZE	0.010 "
CASING MATERIAL 4" S	SCH 40 PVC	CASING DIAMETER	4" SCH 40 PVC
DRILLING TECHNIQUE	HSA	DRILLING CONTRACTOR Jo	hn Voekel, Law Engr.
BOREHOLE DIAMETER 4.	25" HSA (ID)	FIELD REPRESENTATIVE	Mel Wagner
LOCKABLE COVER ?	Yes	FILTER CLOTH AROUND SCREE	N?No
COMMENTS The 4.25" HSA wa	s used first with the c	ontinuous sampling barrel. Next,	the 6.25" (ID) auger was
used to provide roo	om for the sand pack	around the screen.	
(NOT TO SCALE)		LOCKABLE COVER	
•		GROUND S	URFACE —
VEN	ED CAP		
WELL PRO	TECTOR	STICKUP 3'	
SLOPED CO	ONCRETE (1
DEPTH TO TOP OF BENTONITE SEAL			·
1.1' (from ground surface)			
DEPTH TO TOP OF		LENGTH OF	TOTAL DEPTH OF WELL
GRANULAR MATERIAL 3.1' (from ground surface)		SOLID SECTION 6.4'	38.7' (from ground surface)
	unu.	(including stickup)	
R	ISER 6.4'		
GROUT	SCREEN 35'	LENGTH OF	STABILIZED WATER LEVEL BELOW GROUND SURFACE MEASURED ON
BENTONITE		SLOTTED SECTION 35'	
GRANULAR BACKFILL	CAP 0.3'	LENGTH OF TAIL PIPE 0.3'	

<u> </u>			
TYPE II MONITORING WELL INSTALLATION RECORD			
PROJECT Kin	gston Fossil Plant		
WELL NUMBER	19	INSTALLATION DATE	July 13, 1992
LOCATION Plant coord	dinates W 1+55,	N 59+21	
GROUND SURFACE ELEVA	763.90' MSL	TOP OF INNER CASING	766.90' MSL
GRANULAR BACKFILL MAT	ERIAL Sand	SLOT SIZE	0.010 "
CASING MATERIAL	4" SCH 40 PVC	CASING DIAMETER	4" SCH 40 PVC
DRILLING TECHNIQUE	HSA	DRILLING CONTRACTOR	John Voekel, Law Engr.
BOREHOLE DIAMETER	4.25" HSA (ID)	FIELD REPRESENTATIVE	Mel Wagner
LOCKABLE COVER ?	Yes	FILTER CLOTH AROUND SCRE	EEN? No
COMMENTS The 4.25"	ISA was used first with the	continuous sampling barrel. Next	t, the 6.25" (ID) auger was
used to pro	vide room for the sand pac	ck around the screen.	
(NOT TO SCALE)		- LOCKABLE COVER	
•	_	GROUND	SURFACE -
	VENTED CAP	STICKUP 3'	
	ELL PROTECTOR		*
	LOPED CONCRETE /		
DEPTH TO TOP OF BENTONITE SEAL			,
2.5' (from ground surface)			TOTAL DEPTH
DEPTH TO TOP OF	anna .	LENGTH OF	OF WELL
GRANULAR MATERIAL 4.5' (from ground surface)		SOLID SECTION 10'	33' (from ground surface)
<u> </u>		(including stickup)	
	RISER 10'		
	(including stickup)		
			STABILIZED WATER
GROUT		L	BELOW GROUND
	SCREEN 25	LENGTH OF	SURFACE MEASURED ON
BENTONITE		SLOTTED SECTION	
		25'	!
GRANULAR	CAP 0.3'	25' LENGTH OF TAIL PIPE 0.3'	

TYPE II MONITORING WELL INSTALLATION RECORD			
PROJECT Kir	ngston Fossil Plant		
WELL NUMBER	20	INSTALLATION DATE	July 10, 1992
LOCATION Plant coor	dínates W 1+24, N	159+67	
GROUND SURFACE ELEVA	750.06' MSL	TOP OF INNER CASING	753.06' MSL
GRANULAR BACKFILL MAT	FERIAL Sand	SLOT SIZE	0.010 *
CASING MATERIAL	4" SCH 40 PVC	CASING DIAMETER	4" SCH 40 PVC
DRILLING TECHNIQUE	HSA	DRILLING CONTRACTOR Joh	nn Voekel, Law Engr.
BOREHOLE DIAMETER	4.25" HSA (ID)	FIELD REPRESENTATIVE	Mel Wagner
LOCKABLE COVER ?	Yes	FILTER CLOTH AROUND SCREEN	l? <u>No</u>
COMMENTS The 4.25"	HSA was used first with the o	continuous sampling barrel. The 6.2	5" HSA was not used
because th	e well was drilled in a clay-fi	lled berm.	
(NOT TO SCALE)	VENTED CAP VELL PROTECTOR	GROUND SU	RFACE
DEPTH TO TOP OF BENTONITE SEAL 2' (from ground surface) DEPTH TO TOP OF GRANULAR MATERIAL 4' (from ground surface)	RISER 10' (including stickup)	LENGTH OF SOLID SECTION 10' (including stickup)	TOTAL DEPTH OF WELL 17' (trom ground surface)
GROUT BENTONITE GRANULAR BACKFILL	SCREEN 10'	LENGTH OF SLOTTED SECTION 10' LENGTH OF TAIL PIPE 0.3'	STABILIZED WATER LEVEL 8.3' BELOW GROUND SURFACE MEASURED ON July 13,1992

APPENDIX III GROUNDWATER QUALITY DATA

Table 1. Kingston Groundwater Quality Summary. Data from 89/01/11 to 94/12/06.

WELL I.D.	PARAMETER	N		MEAN	MEDIAN	MIN	MAX	NUMBER OF EXCEEDANCES
2	ORP (MV)		18	-49.3	-78.5	-120	135	•
2	CONDUCTIVITY (UMHOS/CM)		18	840.7	847	756	914	•
2	DISSOLVED OXYGEN (MG/L)		18	0.3	0.3	0.1		•
2	TEMPERATURE (DEG C)		18	16.2	16.3	13.6	17.7	•
2	COD (MG/L)		1	22	22	22	. 22	•
2	PH (STANDARD UNITS)		18	6.6	6.6	6.3	6.8	2
2	ALKALINITY (MG/L)		17	430.8	470	42	535	•
2	PHEN-PH ALKALINITY (MG/L)		3	0	0	0	0	•
2	ACIDITY (MG/L)		9	199.6	223	0	282	•
2	CO2 ACIDITY (MG/L)		6	199.1	225.5	52	246	•
2	CO2 (MG/L)		7	196.9	196	154	248	•
2	CA/MG HARDNESS (MG/L)		20	415.9	411.5	377		
2	NITRATE+NITRITE NITROGEN (MG/L)		13	0.1	0	0		
2	TOTAL ORGANIC CARBON (MG/L)		20	6.8				
2	TOTAL INORGANIC CARBON (MG/L)		20	148.2				
2	SULFIDE (MG/L)		9	0.1				
2	CALCIUM (MG/L)		20	97.6				
2	DISSOLVED CALCIUM (MG/L)		3	102				
2	MAGNESIUM (MG/L)		20	41.8			52	1.
2	DISSOLVED MAGNESIUM (MG/L)		3	44			48	
2	SODIUM (MG/L)		20	5.9				
2	POTASSIUM (MG/L)		20	3.5	2.8	2.2		
2	CHLORIDE (MG/L)		20	3.5				0
2	SULFATE (MG/L)		20	39.2				
2	FLUORIDE (MG/L)		13	0.2				
2	ALUMINUM (UG/L)		20	7785				
2	DISSOLVED ALUMINUM (UG/L)		3	56.7		50		
2	ANTIMONY (UG/L)		4	1.3				
2	ARSENIC (UG/L)		20	225.9				
2	DISSOLVED ARSENIC (UG/L)		3	176.7				
2	BARIUM (UG/L)		18	551.1				
2	DISSOLVED BARIUM (UG/L)		3	433.3				
2	BERYLLIUM (UG/L)		4	2.3				
2	BORON (UG/L)		20	4095				
2 2	DISSOLVED BORON (UG/L)		3	2433.3				•
2	CADMIUM (UG/L)		20	0.4				
2	DISSOLVED CADMIUM (UG/L)		3	0.7	0.6	0.1		
2	CHROMIUM (UG/L)		18	7.2	6	2	17	0
2	DISSOLVED CHROMIUM (UG/L)		3	1	_		-	
2	COPPER (UG/L)		20	18.5				
2	DISSOLVED COPPER (UG/L)		3	20				
2 2	IRON - TOTAL (UG/L)		20	48200				
2	DISSOLVED IRON (UG/L)		3	35666.7				
2	LEAD (UG/L)		18	11.6				
2	DISSOLVED LEAD (UG/L)		3	1	1	1	1	0

2	LITHIUM (UG/L)	13	30	30	10	70 .	
2	DISSOLVED LITHIUM (UG/L)	3	20	20	20	20 .	
2	MANGANESE (UĞ/L)	20	5075	5200	2100	6500	20
2	DISSOLVED MANGANESE (UG/L)	3	4966.7	5100	4500	5300	3
2	MOLYBDENUM (UG/L)	6	63.3	35	20	180 .	
2	DISSOLVED MOLYBDENUM (UG/L)	1	20	20	20	20 .	
2	MERCURY (UG/L)	1	0.2	0.2	0.2	0.2	0
2	NICKEL (UG/L)	4	10.3	8	7	18	0
2	SELENIUM (UG/L)	13	1.2	1	. 1	3	0
2	DISSOLVED SELENIUM (UG/L)	2	1	1	1	1	0
2	SILICON (UG/L)	16	21981.3	21000	8700	36000 .	
2	DISSOLVED SILICON (UG/L)	3	15666.7	16000	15000	16000 .	
2	STRONTIUM (UG/L)	18	1644.4	1500	1200	2700 .	
2	DISSOLVED STRONTIUM (UG/L)	3	1366.7	1400	1200	1500 .	
2	VANADIUM (UG/L)	18	17.2	10	10	30 .	
2	DISSOLVED VANADIUM (UG/L)	3	10	10	10	10 .	
2	ZINC (UG/L)	20	98.5	95	. 10	330	0
2	DISSOLVED ZINC (UG/L)	3	20	20	10	30	0
2	TOTAL DISSOLVED SOLIDS (MG/L)	20	428	455	240	540	2
2	TOTAL SUSPENDED SOLIDS (MG/L)	15	393.9	400	12	1000 .	
2	WATER SURF. FR MP (M)	21	3	3	2.5	5.1 .	
2	WATER SURF. ELVN (M, MSL)	12	230.3	230.9	224.7	231.3°.	
2	WATER SURF. ELVN (FT, MSL)	12	755.5	757.5	737.3	758.8 .	

Table 1. Kingston Groundwater Quality Summary. Data from 89/01/11 to 94/12/06.

WELL I.D.	PARAMETER	N		MEAN	MEDIAN	MIN	MAX	NUMBER OF EXCEEDANCES
1.0.	I VIVVIAIR I RIV	14		IAITVIA	MILDIVIA	IVIIIA	WIFT	LAGLEDANOLO
4A	ORP (MV)		18	349.8	373.5	170	632	
4A	CONDUCTIVITY (UMHOS/CM)		19	2478.6	2825	1.5	3500	
4A	DISSOLVED OXYGEN (MG/L)		19	0.7	0.6	0	1.7	•
4A	TEMPERATURE (DEG C)		19	16.6	16.3	13.6	21.2	
4A	PH (STANDARD UNITS)		19	3.5		2.6	5.6	
4A	ALKALINITY (MG/L)		18	14.3			179	
4 A	PHEN-PH ALKALINITY (MG/L)		6	0			0	
4A	ACIDITY (MG/L)		7	497.9			830	
4A	CO2 ACIDITY (MG/L)		7	679.3			943	
4A	CO2 (MG/L)		. 6	608.7			730	
4A	CA/MG HARDNESS (MG/L)		19	1089			1285.6	
4A	NITRATE+NITRITE NITROGEN (MG/L)		10	0.2			0.9	
4A	TOTAL ORGANIC CARBON (MG/L)		18	1.6			2.6	
4A	TOTAL INORGANIC CARBON (MG/L)		18	31.4		6	90	
4A	SULFIDE (MG/L)		6	0		0	0	
4A	CALCIUM (MG/L)		19	301.6			360	
4A	DISSOLVED CALCIUM (MG/L)		5	302			340	
4A	MAGNESIUM (MG/L)		19	81.6			101	
4A	DISSOLVED MAGNESIUM (MG/L)		5	77			96	
4A	SODIUM (MG/L)		19	9.1			12	
4A	POTASSIUM (MG/L)		19	5.4			8	
4A	CHLORIDE (MG/L)		19	3.4		1	8	
4A	SULFATE (MG/L)		19	1626.3			2400	
4A	FLUORIDE (MG/L)		18	1.1			3.2	
4A	ALUMINUM (UG/L)		19	8752.6			17000	
4A	DISSOLVED ALUMINUM (UG/L)		5	8700			9800	
4A	ANTIMONY (UG/L)		5	1.4		1	3	
4A	DISSOLVED ANTIMONY (UG/L)		1	1		1	1	0
4A	ARSENIC (UG/L)		19	3.1			13	
4A	DISSOLVED ARSENIC (UG/L)		5	3.6			13	
4A	BARIUM (UG/L)		17	107.1			470	
4A	DISSOLVED BARIUM (UG/L)		5	106			300	
4A	BERYLLIUM (UG/L)		5	1.6			2	
4A	DISSOLVED BERYLLIUM (UG/L)		1	1			1	
4A	BORON (UG/L)		19	1372.6			7300	
4A	DISSOLVED BORON (UG/L)		5	852			1400	
4A	CADMIUM (UG/L)		19	3.5			5.4	
4A	DISSOLVED CADMIUM (UG/L)		5	3.8			6.1	
4A	CHROMIUM (UG/L)		17	5.3			24	
4A	DISSOLVED CHROMIUM (UG/L)		5	1.4			2	
4A	COPPER (UG/L)		19	37.9			170	
4A	DISSOLVED COPPER (UG/L)		5	76			190	
4A	IRON - TOTAL (UG/L)		19	318211			490000	
4A	DISSOLVED IRON (UG/L)		5	334000	280000	250000	470000	5

4A	LEAD (UG/L)	17	14	11	1	38	0
4 A	DISSOLVED LEAD (UG/L)	5	7.2	. 5	2	12	0
4A	LITHIUM (UG/L)	12	24.8	30	10	30 .	
4A	DISSOLVED LITHIUM (UG/L)	5	22.8	24	10	40 .	
4A	MANGANESE (UG/L)	19	53473.7	56000	19000	87000	19
4A	DISSOLVED MANGANESE (UG/L)	5	53200	50000	42000	67000	5
4A	MOLYBDENUM (UG/L)	. 8	20	20	20	20 .	
4A	DISSOLVED MOLYBDENUM (UG/L)	5	20	20	- 20	20 .	
4A	NICKEL (UG/L)	6	124.7	115	98	180	4
4A	DISSOLVED NICKEL (UG/L)	1	52	52	52	52	0
4A	SELENIUM (UG/L)	10	1	1	1	1	0
4A	SILICON (UG/L)	14	17407.1	18500	8800	22000 .	
4A	DISSOLVED SILICON (UG/L)	4	20500	21000	18000	22000 .	
4A	STRONTIUM (UG/L)	17	1282.4	1300	900	1600 .	
4A	DISSOLVED STRONTIUM (UG/L)	5	1300	1400	1000	1500 .	
4A	VANADIUM (UG/L)	17	24.1	10	10	90 .	
4A	DISSOLVED VANADIUM (UG/L)	5	14	10	10	30 .	
4 A	ZINC (UG/L)	19	727.4	690	440	1200	0
4A	DISSOLVED ZINC (UG/L)	5	780	660	520	1200	. 0
4A	TOTAL DISSOLVED SOLIDS (MG/L)	19	2678.9	2800	1700	3600	19
4A	TOTAL SUSPENDED SOLIDS (MG/L)	13	63.8	27	10	240 .	
4A	WATER SURF. FR MP (M)	21	4.4	4.6	2.3	6.3 .	
4A	WATER SURF. ELVN (M, MSL)	10	225.7	225.8	223.4	227.9 .	
4A	WATER SURF, ELVN (FT, MSL)	10	740.5	740.8	733.1	747.8 .	

Table 1. Kingston Groundwater Quality Summary. Data from 89/01/11 to 94/12/06.

WELL I.D.	PARAMETER	N		MEAN	MEDIAN	MIN	MAX	NUMBER OF EXCEEDANCES
	av.							
4B	ORP (MV)		21	260.3			470	
4B	CONDUCTIVITY (UMHOS/CM)		21	1072.3				
4B	DISSOLVED OXYGEN (MG/L)		21	4.4				
4B	TEMPERATURE (DEG C)		20					
4B	PH (STANDARD UNITS)		21	6.6				
4B	ALKALINITY (MG/L)		20					
4B	PHEN-PH ALKALINITY (MG/L)		6				0	
4B	ACIDITY (MG/L)		8				87	
4B	CO2 ACIDITY (MG/L)		9	83.7				
4B	CO2 (MG/L)		8				76.6	
4B	CA/MG HARDNESS (MG/L)		21	645.8				
4B	NITRATE+NITRITE NITROGEN (MG/L)		12				1.3	
4B	TOTAL ORGANIC CARBON (MG/L)		20				6.4	
4B	TOTAL INORGANIC CARBON (MG/L)		21	89.5			150	
4B	SULFIDE (MG/L)		8	0			0	
4B	CALCIUM (MG/L)		21	222.9				
4B	DISSOLVED CALCIUM (MG/L)		7	235.7				
4B	MAGNESIUM (MG/L)		21	21.7			32	
4B	DISSOLVED MAGNESIUM (MG/L)		7	21.9		16	31	
4B	SODIUM (MG/L)		21	2.9				
4B	POTASSIUM (MG/L)		21	4	3.7	2.3		
4B	CHLORIDE (MG/L)		21	2.9			7	0
4B	SULFATE (MG/L)		21	441.6	430	54	800	20
4B	FLUORIDE (MG/L)		20	0.2	0.2	0.1	0.7	0
4B	ALUMINUM (UG/L)		21	1016.2	400	50	4200	16
4B	DISSOLVED ALUMINUM (UG/L)		7	51.4	50	50	60	0
4B	ANTIMONY (UG/L)		5	1.6	1	1	4	0
4B	DISSOLVED ANTIMONY (UG/L)		1	1	1	1	1	0
4B	ARSENIC (UG/L)		21	3.6	2	. 1	11	0
4B	DISSOLVED ARSENIC (UG/L)		7	1.2	<u> </u>	1	2	0
4B	BARIUM (UG/L)		19	39.5	30	10	80	0
4B	DISSOLVED BARIUM (UG/L)		7	20	10	10	40	. 0
4B	BERYLLIUM (UG/L)		5	1	1	1	1	0
4B	DISSOLVED BERYLLIUM (UG/L)		1	1	1	1	1	0
4B	BORON (UG/L)		21	533.3	500	500	1200	
4B	DISSOLVED BORON (UG/L)		7	500	500	500	500	
4B	CADMIUM (UG/L)		20	0.3			0.8	0
4B	DISSOLVED CADMIUM (UG/L)		7					
4B	CHROMIUM (UG/L)		18				58	
4B	DISSOLVED CHROMIUM (UG/L)		7				1	
4B	COPPER (UG/L)		21	16.7				
4B	DISSOLVED COPPER (UG/L)		7					
4B	IRON - TOTAL (UG/L)		21	5077.6				
4B	DISSOLVED IRON (UG/L)		7					
	· · · ·							

4B	LEAD (UG/L)	19	6.2	3	1	38	0
4B	DISSOLVED LEAD (UG/L)	7	1	1	1	1	0
4B	LITHIUM (UG/L)	14	10	10	10	10 .	
4B	DISSOLVED LITHIUM (UG/L)	7	10	10	10	10 .	
4B	MANGANESE (UG/L)	21	3171.9	2600	760	11000	21
4B	DISSOLVED MANGANESE (UG/L)	7	382.1	420	5	800	6
4B	MOLYBDENUM (UG/L)	8	20	20	20	20 .	
4B	DISSOLVED MOLYBDENUM (UG/L)	5	20	20	20	20 .	
4B	NICKEL (UG/L)	6	14.3	15.5	. 3	23	0
4B	DISSOLVED NICKEL (UG/L)	1	2	2	2	2	0
4B	SELENIUM (UG/L)	12	1	1	1	1	0
4 B	DISSOLVED SELENIUM (UG/L)	2	1	1	1	. 1	0
4B	SILICON (UG/L)	16	7825	7050	3500	13000 .	
4B	DISSOLVED SILICON (UG/L)	6	8116.7	7750	6400	11000 .	
4B	STRONTIUM (UG/L)	19	357.9	360	240	500 .	
4 B	DISSOLVED STRONTIUM (UG/L)	7	314.3	280	190	490 .	
4B	VANADIUM (UG/L)	19	10	10	10	10 .	
4B	DISSOLVED VANADIUM (UG/L)	7	10	10	10	10 .	
4B	ZINC (UG/L)	21	46.7	40	10	110	0
4B	DISSOLVED ZINC (UG/L)	7	15.7	10	10	30	0
4B	TOTAL DISSOLVED SOLIDS (MG/L)	21	811	800	590	1200	21
4B	TOTAL SUSPENDED SOLIDS (MG/L)	15	47.2	15	6	420 .	
4B	WATER SURF. FR MP (M)	23	4.1	3.2	1.6	10.1 .	
4B	WATER SURF. ELVN (M, MSL)	11	225.2	224.9	223.4	227.3 .	
4B	WATER SURF. ELVN (FT, MSL)	11	738.9	737.8	732.9	745.7 .	

Table 1. Kingston Groundwater Quality Summary. Data from 89/01/11 to 92/09/01

WELL I.D.	PARAMETER	N		MEAN	MEDIAN	MIN	MAX	NUMBER OF EXCEEDANCES
5	ORP (MV)		15	91.1	60	20	320	
5	CONDUCTIVITY (UMHOS/CM)		15	2949.1	3300		4530	
5	DISSOLVED OXYGEN (MG/L)		15	0.4	0.4		0.9	
5	TEMPERATURE (DEG C)		15	17.5	17	_	23	
5	PH (STANDARD UNITS)		15	5.6	5.6			15
5	ALKALINITY (MG/L)		13	84.4	80		195	
5	PHEN-PH ALKALINITY (MG/L)		2	0	0		0	
5	ACIDITY (MG/L)		5	1194.4	1500	0	1692	
5	CO2 ACIDITY (MG/L)		4	1085.3	1090	365	1796	•
5	CO2 (MG/L)		4	1314	1346.5	1074	1489	
5	CA/MG HARDNESS (MG/L)		15	1079.7	1111	572.9	1352	
5	NITRATE+NITRITE NITROGEN (MG/L)		10	0.6	0.1	0	3.6	0
5	TOTAL ORGANIC CARBON (MG/L)		14	3.6	3.5	1.1	5.9	
5	TOTAL INORGANIC CARBON (MG/L)		14	37.7	33	4	130	•
5	SULFIDE (MG/L)		6	0	0	0	0	
5	CALCIUM (MG/L)		15	285.3	290	180	360	•
5	DISSOLVED CALCIUM (MG/L)		4	285	290			
5	MAGNESIUM (MG/L)		15	89.2	95		120	
5	DISSOLVED MAGNESIUM (MG/L)		4	71.8			110	N. Contraction of the Contractio
5	SODIUM (MG/L)		14	9	9.2		12	
5	POTASSIUM (MG/L)		14	6.2	5.7	3.5	12	
5	CHLORIDE (MG/L)		14	3.4	4		6	0
5	SULFATE (MG/L)		15	2189.3	2400		3200	
5	FLUORIDE (MG/L)		10	0.2	0.1	0.1	0.8	
5	ALUMINUM (UG/L)		15	4657.3	1900		22000	
5	DISSOLVED ALUMINUM (UG/L)		4	50				
5	ARSENIC (UG/L)		14	6.9	4			
5	DISSOLVED ARSENIC (UG/L)		4	7.3	7.5			
5	BARIUM (UG/L)		12	305.8	330			
5	DISSOLVED BARIUM (UG/L)		4	222.5				
5	BORON (UG/L)		14	6064.3				
5	DISSOLVED BORON (UG/L)		4	2125				
5	CADMIUM (UG/L)		14	0.4	0.3		1.3	
5	DISSOLVED CADMIUM (UG/L)		4				0.6	
5	CHROMIUM (UG/L)		12	3.4		_	11	0
5	DISSOLVED CHROMIUM (UG/L)		4	1	1	1	1	0
5	COPPER (UG/L)		15	36	30			
5	DISSOLVED COPPER (UG/L)		4	17.5				
5	IRON - TOTAL (UG/L)		15		1100000			
5	DISSOLVED IRON (UG/L)		4	588000				
5	LEAD (UG/L)		12	7.1	5		19	
5 5	DISSOLVED LEAD (UG/L)		4	1 1 5	. 1		1	_
5 5	LITHIUM (UG/L)		8	15.5				
5 5	DISSOLVED LITHIUM (UG/L) MANGANESE (UG/L)		4	19				
5	IVIAINGANESE (UG/L)		15	54000	51000	40000	91000	15

WELL								NUMBER OF
I.D.	PARAMETER	Ν		MEAN	MEDIAN	MIN	MAX	EXCEEDANCES
5	DISSOLVED MANGANESE (UG/L)		4	67000	66500	44000	91000	4
5	MOLYBDENUM (UG/L)		4	35	20	20	80	•
5	DISSOLVED MOLŸBDENUM (UG/L)		4	67.5	20	20	210	•
5	NICKEL (UG/L)		1	33	33	33	33	0
5	SELENIUM (UG/L)		10	. 1	1	1	1	0
5	SILICON (UG/L)		14	7821.4	4250	2100	36000	
5	DISSOLVED SILICON (UG/L)		. 4	10100	10100	4200	16000	•
5	STRONTIUM (UG/L)		12	2094.2	2300	690	2900	
5	DISSOLVED STRONTIUM (UG/L)		4	1825	1520	660	3600	•
5	VANADIUM (UG/L)		12	103.3	35	10	290	•
5	DISSOLVED VANADIUM (UG/L)		4	60	10	10	210	•
5	ZINC (UG/L)		15	149.3	140	30	310	0
5	DISSOLVED ZINC (UG/L)		4	62.5	40	20	150	0
5	TOTAL DISSOLVED SOLIDS (MG/L)		14	4121.4	4350	1600	5300	14
5	TOTAL SUSPENDED SOLIDS (MG/L)		8	370.3	145	82	1500	
5	WATER SURF. FR MP (M)		17	4.2	4.6	1.4	6.3	•
5	WATER SURF. ELVN (M, MSL)		10	225.4	225.4	223.9	226.3	
5	WATER SURF. ELVN (FT. MSL)		10	739.6	739.4	734.7	742.3	•

Table 1. Kingston Groundwater Quality Summary. Data from 89/03/28 to 92/08/20

WELL I.D.	PARAMETER	N		MEAN	MEDIAN	MIN	MAX	NUMBER OF EXCEEDANCES
5A	ORP (MV)		9	235.7	266	54	369	
5A	CONDUCTIVITY (ÜMHOS/CM)		9	774.9			2310	
5A	DISSOLVED OXYGEN (MG/L)		9	1.9			7	
5A	TEMPERATURE (DEG C)		9	17.6			19.4	
5A	PH (STANDARD ÙNITS)		9	5			5.7	
5A	ALKALINITY (MG/L)		6	15.7			27	
5A	PHEN-PH ALKALINITY (MG/L)		1	0			0	
5A	ACIDITY (MG/L)		6	73.2			112	
5A	CO2 ACIDITY (MG/L)		1	85	85	85	85	
5A	CO2 (MG/L)		5	77.5	70	61	99	
5A	CA/MG HARDNESS (MG/L)		9	275.8	137	83	979.6	
5A	NITRATE+NITRITE NITROGEN (MG/L)		6	0	0	0	0.1	0
5A	TOTAL ORGANIC CARBON (MG/L)		7	1.2	0.9	0.3	3.8	
5A	TOTAL INORGANIC CARBON (MG/L)		7	24.8	12	3.3	98	
5A	SULFIDE (MG/L)		5	0	0	0	0	
5A	CALCIUM (MG/L)		9	81.2	35	22	300	•
5A	DISSOLVED CALCIUM (MG/L)		1	40	40	40	40	
5A	MAGNESIUM (MG/L)		9	17.7	12	6.9	56	•
5A	DISSOLVED MAGNESIUM (MG/L)		1	13	13	13	13	•
5A	SODIUM (MG/L)		7	6.8	6.8	6.4	7.2	.•
5A	POTASSIUM (MG/L)		7	1.8	1.8	1.8	1.9	•
5A	CHLORIDE (MG/L)		7	1.7	2	1	2	0
5A	SULFATE (MG/L)		8	343.3	160	96	1700	1
5A	FLUORIDE (MG/L)		6	0.1	0.1	0.1	0.1	0
5A	ALUMINUM (UG/L)		9	29998.9	180	50	250000	2
5A	DISSOLVED ALUMINUM (UG/L)		1	50	50	50	.50	0
5A	ARSENIC (UG/L)		7	2.9			8	0
5A	DISSOLVED ARSENIC (UG/L)		1	2	2	2	2	0
5A	BARIUM (UG/L)		6	78.3	80	60	90	0
5A	DISSOLVED BARIUM (UG/L)		1	50	50	50	50	. 0
5A	BORON (UG/L)		7	500	500	500	500	•
5A	DISSOLVED BORON (UG/L)		1	500			500	
5A	CADMIUM (UG/L)		7	0.6			1.2	
5A	DISSOLVED CADMIUM (UG/L)		1	0.5			0.5	0
5A	CHROMIUM (UG/L)		6	2			3	0
5A	DISSOLVED CHROMIUM (UG/L)		1	1	1		1	0
5A	COPPER (UG/L)		9	41.1	10		190	
5A	DISSOLVED COPPER (UG/L)		1	10			10	
5A	IRON - TOTAL (UG/L)		9	140156			820000	
5A	DISSOLVED IRON (UG/L)		1	7500			7500	
5A	LEAD (UG/L)		6	5.3			10	
5A	DISSOLVED LEAD (UG/L)		1	1	1		1	0
5A .	LITHIUM (UG/L)		5	10			10	
5A	DISSOLVED LITHIUM (UG/L)		1	10			10	
5A	MANGANESE (UG/L)		9	9566.7			37000	
5A	DISSOLVED MANGANESE (UG/L)		1	3200	3200	3200	3200	1

WELL I.D.	PARAMETER	N		MEAN	MEDIAN	MIN	MAX	NUMBER OF EXCEEDANCES
5A	MOLYBDENUM (UG/L)		1	20	20	20	20	•
5A	DISSOLVED MOLYBDENUM (UG/L)		1	20	20	20	20	•
5A	SELENIUM (UG/L)		6	1	1	1	1	0
5A	SILICON (UG/L)		7	4742.9	5500	2400	6000	•
5A	DISSOLVED SILICON (UG/L)		1	5200	5200	5200	5200	•
5A	STRONTIUM (UG/L)		6	268.3	270	220	300	•
5A	DISSOLVED STRONTIUM (UG/L)		1	50	50	50	50	•
5A	VANADIUM (UG/L)		6	16.7	10	- 10	40	•
5A	DISSOLVED VANADIUM (UG/L)		1	10	10	10	10	•
5A	ZINC (UG/L)		9	355.6	90	10	1300	0
5A	DISSOLVED ZINC (UG/L)		1	74	74	74	74	0
5A	TOTAL DISSOLVED SOLIDS (MG/L)		7	250	250	200	360	0
5A	TOTAL SUSPENDED SOLIDS (MG/L)		5	12.4	12	8	16	•
5A	WATER SURF. FR MP (M)	•	11	5.9	4.3	3	8.7	•
5A	WATER SURF. ELVN (M, MSL)		6	221.6	221.1	219.6	225.3	•
5A	WATER SURF. ELVN (FT. MSL)		6	727	725.5	720.6	739	· <u>-</u>

Table 1. Kingston Groundwater Quality Summary. Data from 89/01/11 to 92/09/01

WELL I.D.	PARAMETER	N		MEAN	MEDIAN	MIN	MAX	NUMBER OF EXCEEDANCES
	17 (G (((((((((((((((((. •		IVIL/AIN	MEDI/ (IT		1000	
5B	ORP (MV)		15	199			323	
5B	CONDUCTIVITY (UMHOS/CM)		15	698				
5B	DISSOLVED OXYGEN (MG/L)		15	0.5				
5B	TEMPERATURE (DEG C)		15	16.7			19.2	
5B	PH (STANDARD UNITS)		15	5.6				
5B	ALKALINITY (MG/L)		13	30.2				
5B	PHEN-PH ALKALINITY (MG/L)		2	0			0	
5B	ACIDITY (MG/L)		6	65.8			85	
5B	CO2 ACIDITY (MG/L)		4	393.3			761	
5B	CO2 (MG/L)		. 5	69.6			74.8	
5B	CA/MG HARDNESS (MG/L)		16	278.9			921.7	
5B	NITRATE+NITRITE NITROGEN (MG/L)		11	1	0		10.3	
5B	TOTAL ORGANIC CARBON (MG/L)		15	1			3.1	
5B	TOTAL INORGANIC CARBON (MG/L)		15	32.3				
5B	SULFIDE (MG/L)		7	0			0	
5B	CALCIUM (MG/L)		16	79.2				
5B	DISSOLVED CALCIUM (MG/L)		4	137				
5B	MAGNESIUM (MG/L)		16	19.8				
5B	DISSOLVED MAGNESIUM (MG/L)		4	27	23			
5B	SODIUM (MG/L)		15	6.3	6.4	5	7.5	
5B	POTASSIUM (MG/L)		15	2.3			7	•
5B	CHLORIDE (MG/L)		15	2.3	2	1	4	0
5B	SULFATE (MG/L)		16	410				
5B	FLUORIDE (MG/L)		11	0.1			0.3	
5B	ALUMINUM (UG/L)		16	9607.5	510	50	74000	
5B	DISSOLVED ALUMINUM (UG/L)		4	90	80	50	150	0
5B	ARSENIC (UG/L)		15	4.9	1	1	47	
5B	DISSOLVED ARSENIC (UG/L)		4	1.3	1	1	2	0
5B	BARIUM (UG/L)		13	90	70	50		
5B	DISSOLVED BARIUM (UG/L)		4	50	40	30	90	0
5B	BORON (UG/L)		15	606.7	500	500	1500	•
5B	DISSOLVED BORON (UG/L)		4	655	560	500	1000	•
5B	CADMIUM (UG/L)		15	0.3	0.2	0.1	1	0
5B	DISSOLVED CADMIUM (UG/L)		4	0.3	0.1	0.1	0.7	0
5B	CHROMIUM (UG/L)		13	8.8	1	1	52	0
5B	DISSOLVED CHROMIUM (UG/L)		4	1	1	1	1	0
5B	COPPER (UG/L)		16	75.6	10	10	1000	0
5B	DISSOLVED COPPER (UG/L)		4	12.5	10	10	20	0
5B	IRON - TOTAL (UG/L)		16	89753.8	1850	660	600000	16
5B	DISSOLVED IRON (UG/L)		4	125128	125170	170	250000	- 3
5B	LEAD (UG/L)		13	6.2	2	1	35	0
5B	DISSOLVED LEAD (UG/L)		4	1	1	1	1	0
5B	LITHIUM (UG/L)		9	11.6	10	10		
5B	DISSOLVED LITHIUM (UG/L)		4	10	10	10	10	•

WELL							NUMBER OF
I.D.	PARAMETER	N	MEAN	MEDIAN	MIN	MAX	EXCEEDANCES
5B	MANGANESE (UG/L).	46	· E407 E	4550	240	20000	46
5B		16					
	DISSOLVED MANGANESE (UG/L)	4					
5B	MOLYBDENUM (UG/L)	4	20	20	20		
5B	DISSOLVED MOLYBDENUM (UG/L)	4	20	20	20	20	•
5B	NICKEL (UG/L)	1	12	12	12	12	0
5B	SELENIUM (UG/L)	11	1	1	1	- 1	0
5B	SILICON (UG/L)	15	11466.7	8000	4100	43000	
5B	DISSOLVED SILICON (UG/L)	4	7750	8450	5400	8700	
5B	STRONTIUM (UG/L)	13	426.2	290	230	1400	•
5B	DISSOLVED STRONTIUM (UG/L)	4	600	475	50	1400	•
5B	VANADIUM (UG/L)	13	22.3	10	10	80	
5B	DISSOLVED VANADIUM (UG/L)	4	10	10	10	10	
5B	ZINC (UG/L)	16	74.4	30	10	260	0
5B	DISSOLVED ZINC (UG/L)	4	42.5	40	10	80	0
5B	TOTAL DISSOLVED SOLIDS (MG/L)	15	535.3	260	180	2400	2
5B	TOTAL SUSPENDED SOLIDS (MG/L)	9	448.6	16	4	2100	
5B	WATER SURF. FR MP (M)	18	3.7	3.8	2.2	6.1	
5B	WATER SURF. ELVN (M, MSL)	11	225.5	225.9	223.1	227	•
5B	WATER SURF. ELVN (FT, MSL)	11	739.7	741	731.9	744.7	•

Table 1. Kingston Groundwater Quality Summary. Data from 89/01/11 to 94/12/08.

WELL I.D.	PARAMETER	N		MEAN	MEDIAN	MIN	MAX	NUMBER OF EXCEEDANCES
6A	ORP (MV)		17	77.2	20	-27	429	
6A	CONDUCTIVITY (UMHOS/CM)		17	3274.8	3680	428		
6A	DISSOLVED OXYGEN (MG/L)		17		0.4	0		
6A	TEMPERATURE (DEG C)		17	17.7	17.2	14.9		
6A	COD (MG/L)		1	56	56	56	. 56	
6A	PH (STANDARD UNITS)		17	5.5	5.8	3.1	6	
6A	ALKALINITY (MG/L)		15	181.9	191	. 58	250	
6A	PHEN-PH ALKALINITY (MG/L)		5	0	0	0	0	
6A	ACIDITY (MG/L)		6	1514.3	1935	0	2600	
6A	CO2 ACIDITY (MG/L)		7	1532.6	1586	584	2184	
6A	CO2 (MG/L)		4	1912.8	1911.5	1540	2288	
6A	CA/MG HARDNESS (MG/L)		17	1152.2	1161.8	855	1335	
6A	NITRATE+NITRITE NITROGEN (MG/L)		10	0.1	0.1	. 0	0.2	0
6A	TOTAL ORGANIC CARBON (MG/L)		17	9	9.1	2.9	19	•
6A	TOTAL INORGANIC CARBON (MG/L)		17	80.9	65	4	260	•
6A	SULFIDE (MG/L)		6	0	O	0		
6A	CALCIUM (MG/L)		17	332.4	340	260		
6A	DISSOLVED CALCIUM (MG/L)		2		350	320		
6A	MAGNESIUM (MG/L)		17		83	31	110	
6A	DISSOLVED MAGNESIUM (MG/L)		2		74.5	64		
6A	SODIUM (MG/L)		17		8.2	7.6		
6A	POTASSIUM (MG/L)		17	17.2	17	13		
6A	CHLORIDE (MG/L)		17	3.6	4	1	6	
6A	SULFATE (MG/L)		17	2513.5	2800	630		
6A	FLUORIDE (MG/L)		10	0.2	0.1	0.1	8.0	
6A	ALUMINUM (UG/L)		17	2017.6	890	50		
6A	DISSOLVED ALUMINUM (UG/L)		8		50	50		
6A	ANTIMONY (UG/L)		5	1.6	1	1	4	
6A	DISSOLVED ANTIMONY (UG/L)		1	1	1	1	1	-
6A	ARSENIC (UG/L)		17	4.6	4 2.5	1 1	13 4	
6A	DISSOLVED ARSENIC (UG/L)		8 15		2.5 310			
6A 6A	BARIUM (UG/L) DISSOLVED BARIUM (UG/L)		15 8		370	40		
6A	BERYLLIUM (UG/L)		5		1	1	1	
6A	DISSOLVED BERYLLIUM (UG/L)		1	1	1	1	1	-
6A	BORON (UG/L)		17					
6A	DISSOLVED BORON (UG/L)		8					
6A	CADMIUM (UG/L)		16					
6A	DISSOLVED CADMIUM (UG/L)		8		0.5			
6A	CHROMIUM (UG/L)		14		3.5			
6A	DISSOLVED CHROMIUM (UG/L)		8					
6A	COPPER (UG/L)		17					
6A	DISSOLVED COPPER (UG/L)		2					
6A	IRON - TOTAL (UG/L)				1200000			
6A	DISSOLVED IRON (UG/L)			1055000				

6A	LEAD (UG/L)	15	5.7	2	1	37	0
6A	DISSOLVED LEAD (UG/L)	8	2.5	1	1	12	0
6A	LITHIUM (UG/L)	10	43.1	50	21	60 .	
6A	DISSOLVED LITHIUM (UG/L)	2	45	45	40	50 .	
6A	MANGANESE (UG/L)	17	61282.4	71000	7800	86000	17
6A	DISSOLVED MANGANESE (UG/L)	8	65375	64500	59000	73000	8
6A	MOLYBDENUM (UG/L)	6	43.3	20	20	160	
6A	DISSOLVED MOLYBDENUM (UG/L)	2	60	60	20	100 .	
6A	NICKEL (UG/L)	6	4.5	3	. 1	12	0
6A	DISSOLVED NICKEL (UG/L)	1	5	5	- 5	5	0
6A	SELENIUM (UG/L)	11	1	1	1	1	0
6A	DISSOLVED SELENIUM (UG/L)	- 6	1.2	1	1	2	0
6A	SILICON (UG/L)	12	13808.3	12000	5100	42000 .	
6A	DISSOLVED SILICON (UG/L)	7	9014.3	9600	5300	11000 .	
6A	STRONTIUM (UG/L)	15	2200	2000	1100	3700 .	
6A	DISSOLVED STRONTIUM (UG/L)	8	2025	2000	1400	2900 .	
6A	VANADIUM (UG/L)	15	58	10	10	310 .	
6A	DISSOLVED VANADIUM (UG/L)	8	77.5	45	10	200 .	
6A	ZINC (UG/L)	17	141.2	140	10	260	0
6A	DISSOLVED ZINC (UG/L)	8	153.5	150	18	280	`
6A	TOTAL DISSOLVED SOLIDS (MG/L)	17	4452.9	4900	1500	5500	17
6A	TOTAL SUSPENDED SOLIDS (MG/L)	11	188.7	170	63	470˚.	
6A	WATER SURF. FR MP (M)	19	3.3	3.1	2.3	5.8 .	
6A	WATER SURF. ELVN (M, MSL)	10	225.6	225.9	222.3	227 .	
6A	WATER SURF. ELVN (FT. MSL)	10	740 1	741	729.2	744.7	

Table 1. Kingston Groundwater Quality Summary. Data from 89/01/11 to 89/03/29.

WELL I.D.	PARAMETER	N		MEAN	MEDIAN	MIN	MAX	NUMBER OF EXCEEDANCES
6B	ORP (MV)		2	210	210	140	280	
6B	CONDUCTIVITY (UMHOS/CM)		2	2030		2020	2040	
6B	DISSOLVED OXYGEN (MG/L)		2	0.2			0.4	
6B	TEMPERATURE (DEG C)		2	15.5		14	17	
6B	PH (STANDARD UNITS)		2	5.2		5.1	5.3	2
6B	ALKALINITY (MG/L)		1	17		17	17	
6B	CA/MG HARDNESS (MG/L)		2	1366			1389	
6B	NITRATE+NITRITE NITROGEN (MG/L)		2	0.1	0.1	0	0.1	0
6B	TOTAL ORGANIC CARBON (MG/L)		2	3.1	3.1	3	3.2	
6B	TOTAL INORGANIC CARBON (MG/L)		2	4.6	4.6	4.5	4.8	
6B	CALCIUM (MG/L)		2	495	495	480	510	•
6B	MAGNESIUM (MG/L)		2	31.5	31.5	28	35	•
6B	SODIUM (MG/L)		2	8.3	8.3	7.5	9.1	
6B	POTASSIUM (MG/L)		2	33.5	33.5	33	34	•
6B	CHLORIDE (MG/L)		2	3.5	3.5	3	4	0
6B	SULFATE (MG/L)		2	915	915	730	1100	2
6B	FLUORIDE (MG/L)		2	0.2	0.2	0.1	0.3	0
6B	ALUMINUM (UG/L)		2	21000	21000	12000	30000	2
6B	ARSENIC (UG/L)		2	70	70	40	100	1
6B	BARIUM (UG/L)		2	215	215	180	250	0
6B	BORON (UG/L)		2	1700	1700	1600	1800	
6B	CADMIUM (UG/L)		2	0.2	0.2	0.1	0.3	0
6B	CHROMIUM (UG/L)		2	15			22	0
6B	COPPER (UG/L)		2	15			20	0
6B	IRON - TOTAL (UG/L)		2	150000				2
6B	LEAD (UG/L)		2	25			30	
6B	MANGANESE (UG/L)		2	6500			7100	
6B	SELENIUM (UG/L)		2	1.5		1	2	
6B	SILICON (UG/L)		2	50500	50500	45000		
6B	STRONTIUM (UG/L)		2	3000	3000	3000		
6B	VANADIUM (UG/L)		2	60	60		100	•
6B	ZINC (UG/L)	•	2	100	100	60	140	0
6B	TOTAL DISSOLVED SOLIDS (MG/L)		2	2100			2300	2
6B	WATER SURF. FR MP (M)		4	0.8				
6B	WATER SURF. ELVN (M, MSL)		2	228.2				
6B	WATER SURF. ELVN (FT, MSL)		2	748.9	748.9	748.8	748.9	•

Table 1. Kingston Groundwater Quality Summary. Data from 89/01/11 to 94/12/06.

WELL I.D.	PARAMETER	N		MEAN	MEDIAN	MIN	MAX	NUMBER OF EXCEEDANCES
8	ORP (MV)		19	117.9	50	-56	372	•
8	CONDUCTIVITY (UMHOS/CM)		19	1300.1		1020	1680	
8	DISSOLVED OXYGEN (MG/L)		19	0.8	0.6	0.3	1.8	•
8	TEMPERATURE (DEG C)		19	17.7	17.4	15.6	. 20	•
8	PH (STANDARD UNITS)		19	7	7	6.8	7.1	0
8	ALKALINITY (MG/L)		18	257	260	211	296	
8	PHEN-PH ALKALINITY (MG/L)		4	0			0	
8	ACIDITY (MG/L)		8	39.6			60	
8	CO2 ACIDITY (MG/L)		7	46.1			55	
8	CO2 (MG/L)		8	38.2			53	
8	CA/MG HARDNESS (MG/L)		20	803.6			1067.1	
8	NITRATE+NITRITE NITROGEN (MG/L)		12	0			0	
8	TOTAL ORGANIC CARBON (MG/L)		19	0.9				
8	TOTAL INORGANIC CARBON (MG/L)		20	94.7				
8	SULFIDE (MG/L)		8	0				
8	CALCIUM (MG/L)		20	253.5				
8	DISSOLVED CALCIUM (MG/L)		3 20	316.7 41.5				
8 8	MAGNESIUM (MG/L) DISSOLVED MAGNESIUM (MG/L)		20 3	54				•
8	SODIUM (MG/L)		20	13.5				
8	POTASSIUM (MG/L)		20	4.5				
8	CHLORIDE (MG/L)		20	5.8				
8	SULFATE (MG/L)		19	581.1				
8	FLUORIDE (MG/L)		12	0.1			0.5	
8	ALUMINUM (UG/L)		20	1323				
8	DISSOLVED ALUMINUM (UG/L)		3	50				
8	ANTIMONY (UG/L)		6				2	
8	ARSENIC (UG/L)		20	3		1		
8	DISSOLVED ARSENIC (UG/L)		3	5.7	. 2	2	13	0
8.	BARIUM (UG/L)		18	35.6	10	10	250	0
8	DISSOLVED BARIUM (UG/L)		3	26.7	30	10	40	0
8	BERYLLIUM (UG/L)		6	1	1	1	1	0
8	BORON (UG/L)		20	500	500			
8	DISSOLVED BORON (UG/L)		3					
8	CADMIUM (UG/L)		19					
8	DISSOLVED CADMIUM (UG/L)		3					
8	CHROMIUM (UG/L)		17					
8	DISSOLVED CHROMIUM (UG/L)		3					
8	COPPER (UG/L)		20					
8	DISSOLVED COPPER (UG/L)		3					
8	IRON - TOTAL (UG/L)		20					
8	DISSOLVED IRON (UG/L)		3					
8	LEAD (UG/L)		18					
8	DISSOLVED LEAD (UG/L)		3	1	1	i 1	1	0

8	LITHIUM (UG/L)	13	34.3	40	20	40 .	
8	DISSOLVED LITHIUM (UG/L)	3	33.3	30	30	40 .	
8	MANGANESE (UG/L)	20	1321	1150	220	2500	20
8	DISSOLVED MANGANESE (UG/L)	3	1800	2000	1300	2100	3
8	MOLYBDENUM (UG/L)	7	20	20	20	20 .	
8	DISSOLVED MOLYBDENUM (UG/L)	1	20	20	20	20 .	
8	NICKEL (UG/L)	- 6	2	1.5	. 1	5	0
8	SELENIUM (UG/L)	13	1.2	1	1	2	0
8	DISSOLVED SELENIUM (UG/L)	2	1	1	1	1	0
8	SILICON (UG/L)	14	13142.9	12000	6200	34000 .	
8	DISSOLVED SILICON (UG/L)	3	12000	12000	11000	13000 .	
8	STRONTIUM (UG/L)	18	823.3	815	650	1000 .	
8	DISSOLVED STRONTIUM (UG/L)	3	860	860 -	840	880 .	
8	VANADIUM (UG/L)	18	11.7	10	10	30 .	
8	DISSOLVED VANADIUM (UG/L)	3	10	10	10	10.	
8	ZINC (UG/L)	20	24	10	10	60	0
8	DISSOLVED ZINC (UG/L)	3	10	10	10	10	0
8	TOTAL DISSOLVED SOLIDS (MG/L)	20	1041.5	1100	580	1400	20
8	TOTAL SUSPENDED SOLIDS (MG/L)	14	43	11	2	360	
8	WATER SURF. FR MP (M)	21	3.3	2.5	2.1	7 °.	
8	WATER SURF. ELVN (M, MSL)	12	230.5	231.7	225.6	232.9 .	
8	WATER SURF. ELVN (FT, MSL)	12	756.1	760	740.1	764 .	

Table 1. Kingston Groundwater Quality Summary. Data from 89/01/05 to 94/12/08.

WELL I.D.	PARAMETER	N		MEAN	MEDIAN	MIN	MAX	NUMBER OF EXCEEDANCES
9A	ORP (MV)		18	-6.8	-40	-93	207	
9A	CONDUCTIVITY (UMHOS/CM)		18	1346.6			2273	
9A	DISSOLVED OXYGEN (MG/L)		18	0.3			0.5	
9A	TEMPERATURE (DEG C)		18	18.1				
9A	5-DAY BOD (MG/L)		7	3.5				
9A	PH (STANDARD UNITS)		18	6.3				
9A	ALKALINITY (MG/L)		18	73.4				
9A	PHEN-PH ALKALINITY (MG/L)		3	0	0	0	0	
9A	ACIDITY (MG/L)		10	135.7	139	83	188	
9A	CO2 ACIDITY (MG/L)		7	277.6	190	151	840	
9A	CO2 (MG/L)		8	123.4	122.3	96	165	
9A	CA/MG HARDNESS (MG/L)		18	734.1	627	373	1531.4	•
9A	NITRATE+NITRITE NITROGEN (MG/L)		12	0.1	0.1	0	0.5	0
9A	AMMONIA NITROGEN (MG/L)		7	0.2	0.2	0	0.3	•,
9A	TOTAL KJELDAHL NITROGEN (MG/L)		8	0.4	0.3	0.2	0.9	•
9A	TOTAL ORTHO PHOSPHORUS (MG/L))	4	0.1	0.1	0	0.1	•
9A	TOTAL ORGANIC CARBON (MG/L)		17	0.8	0.6	0.3	2.4	•
9A	TOTAL INORGANIC CARBON (MG/L)		18	42.9	41.5	7	140	·
9A	SULFIDE (MG/L)		8	0	0	0	0.1	•
9A	CALCIUM (MG/L)		18	221.1	190	110	460	•
9A	DISSOLVED CALCIUM (MG/L)		3	226.7	220	210	250	
9A	MAGNESIUM (MG/L)		18	44.2	37	24	93	•
9A	DISSOLVED MAGNESIUM (MG/L)		3	42.3	44	32	51	•
9A	SODIUM (MG/L)		18	14	14	9.1	18	•
9A	POTASSIUM (MG/L)		18	11.2	9.3	6.8	35	•
9A	CHLORIDE (MG/L)		17	11.6	9	3	26	0
9A	SULFATE (MG/L)		18	798.9	615	400	2000	18
9A	FLUORIDE (MG/L)		12	0.2	0.2	0.1	0.4	0
9A	ALUMINUM (UG/L)		18	4375	2250	950	25000	18
9A	DISSOLVED ALUMINUM (UG/L)		3	60	50	50	80	0
9A	ANTIMONY (UG/L)		4	1	1	1	1	0
9A	DISSOLVED ANTIMONY (UG/L)		1	5	5	5	5	0
9A	ARSENIC (UG/L)		18	104.8	92.5	34	190	17
9A	DISSOLVED ARSENIC (UG/L)		3	61.3	87	1	96	2
9A	BARIUM (UG/L)		16	111.3	105	10	310	. 0
9A	DISSOLVED BARIUM (UG/L)		3	130	170	30	190	0
9A	BERYLLIUM (UG/L)		4	2.3	1	1	6	i' 1 .
9A	DISSOLVED BERYLLIUM (UG/L)		1	. 1	1	1	1	. 0
9A	BORON (UG/L)		18	2161.1	1500	1000	13000	
9A	DISSOLVED BORON (UG/L)		3	1433.3		1400	1500	١.
9A	CADMIUM (UG/L)		17	0.3	0.2	0.1	1	0
9A	DISSOLVED CADMIUM (UG/L)		3	0.8	0.8	0.1	1.4	. 0
9A	CHROMIUM (UG/L)		15	4.5	3	1	18	0
9A	DISSOLVED CHROMIUM (UG/L)		3	1	1	1	1	0

9A	COPPER (UG/L)	18	32.2	10	10	260	0
9A	DISSOLVED COPPER (UG/L)	3	93.3	10	10	260	0
9A	IRON - TOTAL (UG/L)	18	40833.3	37500	20000	79000	18
9A	DISSOLVED IRON (UG/L)	3	38000	38000	35000	41000	3
9A	LEAD (UG/L)	16	2.8	1	1	17	0
9A	DISSOLVED LEAD (UG/L)	3	1	1	1	. 1	0
9A	LITHIUM (UG/L)	11	35.4	30	19	60 .	
9A	DISSOLVED LITHIUM (UG/L)	3	36.7	30	. 30	50 .	
9A	MANGANESE (UG/L)	18	26044.4	20500	9800	69000	18
9A	DISSOLVED MANGANESE (UG/L)	3	27666.7	26000	25000	32000	3
9A	MOLYBDENUM (UG/L)	5	20	20	20	20 .	
9A	DISSOLVED MOLYBDENUM (UG/L)	. 1	20	20	20	20 .	
9A	NICKEL (UG/L)	4	52	48.5	43	68	0
9A	DISSOLVED NICKEL (UG/L)	1	35	35	35	35	0
9A	SELENIUM (UG/L)	13	1.2	1	1	3	0
9A	DISSOLVED SELENIUM (UG/L)	1	1	1	1	1	0
9A	SILICON (UG/L)	14	16042.9	15000	6800	38000 .	
9A	DISSOLVED SILICON (UG/L)	2	11500	11500	11000	12000 .	
9A	STRONTIUM (UG/L)	16	2593.8	2150	1700	4200	
9A	DISSOLVED STRONTIUM (UG/L)	3	2500	2500	2100	2900	
9A	VANADIUM (UG/L)	16	25	10	10	110 .	
9A	DISSOLVED VANADIUM (UG/L)	3	43.3	10	10	110 .	
9A	ZINC (UG/L)	18	52.2	50	10	120	0
9A	DISSOLVED ZINC (UG/L)	3	50	30	20	100	0
9A	TOTAL DISSOLVED SOLIDS (MG/L)	18	1157.8	965	670	2100	18
9A	TOTAL SUSPENDED SOLIDS (MG/L)	15	162.9	100	24	790 .	
9A	FECAL COLIFORM (#/100ML)	3	7	10	1	10 .	
9A	WATER SURF. FR MP (M)	20	5.2	5.1	4.5	6.9 .	
9A	WATER SURF. ELVN (M, MSL)	13	229	230.1	222.2	230.8 .	
9A	WATER SURF. ELVN (FT, MSL)	13	751.3	754.9	729.1	757 .	

Table 1. Kingston Groundwater Quality Summary. Data from 89/01/05 to 94/12/08.

WELL I.D.	PARAMETER	N		MEAN	MEDIAN	MIN	MAX	NUMBER OF EXCEEDANCES
9B	ORP (MV)		18	-33.3	-85.5	-190	454	•
9B	CONDUCTIVITY (UMHOS/CM)		18	453.4	455	380	534	
9B	DISSOLVED OXYGEN (MG/L)		18	0.4	0.3	0.2	0.8	•
9B	TEMPERATURE (DEG C)		18	17.9	18	16.2	19.5	
9B	5-DAY BOD (MG/L)		7	1	1	1	1.1	•
9B	PH (STANDARD UNITS)		18	8.2	8	7.8	9.1	5
9B	ALKALINITY (MG/L)		17	171.8	170	155		
9B	PHEN-PH ALKALINITY (MG/L)		2					
9B	ACIDITY (MG/L)		9	1.6				
9B	CO2 ACIDITY (MG/L)		5	3.4			8	
9B	CO2 (MG/L)		4	2.9			6.2	
9B	CA/MG HARDNESS (MG/L)		17	105.1			145.7	
9B	NITRATE+NITRITE NITROGEN (MG/L)		11	0			0.1	0
9B	AMMONIA NITROGEN (MG/L)		6	0.1		0	0.1	
9B	TOTAL KJELDAHL NITROGEN (MG/L)		7	0.1		0.1	0.2	
9B	TOTAL ORTHO PHOSPHORUS (MG/L)		4	0.1			0.2	
9B	TOTAL ORGANIC CARBON (MG/L)		16	0.6				
9B	TOTAL INORGANIC CARBON (MG/L)		17	68.8			160	
9B	SULFIDE (MG/L)		7	0			0	
9B	CALCIUM (MG/L)		17	31.1				
9B	DISSOLVED CALCIUM (MG/L)		1	35			35	
9B	MAGNESIUM (MG/L)		17	6.7			8.7	
9B	DISSOLVED MAGNESIUM (MG/L)		1	6.5			6.5	
9B	SODIUM (MG/L)		17	59.8				
9B	POTASSIUM (MG/L)		17	6.4			13	
9B	CHLORIDE (MG/L)		17	3.5			12	
9B	SULFATE (MG/L)		17				650	
9B	FLUORIDE (MG/L)		11	0.2			0.4	
9B	ALUMINUM (UG/L)		17	235.3		50	1500	3
9B	DISSOLVED ALUMINUM (UG/L)		1	50	50	50	50	
9B	ANTIMONY (UG/L)		4	1		1	1	. 0
9B	ARSENIC (UG/L)		17	1.9		1	5	
9B	DISSOLVED ARSENIC (UG/L)		1	2			2	
9B	BARIUM (UG/L)		15	293.3				
9B	DISSOLVED BARIUM (UG/L)		1	310				
9B	BERYLLIUM (UG/L)		4	1			1	
9B	BORON (UG/L)		17	558.8				
9B	DISSOLVED BORON (UG/L)		1	500				
9B	CADMIUM (UG/L)		16	0.2		0.1	0.5	0
9B	DISSOLVED CADMIUM (UG/L)		1	1.4		1.4	1.4	0
9B	CHROMIUM (UG/L)		14	1.8		1	6	0
9B	DISSOLVED CHROMIUM (UG/L)		1	1		1	1	0
9B	COPPER (UG/L)		17	18.2				
9B	DISSOLVED COPPER (UG/L)		- 1	10	10	10	10	0

9B	IRON - TOTAL (UG/L)	17	319.4	190	70	2000	3
9B	DISSOLVED IRON (UG/L)	1	100	100	100	100	0
9B	LEAD (UG/L)	15	1.1	1	1	3	0
9B	DISSOLVED LEAD (UG/L)	1	1	1	1	1	0
9B	LITHIUM (UG/L)	10	38.5	40	25	50 .	
9B	DISSOLVED LITHIUM (UG/L)	1	40	40	40	40	
9B	MANGANESE (UG/L)	17	75.3	90	5	130	11
9B	DISSOLVED MANGANESE (UG/L)	1	69	69	69	69	1
9B	MOLYBDENUM (UG/L)	5	22	20	20	30 .	
9B	NICKEL (UG/L)	4	2	1.5	1	4	0
9B	SELENIUM (UG/L)	12	1	1	1	1	0
9B	DISSOLVED SELENIUM (UG/L)	1	1	1	1	1	0
9B	SILICON (UG/L)	13	7292.3	8000	3800	8800 .	
9B	DISSOLVED SILICON (UG/L)	1	8500	8500	8500	8500 .	
9B	STRONTIUM (UG/L)	15	506.7	520	320	670 .	
9B	DISSOLVED STRONTIUM (UG/L)	1	480	480	480	480 .	
9B	VANADIUM (UG/L)	15	11.3	10	10	30 .	
9B	DISSOLVED VANADIUM (UG/L)	1	10	10	10	10 .	
9B	ZINC (UG/L)	17	21.2	10	10	150	0
9B	DISSOLVED ZINC (UG/L)	1	10	10	10	10	0
9B	TOTAL DISSOLVED SOLIDS (MG/L)	17	273.5	290	80	360 [°]	0
9B	TOTAL SUSPENDED SOLIDS (MG/L)	14	2.1	1	1	6.	
9B	FECAL COLIFORM (#/100ML)	3	7	10	1	10 .	
9B	WATER SURF. FR MP (M)	19	5.1	5.1	4.5	5.9 .	
9B	WATER SURF. ELVN (M, MSL)	13	228.3	230	217.2	230.6 .	
9B	WATER SURF. ELVN (FT, MSL)	13	749.2	754.6	712.6	756.6 .	

Table 1. Kingston Groundwater Quality Summary. Data from 92/12/08 to 94/12/08.

WELL I.D.	PARAMETER	N		MEAN	MEDIAN	MIN	MAX	NUMBER OF EXCEEDANCES
CYDB	ORP (MV)		5	450.6	385	346	636	
CYDB	CONDUCTIVITY (UMHOS/CM)		5	1011.6	1088	289	1402	•
CYDB	DISSOLVED OXYGEN (MG/L)		5	7	7.2	4	9.3	•
CYDB	TEMPERATURE (DEG C)		5	16	12.3	4.2	29.1	•
CYDB	PH (STANDARD UNITS)		5	3.8	3.4	2.8	4.8	5
CYDB	ALKALINITY (MG/L)		5	0.6	0	0	. 2	•
CYDB	PHEN-PH ALKALINITY (MG/L)		3	0	0	0	0	•
CYDB	CO2 ACIDITY (MG/L)		5	152.2		22		
CYDB	CA/MG HARDNESS (MG/L)		5	380.8				
CYDB	TOTAL ORGANIC CARBON (MG/L)		4	1.3				
CYDB	TOTAL INORGANIC CARBON (MG/L)		5	3.2			6	
CYDB	CALCIUM (MG/L)		5	111.4				
CYDB	DISSOLVED CALCIUM (MG/L)		2	108.5				
CYDB	MAGNESIUM (MG/L)		5	24.9				
CYDB	DISSOLVED MAGNESIUM (MG/L)		2	22.8				
CYDB	SODIUM (MG/L)		5	19.6				
CYDB	POTASSIUM (MG/L)		5	3.2				0
CYDB	CHLORIDE (MG/L)		5	4				
CYDB	SULFATE (MG/L)		5	474				
CYDB CYDB	ALUMINUM (UG/L)		5	11860				N. Control of the Con
CYDB	DISSOLVED ALUMINUM (UG/L)		2	5450		_	2	
CYDB	ANTIMONY (UG/L) DISSOLVED ANTIMONY (UG/L)		5 2	1.2		-	1	. 0
CYDB	ARSENIC (UG/L)		5	1 1.2			2	
CYDB	DISSOLVED ARSENIC (UG/L)		2	1.2			1	
CYDB	BARIUM (UG/L)		5	16				
CYDB	DISSOLVED BARIUM (UG/L)		2	10				
CYDB	BERYLLIUM (UG/L)		5	2.2			5	
CYDB	DISSOLVED BERYLLIUM (UG/L)		2	1				
CYDB	BORON (UG/L)		5	500				
CYDB	DISSOLVED BORON (UG/L)		2	500				
CYDB	CADMIUM (UG/L)		4	1.6				
CYDB	DISSOLVED CADMIUM (UG/L)		2	0.9				
CYDB	CHROMIUM (UG/L)		4	3.5			11	
CYDB	DISSOLVED CHRÓMIUM (UG/L)		2	1		1	1	0
CYDB	COPPER (UG/L)		5	60	70	10	120	0
CYDB	DISSOLVÈD CÓPPER (UG/L)		2	15		10	20	0
CYDB	IRON - TOTAL (UG/L)		5	16500	13000	1000	40000	
CYDB	DISSOLVED IRON (UG/L)		2	20440	20440	880	40000	
CYDB	LEAD (UG/L)		5	1.4	1	1	3	
CYDB	DISSOLVED LEAD (UG/L)		2	1				0
CYDB	LITHIUM (UG/L)		4	45				
CYDB	DISSOLVED LITHIUM (UG/L)		2	35				
CYDB	MANGANESE (UG/L)		5	3318				
CYDB	DISSOLVED MANGANESE (UG/L)		2	3095				
CYDB	MOLYBDENUM (UG/L)		4	20) 20	20	20	

WELL								NUMBER OF
I.D.	PARAMETER	N	N	MEAN	MEDIAN	MIN	MAX	EXCEEDANCES
CYDB	DISSOLVED MOLYBDENUM (UG/L)		2	20	20	20	20	
CYDB	NICKEL (UG/L)		5	126.2	130	21	210	4
CYDB	DISSOLVED NICKËL (UG/L)		2	79.5	79.5	19	140	1
CYDB	STRONTIUM (UG/L)		5	434	400	130	740	•
CYDB	DISSOLVED STRONTIUM (UG/L)		2	435	435	140	730	
CYDB	VANADIUM (UG/L)		5	10	10	10	10	
CYDB	DISSOLVED VANADIUM (UG/L)		2	10	10	10	- 10	
CYDB	ZINC (UG/L)		5	224	250	10	470	0
CYDB	DISSOLVED ZINC (UG/L)		2	155	155	- 60	250	0
CYDB	TOTAL DISSOLVED SOLIDS (MG/L)		5	638	600	190	1200	3
CYDB	TOTAL SUSPENDED SOLIDS (MG/L)		5	6	5	2	16	•

Table 1. Kingston Groundwater Quality Summary. Data from 89/01/04 to 94/12/04.

I.D. PARAMETER N MEAN MEDIAN MIN MAX EXCEEDAN	CES
10 OPD (M) 0	
10 ORP (MV) 20 -45.7 -61.5 -102 128 . 10 CONDUCTIVITY (UMHOS/CM) 20 716.3 593 220 1190 .	
· · · · · · · · · · · · · · · · · · ·	
10 TEMPERATURE (DEG C) 20 20.1 20.1 16.5 24 . 10 PH (STANDARD UNITS) 20 6.7 6.7 6.5 7	0
10 ALKALINITY (MG/L) 20 90.7 85.5 55 135 .	0
10 PHEN-PH ALKALINITY (MG/L) 4 0 0 0 0 .	
10 ACIDITY (MG/L) 9 77.6 67 0 132.	
10 CO2 ACIDITY (MG/L) 8 35.5 32.5 23 56.	
10 CO2 (MG/L) 7 73.8 59 37.8 116.	
10 CA/MG HARDNESS (MG/L) 21 343.9 245 169.9 706.	
10 NITRATE+NITRITE NITROGEN (MG/L) 12 0.1 0 0 0.5	0
10 TOTAL ORGANIC CARBON (MG/L) 20 0.6 0.5 0.2 2.	ŭ
10 TOTAL INORGANIC CARBON (MG/L) 21 34.1 32 4 68.	
10 SULFIDE (MG/L) 8 0 0 0 0.	
10 CALCIUM (MG/L) 21 112.6 80 55 230 .	
10 DISSOLVED CALCIUM (MG/L) 7 72.1 71 55 100 .	
10 MAGNESIUM (MG/L) 21 15.2 11 7.9 32 .	
10 DISSOLVED MAGNESIUM (MG/L) 7 9 9 7.9 9.9.	
10 SODIUM (MG/L) 21 9.6 10 6.2 13.	
10 POTASSIÙM (MG/L) 21 7.6 7.3 6.4 9.4.	
10 CHLORIDE (MG/L) 21 4.1 4 2 7	0
10 SULFATE (MG/L) 21 306.2 230 90 730	9
10 FLUORIDE (MG/L) 12 0.5 0.5 0.1 1	0
10 ALUMINUM (UG/L) 21 1492.9 1800 50 3400	14
10 DISSOLVED ALUMINUM (UG/L) 7 50 50 50 50	0
10 ANTIMONY (UG/L) 5 1.2 1 1 2	0
10 DISSOLVED ANTIMONY (UG/L) 1 1 1 1 1	0
10 ARSENIC (UG/L) 21 211.1 210 170 280	21
10 DISSOLVED ARSENIC (UG/L) 7 177.1 170 150 200	7
10 BARIUM (UG/L) 19 71.6 70 20 150	0
10 DISSOLVED BARIUM (UG/L) 7 35.7 30 20 60	0
10 BERYLLIUM (UG/L) 5 1 1 1 1	0
10 DISSOLVED BERYLLIUM (UG/L) 1 1 1 1 1	0
10 BORON (UG/L) 21 720.5 500 500 4800.	
10 DISSOLVED BORON (UG/L) 7 500 500 500 .	
10 CADMIUM (UG/L) 20 0.2 0.1 0.1 1	0
10 DISSOLVED CADMIUM (UG/L) 7 0.4 0.3 0.1 1.4	0
10 CHROMIUM (UG/L) 18 2.6 1 1 7	0
10 DISSOLVED CHROMIUM (UG/L) 7 1 1 1 1	0
10 COPPER (UG/L) 21 16.2 10 10 130	0
10 DISSOLVED COPPER (UG/L) 7 10 10 10 10	0
10 IRON - TOTAL (UG/L) 21 41819 21000 6500 460000	21
10 DISSOLVED IRON (UG/L) 7 11442.9 10000 6400 23000	7
10 LEAD (UG/L) 19 2.3 1 0.8 8	0

10	DISSOLVED LEAD (UG/L)	7	1	1	1	1	0
10	LITHIUM (UG/L)	14	124.9	125	80	200 .	
10	DISSOLVED LITHÏÜM (UG/L)	7	122.1	130	95	140 .	
10	MANGANESE (UG/L)	2 1	731.4	660	250	1600	21
10	DISSOLVED MANGANESE (UG/L)	7	382.9	350	250	560	7
10	MOLYBDENUM (UG/L)	8	93.8	95	30	140 .	
10	DISSOLVED MOLYBDENUM (UG/L)	5	58	60	20	120 .	
10	NICKEL (UG/L)	5	1.6	1	1	4	0
10	DISSOLVED NICKEL (UG/L)	1	3	3	. 3	3	0
10	SELENIUM (UG/L)	12	1	1	1	1	0
10	DISSOLVED SELENIUM (UG/L)	2	1	1	1	1	0
10	SILICON (UG/L)	16	9550	10100	4000	12000 .	
10	DISSOLVED SILICON (UG/L)	6	7733.3	7750	7200	8300 .	
10	STRONTIUM (UG/L)	19	1070.5	810	560	2100 .	
10	DISSOLVED STRONTIUM (UG/L)	7	772.9	760	620	1000 .	
10	VANADIUM (UG/L)	19	10	10	10	10 .	
10	DISSOLVED VANADIUM (UG/L)	7	10	10	10	10 .	
10	ZINC (UG/L)	21	21	10	10	80	0
10	DISSOLVED ZINC (UG/L)	7	61.4	10	10	350	0
10	TOTAL DISSOLVED SOLIDS (MG/L)	21	503.8	360	260	1000	8
10	TOTAL SUSPENDED SOLIDS (MG/L)	15	59.3	43	4	130ຸ.	
10	WATER SURF. FR MP (M)	23	0.9	0.3	0	1.8 .	
10	WATER SURF. ELVN (M, MSL)	12	228.7	229	225.4	229.4 .	
10	WATER SURF. ELVN (FT, MSL)	12	750.4	751.2	739.6	752.5 .	

Table 1. Kingston Groundwater Quality Summary. Data from 89/01/04 to 94/12/07.

WELL I.D.	PARAMETER	N		MEAN	MEDIAN	MIN	MAX	NUMBER OF EXCEEDANCES
10A	ORP (MV)		22	256.1	245	31	455	•
10A	CONDUCTIVITY (ÜMHOS/CM)		22	753.5	797	419	1020	•
10A	DISSOLVED OXYGEN (MG/L)		22	0.6	0.3	0.1	3.3	
10A	TEMPERATURE (DEG C)		22	20.6	20.8	17.9	22.9	
10A	PH (STANDARD UNITS)		22	4.9			6.4	
10A	ALKALINITY (MG/L)		21	16.1	6		106	
10A	PHEN-PH ALKALINITY (MG/L)		5	C	0	0	0	•
10A	ACIDITY (MG/L)		12	187.7	223.5	. 0	294	
10A	CO2 ACIDITY (MG/L)		9	121.6	117	34	180	
10A	CO2 (MG/L)		8	171.3	196.1	0	259	
10A	CA/MG HARDNESS (MG/L)		21	337.5	365	151.6	564	•
10A	NITRATE+NITRITE NITROGEN (MG/L)		11	0.1	0.1	0	0.6	0
10A	TOTAL ORGANIC CARBON (MG/L)		20	0.9	0.6	0.3	2.7	
10A	TOTAL INORGANIC CARBON (MG/L)		20	27.7	27	3	110	•
10A	SULFIDE (MG/L)		8	C	0	0	0	•
10A	CALCIUM (MG/L)		21	101.4	110	48	160	•
10A	DISSOLVED CALCIUM (MG/L)		7	82.6	82	55	110	
10A	MAGNESIUM (MG/L)		21	20.5	22	7.1	40	
10A	DISSOLVED MAGNÉSIUM (MG/L)		7	13.9			16	
10A	SODIUM (MG/L)		21	8			11	
10A	POTASSIÙM (MG/L)		21	7.2	7.2		12	
10A	CHLORIDE (MG/L)		21	4.1	4		6	0
10A	SULFATE (MG/L)		21	360	370	40	640	14
10A	FLUORIDE (MG/L)		12	0.2	0.1	0.1	0.7	0
10A	ALUMINUM (UG/L)		21	21833.3	7900	2800	130000	21
10A	DISSOLVED ALUMINUM (UG/L)		7	740	590	50	1600	5
10A	ANTIMONY (UG/L)		5	1	1	1	1	0
10A	DISSOLVED ANTIMONY (UG/L)		1	1	1	1	1	0
10A	ARSENIC (UG/L)		21	6	i 4	2	20	0
10A	DISSOLVED ARSENIC (UG/L)		7	5.9	3		25	0
10A	BARIUM (UG/L)		19	152.1	90	10	750	0
10A	DISSOLVED BARIUM (UG/L)		7	47.1	40	20	80	0
10A	BERYLLIUM (UG/L)		5	3.4	3	1	8	1
10A	DISSOLVED BERYLLIUM (UG/L)		1	1			1	0
10A	BORON (UG/L)		21	2445.7	1900	500	17000	•
10A	DISSOLVED BORON (UG/L)		7	1514.3			2000	•
10A	CADMIUM (UG/L)		20	0.3	0.2	0.1	1.4	0
10A	DISSOLVED CADMIUM (UG/L)		7	0.5	0.4	0.1	1.6	0
10A	CHROMIUM (UG/L)		18	14.2	2 4.5	1	80	0
10A	DISSOLVED CHROMIUM (UG/L)		7	1	1	1	1	0
10A	COPPER (UG/L)		21	47.1	20	10	210	0
10A	DISSOLVED COPPER (UG/L)		7	17.1		10	60	
10A	IRON - TOTAL (UG/L)		21	102714			810000	
10A	DISSOLVED IRON (UG/L)		7	27285.7			40000	
10A	LEAD (UG/L)		19	18.1				
10A	DISSOLVED LEAD (UG/L)		7	1			1	

10A	LITHIUM (UG/L)	14	66.5	57.5	20	160 .	
10A	DISSOLVED LITHÏUM (UG/L)	7	54.3	54	40	70 .	
10A	MANGANESE (UG/L)	21	8690.5	9300	2800	15000	21
10A	DISSOLVED MANGANESE (UG/L)	7	7900	7800	5600	13000	7
10A	MOLYBDENUM (UG/L)	8	20	20	20	20 .	
10A	DISSOLVED MOLYBDENUM (UG/L)	5	20	20	20	20 .	
10A	NICKEL (UG/L)	5	33.8	26	20	56	0
10A	DISSOLVED NICKEL (UG/L)	1	42	42	42	42	0
10A	SELENIUM (UG/L)	12	1	1	1	1	0
10A	DISSOLVED SELENIUM (UG/L)	2	1	1	1	1	0
10A	SILICON (UG/L)	16	25975	20000	7600	53000 .	
10A	DISSOLVED SILICON (UG/L)	6	12500	12500	11000	15000 .	
10A	STRONTIUM (UG/L)	19	1594.2	1700	810	2400 .	
10A	DISSOLVED STRONTIUM (UG/L)	7	1377.1	1400	940	1700 .	
10A	VANADIUM (UG/L)	19	29.5	10	10	150 .	
10A	DISSOLVED VANADIUM (UG/L)	7	10	10	10	10.	
10A	ZINC (UG/L)	21	169.5	170	50	350	0
10A	DISSOLVED ZINC (UG/L)	7	82	80	54	110	0
10A	TOTAL DISSOLVED SOLIDS (MG/L)	21	604.8	640	230	1000	14
10A	TOTAL SUSPENDED SOLIDS (MG/L)	15	441.2	180	26	2 100,.	
10A	WATER SURF. FR MP (M)	23	2.1	2	1.2	4.3 .	
10A	WATER SURF. ELVN (M, MSL)	12	227.6	227.8	225.3	228.5 .	
10A	WATER SURF. ELVN (FT, MSL)	12	746.6	747.5	739.2	749.7 .	

Table 1. Kingston Groundwater Quality Summary. Data from 89/01/04 to 94/12/07.

WELL I.D.	PARAMETER	N		MEAN	MEDIAN	MIN	MAX	NUMBER OF EXCEEDANCES
10B	ORP (MV)		14	9.9	0	-90	150	
10B	CONDUCTIVITY (UMHOS/CM)		14	1124.4	1158	861	1300	
10B	DISSOLVED OXYGEN (MG/L)		14	0.3	0.3	0.1	0.5	•
10B	TEMPERATURE (DEG C)		14	19.8	20	17.9	21	
10B	PH (STANDARD UNITS)		14	6.1		5.9	6.3	
10B	ALKALINITY (MG/L)		13	121.3			146	
10B	PHEN-PH ALKALINITY (MG/L)		2	0			0	
10B	ACIDITY (MG/L)		6	168.5		0	275	
10B	CO2 ACIDITY (MG/L)		3	175			199	
10B	CO2 (MG/L)		5	178				
10B	CA/MG HARDNESS (MG/L)		14	566				
10B	NITRATE+NITRITE NITROGEN (MG/L)		10	0.1			0.4	
10B	TOTAL INCREANCE CARRON (MG/L)		13	1.4			4.1 180	
10B 10B	TOTAL INORGANIC CARBON (MG/L) SULFIDE (MG/L)		14 6	72.1 0			0	
10B	CALCIUM (MG/L)		14	175				
10B	DISSOLVED CALCIUM (MG/L)		1	173				
10B	MAGNESIUM (MG/L)		14	31.4				
10B	DISSOLVED MAGNESIUM (MG/L)		1	20				•
10B	SODIUM (MG/L)		14	36.1			42	
10B	POTASSIUM (MG/L)		14	3.3				
10B	CHLORIDE (MG/L)		14	13.6			17	
10B	SULFATE (MG/L)		14	519.3				
10B	FLUORIDE (MG/L)		10	0.1			0.5	
10B	ALUMINUM (UG/L)		14	3888.6		50	25000	9
10B	DISSOLVED ALUMINUM (UG/L)		7	271.4	50	50	1600	1
10B	ANTIMONY (UG/L)		3	1	1	1	1	0
10B	DISSOLVED ANTIMONY (UG/L)		1	1			1	0
10B	ARSENIC (UG/L)		14	2.4			5	
10B	DISSOLVED ARSENIC (UG/L)		7	2.3			5	
10B	BARIUM (UG/L)		12	99.2				
10B	DISSOLVED BARIUM (UG/L)		7	28.6				
10B	BERYLLIUM (UG/L)		3	1			1	
10B	DISSOLVED BERYLLIUM (UG/L)		1	1			1	
10B	BORON (UG/L)		14	910.7				
10B	DISSOLVED BORON (UG/L)		7	500				
10B	CADMIUM (UG/L)		13	0.5				
10B	DISSOLVED CADMIUM (UG/L)		7	0.7		_	3.5	
10B	CHROMIUM (UG/L)		11	5.9			30	
10B 10B	DISSOLVED CHROMIUM (UG/L)		7 14	1.2 26.4			160 160	
10B 10B	COPPER (UG/L) DISSOLVED COPPER (UG/L)		14	∠6.4 10				
10B	IRON - TOTAL (UG/L)		-	26571.4				
10B	DISSOLVED IRON (UG/L)		7					

10B	LEAD (UG/L)	12	3.8	1	1	20	0
10B	DISSOLVED LEAD (UG/L)	6	1.2	1	1	2	0
10B	LITHIUM (UG/L)	7	10	10	10	10 .	
10B	DISSOLVED LITHIUM (UG/L)	1	10	10	10	10.	
10B	MANGANESE (UG/L)	14	9592.9	9950	7100	11000	14
10B	DISSOLVED MANGANESE (UG/L)	7	8900	9100	6900	10000	7
10B	MOLYBDENUM (UG/L)	3	20	20	20	20 .	
10B	DISSOLVED MOLYBDENUM (UG/L)	1	20	20	20	20 .	
10B	NICKEL (UG/L)	3	3.3	4	2	4	0
10B	DISSOLVED NICKEL (UG/L)	1	1	1	1	1	0
10B	SELENIUM (UG/L)	10	1	1	1	1	0
10B	DISSOLVED SELENIUM (UG/L)	6	1.3	1	1	2	0
10B	SILICON (UG/L)	11	13754.5	9700	4400	49000 .	
10B	DISSOLVED SILICON (UG/L)	6	6550	6900	4300	7800 .	
10B	STRONTIUM (UG/L)	12	769.2	745	520	1100 .	
10B	DISSOLVED STRONTIUM (UG/L)	7	684.3	700	550	750 .	
10B	VANADIUM (UG/L)	12	15.8	10	10	50 .	
10B	DISSOLVED VANADIUM (UG/L)	7	10	10	10	10.	
10B	ZINC (UG/L)	14	31.4	20	10	100	0
10B	DISSOLVED ZINC (UG/L)	7	78.6	80	10	190,	. 0
10B	TOTAL DISSOLVED SOLIDS (MG/L)	14	833.6	875	370	1100	13
10B	TOTAL SUSPENDED SOLIDS (MG/L)	8	21.6	18.5	6	47 .	
10B	WATER SURF. FR MP (M)	16	1.6	1.6	0.6	2.4 .	
10B	WATER SURF. ELVN (M, MSL)	10	228.5	228.6	226.2	229.2 .	
10B	WATER SURF, ELVN (FT, MSL)	10	749 6	750	742.2	751.9	

	Kingston Groundwater Quality Summary.	Data fr	om 89/01.	/04 to 94/1	2/06.		
WELL							NUMBER OF
I.D.	PARAMETER	N	MEAN	MEDIAN		MAX	EXCEEDANCES
11B	ORP (MV)	15				289	
11B	CONDUCTIVITY (UMHOS/CM)	14					
11B	DISSOLVED OXYGEN (MG/L)	15					
11B	TEMPERATURE (DEG C)	15				19	
11B	PH (STANDARD UNITS)	15					
11B	ALKALINITY (MG/L)	14					
11B	PHEN-PH ALKALINITY (MG/L)	2		0	0		
11B	ACIDITY (MG/L)	6	91.8	88.5	0	193	
11B	CO2 ACIDITY (MG/L)	4		104	40	120	
11B	CO2 (MG/L)	5	97.1	86.2	63.4	170	•
11B	CA/MG HARDNESS (MG/L)	15	1407.8	1374	1076	1719	•
11B	NITRATE+NITRITE NITROGEN (MG/L)	11	0.1	0	0	0.6	. 0
11B	TOTAL ORGANIC CARBON (MG/L)	14	1	0.9	0.7	1.5	
11B	TOTAL INORGANIC CARBON (MG/L)	- 15	115.7	100	53	220	
11B	SULFIDE (MG/L)	6	0	0	0	0	
11B	CALCIUM (MG/L)	15	452	440	350	540	•
11B	MAGNESIÙM (MG/L)	15					
11B	SODIUM (MG/L)	15					
11B	POTASSIUM (MG/L)	15					
11B	CHLORIDE (MG/L)	15					
11B	SULFATE (MG/L)	15					
11B	FLUORIDE (MG/L)	11	0.1		0.1	0.2	
11B	ALUMINUM (UG/L)	15					
11B	ANTIMONY (UG/L)	3			1	1	0
11B	ARSENIC (UG/L)	15			1	6	
11B	BARIUM (UG/L)	13					
11B	BERYLLIUM (UG/L)	3			1	1	Ö
11B	BORON (UG/L)	15				-	
11B	CADMIUM (UG/L)	14			0.1	0.3	
11B	CHROMIUM (UG/L)					12	
11B		12			1		
	COPPER (UG/L)	15					
11B	IRON - TOTAL (UG/L)	15					
11B	LEAD (UG/L)	13			1	6	
11B	LITHIUM (UG/L)	7					
11B	MANGANESE (UG/L)	15					
11B	MOLYBDENUM (UG/L)	4			_		
11B	NICKEL (UG/L)	3			1	6	
11B	SELENIUM (UG/L)	11	1		1	1	0
11B	SILICON (UG/L)		11666.7				
11B	STRONTIUM (UG/L)	13					
11B	TITANIUM (UG/L)	1	170		170		
11B	VANADIUM (UG/L)	13					
11B	ZINC (UG/L)	15			10	50	0
11B	TOTAL DISSOLVED SOLIDS (MG/L)	15	1773.3	1800	1300	2000	15
11B	TOTAL SUSPENDED SOLIDS (MG/L)	8	108.3	78	2	320	•
11B	WATER SURF. FR MP (M)	17	2.8	2.5	2	4.2	•
11B	WATER SURF. ELVN (M, MSL)	11	231.2	231.6	227.7	232.4	•
11B	WATER SURF. ELVN (FT, MSL)	11	758.4	759.8	747.2	762.5	•

Table 1. Kingston Groundwater Quality Summary. Data from 89/01/04 to 94/12/06.

WELL								NUMBER OF
I.D.	PARAMETER	Ν		MEAN	MEDIAN		MAX	EXCEEDANCES
12A	ORP (MV)		15	26.4	5			
12A	CONDUCTIVITY (UMHOS/CM)		15	775.9				
12A	DISSOLVED OXYGEN (MG/L)		15	0.3	0.2			
12A	TEMPERATURE (DEG C)		15	16.8	16.6			
12A	PH (STANDARD UNITS)		15	6.6				
12A	ALKALINITY (MG/L)		14	213				
12A	PHEN-PH ALKALINITY (MG/L)		3	0	0			•
12A	ACIDITY (MG/L)		6	68				
12A	CO2 ACIDITY (MG/L)		5	79.6				
12A	CO2 (MG/L)		5	71.7				
12A	CA/MG HARDNESS (MG/L)		14	405.2				
12A	NITRATE+NITRITE NITROGEN (MG/L)		10	0.1	0			
12A	TOTAL ORGANIC CARBON (MG/L)		14	1.8				
12A	TOTAL INORGANIC CARBON (MG/L)		15	92.5				
12A	SULFIDE (MG/L)		5	0				•
12A	CALCIUM (MG/L)		15	106.1	110			
12A	MAGNESIUM (MG/L)		15	27.5			38	
12A	SODIUM (MG/L)		15	6.9	6.7	5.3		•
12A	POTASSIUM (MG/L)		15	2.9	2.9			
12A	CHLORIDE (MG/L)		15	3.3	3	:	2 4	
12A	SULFATE (MG/L)		15	215.3	230	140	400	, 1
12A	FLUORIDE (MG/L)		10	0.3	0.2	0.1	0.4	
12A	ALUMINUM (UG/L)		15	1116.7	210	50	5500	8
12A	ANTIMONY (UG/L)		3	1	1		1 1	0
12A	ARSENIC (UG/L)		15	1.6	1	•	1 4	0
12A	BARIUM (UG/L)		14	40.7	30	10	110	0
12A	BERYLLIUM (UG/L)		3	2.7	1		1 6	1
12A	BORON (UG/L)		15	500	500	50	500	•
12A	CADMIUM (UG/L)		14	0.2	0.1	0.	1 1	0
12A	CHROMIUM (UG/L)		13	2	1		1 6	0
12A	COPPER (UG/L)		15	20.7		10		
12A	IRON - TOTAL (UG/L)		15	4132			15000	14
12A	LEAD (UG/L)		14	2.7			1 9	
12A	LITHIUM (UG/L)		8	10				
12A	MANGANÈSE (UG/L)		15	4547			5 10000	
12A	MOLYBDENUM (UG/L)		4	20				
12A	NICKEL (UG/L)		3				1 1	
12A	SELENIUM (UG/L)		10				1 1	
12A	SILICON (UG/L)		12					
12A	STRONTIUM (UG/L)		14					
12A	VANADIUM (UG/L)		14	19.3				
12A	ZINC (UG/L)		15	16				
12A	TOTAL DISSOLVED SOLIDS (MG/L)		15					
12A	TOTAL SUSPENDED SOLIDS (MG/L)		9				2 23	
12A	WATER SURF. FR MP (M)		18					
12A 12A	WATER SURF. ELVN (M, MSL)		16					
12A 12A	· · · · · · · · · · · · · · · · · · ·		12					
127	WATER SURF. ELVN (FT, MSL)		12	101.4	701.5	, ,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	1 102.2	• •

Table 1. Kingston Groundwater Quality Summary. Data from 89/01/04 to 94/12/06.

WELL	DADAMETED			A 45 A A I	AAEDIAAI	A 41 N I	MAN	NUMBER OF
I.D.	PARAMETER ORD (MANA)	N		MEAN	MEDIAN		MAX	EXCEEDANCES
12B	ORP (MV)		15	-5	-40		161	
12B	CONDUCTIVITY (UMHOS/CM)		15	1317.8	1345			
12B	DISSOLVED OXYGEN (MG/L)		15	0.3	0.3		0.5	
12B	TEMPERATURE (DEG C)		15	16.3	16.5			
12B	PH (STANDARD UNITS)		15	7	7		7.1	0
12B	ALKALINITY (MG/L)		15	298.8	320		330	
12B	PHEN-PH ALKALINITY (MG/L)		3	0	0		0	
12B	ACIDITY (MG/L)		7	51.6	57		75	
12B	CO2 ACIDITY (MG/L)		5	50	53			
12B	CO2 (MG/L)		6	52.9	54			
12B	CA/MG HARDNESS (MG/L)		16	714.7	745			
12B	NITRATE+NITRITE NITROGEN (MG/L)		10	0.1	. 0		0.7	
12B	TOTAL ORGANIC CARBON (MG/L)		15	0.7	0.5		2.2	
12B	TOTAL INORGANIC CARBON (MG/L)		16	108.2			200	
12B	SULFIDE (MG/L)		6	0	0		0	
12B	CALCIUM (MG/L)		16	210	220		240	
12B	MAGNESIUM (MG/L)		16	46.3	47		70	
12B	SODIUM (MG/L)		16	35.5	36		38	
12B	POTASSIUM (MG/L)		16	8.9	8.7		11	
12B	CHLORIDE (MG/L)		16	3.3	3.5		4	0
12B	SULFATE (MG/L)		16	491.3	490		580	· .
12B	FLUORIDE (MG/L)		10	0.1	0.1		0.1	0
12B	ALUMINUM (UG/L)		16	825.6	50		7100	
12B	ANTIMONY (UG/L)		3	1	1		1	0
12B	ARSENIC (UG/L)		16	1.3			3	
12B	BARIUM (UG/L)		14	16.4			50	
12B	BERYLLIUM (UG/L)		3	2.7			6	
12B	BORON (UG/L)		16	500			500	
12B	CADMIUM (UG/L)		15	0.2			1	0
12B	CHROMIUM (UG/L)		14	1.6			5	
12B	COPPER (UG/L)		16	18.1	10		100	
12B	IRON - TOTAL (UG/L)		16	2100				
12B	LEAD (UG/L)		15	1.2			2	
12B	LITHIUM (UG/L)		9	60.7	60		70	
12B	MANGANESE (UG/L)		16	462.5	445		820	
12B	MOLYBDENUM (UG/L)		5	20			20	
12B	NICKEL (UG/L)		4	1.3			2	
12B	SELENIUM (UG/L)		10	1	1		1	0
12B	SILICON (UG/L)			11184.6				
12B	STRONTIUM (UG/L)		14	5011.4				
12B	VANADIUM (UG/L)		14	10.7				
12B	ZINC (UG/L)		16	20				
12B	TOTAL DISSOLVED SOLIDS (MG/L)		16	1036.9				
12B	TOTAL SUSPENDED SOLIDS (MG/L)		10	3.7			6	
12B	WATER SURF. FR MP (M)		18	2				
12B	WATER SURF. ELVN (M, MSL)		17	231.8				
12B	WATER SURF. ELVN (FT, MSL)		12	760.3	760.8	755.1	761.8	•

Table 1. Kingston Groundwater Quality Summary. Data from 89/01/11 to 94/12/07.

WELL I.D.	PARAMETER	N		MEAN	MEDIAN	MIN	MAX	NUMBER OF EXCEEDANCES
13A	ORP (MV)		20	-71.1	-109.5	-138	151	
13A	CONDUCTIVITY (UMHOS/CM)		20	621.3		427	1470	
13A	DISSOLVED OXYGEN (MG/L)		20	0.2	0.2	0	0.7	
13A	TEMPERATURE (DEG C)		20	17.9	17.8	14.8	22.3	
13A	PH (STANDARD UNITS)		20	6.6	6.6	6.4	6.7	2
13A	ALKALINITY (MG/L)		19	208.9	211	179	258	•
13A	PHEN-PH ALKALINITY (MG/L)		5	0	0	0	0	
13A	ACIDITY (MG/L)		9	170.1	133	0	500	
13A	CO2 ACIDITY (MG/L)		8	165.1	167.5		216	
13A	CO2 (MG/L)		8	168.5			440	
13A	CA/MG HARDNESS (MG/L)		21	194.5	151	113.3	498	
13A	NITRATE+NITRITE NITROGEN (MG/L)		12	0.1			1.2	
13A	AMMONIA NITROGEN (MG/L)		2	0.7			0.8	
13A	TOTAL KJELDAHL NITROGEN (MG/L)		2	1.1		1.1	1.2	
13A	TOTAL ORGANIC CARBON (MG/L)		20	2.8			6.1	
13A	TOTAL INORGANIC CARBON (MG/L)		21	95.7			480	
13A	SULFIDE (MG/L)		9	0			0.1	
13A	CALCIUM (MG/L)		21	58.3			150	
13A	DISSOLVED CALCIUM (MG/L)		7	40.4		28	49	
13A	MAGNESIUM (MG/L)		21	11.9			30	
13A	DISSOLVED MAGNESIUM (MG/L)		7	6.6			8.9	
13A	SODIUM (MG/L)		21	28.2			67	
13A	POTASSIUM (MG/L)		21	7.3			25	
13A	CHLORIDE (MG/L)		21	1.8			3	
13A	SULFATE (MG/L)		21	180			950	
13A	FLUORIDE (MG/L)		12	0.2			0.3	
13A	ALUMINUM (UG/L)		21	9343.8			110000	
13A	DISSOLVED ALUMINUM (UG/L)		11	82.7			410	
13A	ANTIMONY (UG/L)		5	1		1	1	0
13A	ARSENIC (UG/L)		21	91.8			180	
13A	DISSOLVED ARSENIC (UG/L)		11	89.3			150	
13A	BARIUM (UG/L)		19	277.4			1200	
13A	DISSOLVED BARIUM (UG/L)		11	171.8			270	
13A	BERYLLIUM (UG/L)		5	200.5		1	1 700	
13A	BORON (UG/L)		21	639.5			1700	
13A	DISSOLVED BORON (UG/L)		11	603.6			1500	
13A	CADMIUM (UG/L)		20	0.4			1.7	
13A	DISSOLVED CADMIUM (UG/L)		11	0.7			3.1	0
13A 13A	CHROMIUM (UG/L)		18	12.7			86	
13A 13A	DISSOLVED CHROMIUM (UG/L) COPPER (UG/L)		11	1.1			2	
13A 13A	• •		21	17.6			90	
13A 13A	DISSOLVED COPPER (UG/L)		7	10			220000	
	IRON - TOTAL (UG/L)			64952.4			220000	
13A	DISSOLVED IRON (UG/L)		11	58090.9	43000	20000	210000	11

13A	LEAD (UG/L)	19	7	2	1	60	1
13A	DISSOLVED LEAD (UG/L)	11	1	1	1	1	0
13A	LITHIUM (UG/L)	15	50.5	40	10	200 .	
13A	DISSOLVED LITHIUM (UG/L)	7	35.7	30	23	60 .	
13A	MANGANESE (UG/L)	21	1496.2	1200	840	4000	21
13A	DISSOLVED MANGANESE (UG/L)	11	1271.8	1000	840	3600	11
13A	MOLYBDENUM (UG/L)	8	20	20	20	20 .	
13A	DISSOLVED MOLYBDENUM (UG/L)	4	20	20	20	20 .	
13A	NICKEL (UG/L)	5	1.6	1	. 1	4	0
13A	SELENIUM (UG/L)	13	1.2	1	1	3	0
13A	DISSOLVED SELENIUM (UG/L)	7	1.1	1	1	2	0
13A	SILICON (UG/L)	16	17681.3	14500	2300	56000 .	
13A	DISSOLVED SILICON (UG/L)	11	11345.5	12000	8100	14000 .	
13A	STRONTIUM (UG/L)	19	709.5	630	400	1300 .	
13A	DISSOLVED STRONTIUM (UG/L)	11	628.2	550	400	1200 .	
13A	TITANIUM (UG/L)	1	84	84	84	84 .	
13A	VANADIUM (UG/L)	19	32.1	10	10	240 .	
13A	DISSOLVED VANADIUM (UG/L)	11	12.7	10	10	40 .	
13A	ZINC (UG/L)	21	50.5	20	10	250	0
13A	DISSOLVED ZINC (UG/L)	11	44.5	20	10	170	0
13A	TOTAL DISSOLVED SOLIDS (MG/L)	21	344.3	290	160	990	2
13A	TOTAL SUSPENDED SOLIDS (MG/L)	16	197.7	130	22	1200 .	
13A	WATER SURF. FR MP (M)	22	3.2	3.1	2	4.9 .	
13A	WATER SURF. ELVN (M, MSL)	11	230.8	231.1	229.1	232.5 .	
13A	WATER SURF. ELVN (FT, MSL)	11	757.1	758.1	751.8	762.7 .	

Table 1. Kingston Groundwater Quality Summary. Data from 89/01/05 to 94/12/07.

WELL I.D.	PARAMETER	N		MEAN	MEDIAN	MIN	MAX	NUMBER OF EXCEEDANCES
13B	ORP (MV)		17	-34.1	-80	-170	573	
13B	CONDUCTIVITY (UMHOS/CM)		17					
13B	DISSOLVED OXYGEN (MG/L)		17				1.5	
13B	TEMPERATURE (DEG C)		17	16.5			18.6	
13B	PH (STANDARD UNITS)		17	8.3	8.3	8	8.4	0
13B	ALKALINITY (MG/L)		16	171.4	167.5	159	249	
13B	PHEN-PH ALKALINITY (MG/L)		4	0	0	0	0	
13B	ACIDITY (MG/L)		7	21.9	4	0	120	•
13B	CO2 ACIDITY (MG/L)		6	0.8	0	0	4	
13B	CO2 (MG/L)		5	27	3.5	0	106	
13B	CA/MG HARDNESS (MG/L)		17	27.3	26	22	40	•
13B	NITRATE+NITRITE NITROGEN (MG/L)		10	0	0	0	0.1	0 .
13B	TOTAL ORGANIC CARBON (MG/L)		16	0.6	0.5	0.2	2.5	•
13B	TOTAL INORGANIC CARBON (MG/L)		17	71.1	52	39	160	
13B	SULFIDE (MG/L)		6	0			0	
13B	CALCIUM (MG/L)		17	8.4	8.4	7.1	9.6	•
13B	DISSOLVED CALCIUM (MG/L)		4	8.7	8.8	7.3	10	
13B	MAGNESIUM (MG/L)		17	1.5	1.2	0.9	4.3	
13B	DISSOLVED MAGNESIUM (MG/L)		4	1.2	1.1	1	1.5	ų •
13B	SODIUM (MG/L)		17	62.7	66	6.3	77	
13B	POTASSIUM (MG/L)		17	2.1	2.1	1.7	2.6	•
13B	CHLORIDE (MG/L)		17	1.2	! 1	1	2	0
13B	SULFATE (MG/L)		17	6.7	' 2	1	77	0
13B	FLUORIDE (MG/L)		10	0.3	0.2	0.1	0.5	0
13B	ALUMINUM (UG/L)		17	242.9	50	50	1500	4
13B	DISSOLVED ALUMINUM (UG/L)		5	50	50	50	50	0
13B	ANTIMONY (UG/L)		3	1	1	1	1	0
13B	ARSENIC (UG/L)		17	1.5	i 1	1	9	0
13B	DISSOLVED ARSENIC (UG/L)		5	1.2	! 1	1	2	0
13B	BARIUM (UG/L)		15	214.7	210	180	260	0
13B	DISSOLVED BARIUM (UG/L)		5	190	190	150	240	0
13B	BERYLLIUM (UG/L)		3	1	1	1	1	0
13B	BORON (UG/L)		17	529.4	500	500	1000	
13B	DISSOLVED BORON (UG/L)		5	500	500	500	500	•
13B	CADMIUM (UG/L)		16	0.3				0
13B	DISSOLVED CADMIUM (UG/L)		5	0.3	0.2	. 0.1	0.5	0
13B	CHROMIUM (UG/L)		15	5	i 1	1	56	0
13B	DISSOLVED CHROMIUM (UG/L)		5	1	1	1	1	0
13B	COPPER (UG/L)		17	12.4	10	10	40	0
13B	DISSOLVED COPPER (UG/L)		4	10) 10	10	10	0
13B	IRON - TOTAL (UG/L)		17	217.6	120	10	1900	1
13B	DISSOLVED IRON (UG/L)		5	26	3 20	10		
13B	LEAD (UG/L)		16	1.3	3 1	1		
13B	DISSOLVED LEAD (UG/L)		5					
13B	LITHIUM (UG/L)		10	27.2	2 30	20	30	

13B	DISSOLVED LITHIUM (UG/L)	4	27.5	25	20	40 .	
13B	MANGANESE (UG/L)	17	22.8	19	5	5 5	1
13B	DISSOLVED MANGANESE (UG/L)	5	25.6	27	20	30	0
13B	MOLYBDENUM (UG/L)	6	20	20	20	20 .	
13B	DISSOLVED MOLYBDENUM (UG/L)	4	17.5	20	10	20 .	
13B	NICKEL (UG/L)	4	1.3	1	1	2	0
13B	SELENIUM (UG/L)	10	1.1	1	1	2	0
13B	DISSOLVED SELENIUM (UG/L)	1	1	1	1	1	0
13B	SILICON (UG/L)	14	6421.4	6350	3500	8600 .	•
13B	DISSOLVED SILICON (UG/L)	5	6660	6400	5900	7400 .	
13B	STRONTIUM (UG/L)	15	174	170	150	220 .	
13B	DISSOLVED STRONTIUM (UG/L)	5	140	160	50	180 .	
13B	VANADIUM (UG/L)	. 15	10.7	10	10	20 .	
13B	DISSOLVED VANADIUM (UG/L)	5	10	10	10	10.	
13B	ZINC (UG/L)	17	18.8	10	10	100	0
13B	DISSOLVED ZINC (UG/L)	5	12	10	10	20	0
13B	TOTAL DISSOLVED SOLIDS (MG/L)	17	188.8	200	90	230	0
13B	TOTAL SUSPENDED SOLIDS (MG/L)	12	1.9	1	1	7.	
13B	WATER SURF. FR MP (M)	19	3.9	3.7	2.8	6.7 .	
13B	WATER SURF. ELVN (M, MSL)	10	230.6	230.9	227.6	231.2	
13B	WATER SURE FLVN (ET MSL)	10	756.5	757.6	746 6	758 6	

Table 1. Kingston Groundwater Quality Summary. Data from 89/01/05 to 94/12/07.

WELL								NUMBER OF
I.D.	PARAMETER	Ν		MEAN	MEDIAN	MIN	MAX	EXCEEDANCES
14A	ORP (MV)		21	43.4	3	-50	270	
14A	CONDUCTIVITY (UMHOS/CM)		21	3208			3380	
14A	DISSOLVED OXYGEN (MG/L)		21	0.7			6.2	
14A	TEMPERATURE (DEG C)		21	18.1	17.7		23.3	
14A	PH (STANDARD UNITS)		21	6.1	6.1	5.9	6.4	21
14A	ALKALINITY (MG/L)		20		426	353	466	
14A	PHEN-PH ALKALINITY (MG/L)		6	0	0	0	0	
14A	ACIDITY (MG/L)		8	633.8	713	0	994	•
14A	CO2 ACIDITY (MG/L)		9	501.2	530	380	602	
1 4 A	CO2 (MG/L)		7	637.4	651.2	466	875	
14A	CA/MG HARDNESS (MG/L)		21	2023.9	2191	210	2446	•
14A	NITRATE+NITRITE NITROGEN (MG/L)		12	0.2	0	0	0.9	
14A	TOTAL ORGANIC CARBON (MG/L)		20				9.1	
14A	TOTAL INORGANIC CARBON (MG/L)		21	146.1	160	42	270	
1 4 A	SULFIDE (MG/L)		7	0	0	0	0	
14A	CALCIUM (MG/L)		21	578.9			710	
14A	DISSOLVED CALCIUM (MG/L)		7				630	
1 4 A	MAGNESIUM (MG/L)		21	140.5			200	
14A	DISSOLVED MAGNESIUM (MG/L)		7				170	
14A	SODIUM (MG/L)		21	23.2			32	
14A	POTASSIUM (MG/L)		21	51	54		74	
14A	CHLORIDE (MG/L)		21	11.2			15	
14A	SULFATE (MG/L)		21	1651.7			2300	
14A	FLUORIDE (MG/L)		12		0.1		0.2	
14A	ALUMINUM (UG/L)		21	2201.4			10000	
14A	DISSOLVED ALUMINUM (UG/L)		7				50	
14A	ANTIMONY (UG/L)		5				2	
14A	DISSOLVED ANTIMONY (UG/L)		1	1		1	1	
14A	ARSENIC (UG/L)		21	39		1	71	
14A	DISSOLVED ARSENIC (UG/L)		7				46	
14A	BARIUM (UG/L)		19				200	
14A	DISSOLVED BARIUM (UG/L)		7				160	
14A	BERYLLIUM (UG/L)		5				1	
14A	DISSOLVED BERYLLIUM (UG/L)		1	1	. 1		1	0
14A	BORON (UG/L)		21	596.2			870	
14A	DISSOLVED BORON (UG/L)		7				650	
14A	CADMIUM (UG/L)		20				1.1	
14A	DISSOLVED CADMIUM (UG/L)		7				1.4	
14A	CHROMIUM (UG/L)		18			_	17	
14A	DISSOLVED CHROMIUM (UG/L)		7				12	
14A	COPPER (UG/L)		21	19			70	
14A	DISSOLVED COPPER (UG/L)		7				20	
14A	IRON - TOTAL (UG/L)		21				220000	
14A	DISSOLVED IRON (UG/L)		7	102857	100000	93000	110000	7

14A	LEAD (UG/L)	20	2.7	1.5	0.9	9	0
14A	DISSOLVED LEAD (UG/L)	7	1.1	1	9 4 1	2	. 0
14A	LITHIUM (UG/L)	13	35.2	30	28	50 .	
14A	DISSOLVED LITHIUM (UG/L)	7	34.7	40	25	40 .	
14A	MANGANESE (UG/L)	21	9590.3	8300	97	25000	21
14A	DISSOLVED MANGANESE (UG/L)	7	7814.3	6700	5000	13000	7
14A	MOLYBDENUM (UG/L)	8	20	20	20	20 .	
14A	DISSOLVED MOLYBDENUM (UG/L)	5	42	20	20	130 .	
14A	NICKEL (UG/L)	5	1.4	1	1	3	0
14A	DISSOLVED NICKEL (UG/L)	1	3	3	3	3	0
14A	SELENIUM (UG/L)	13	1.8	1	1	3	0
14A	DISSOLVED SELENIUM (UG/L)	2	1	1	1	1	0
14A	SILICON (UG/L)	16	23500	26000	10000	38000 .	
14A	DISSOLVED SILICON (UG/L)	6	25166.7	23000	18000	38000 .	
14A	STRONTIUM (UG/L)	19	2116.8	2200	220	2700	
14A	DISSOLVED STRONTIUM (UG/L)	7	2271.4	2300	1800	2900 .	
14A	VANADIUM (UG/L)	19	27.4	10	10	70 .	
14A	DISSOLVED VANADIUM (UG/L)	7	20	10	10	50 .	
14A	ZINC (UG/L)	21	46.7	30	10	170	0
14A	DISSOLVED ZINC (UG/L)	7	30	10	10	80	0
14A	TOTAL DISSOLVED SOLIDS (MG/L)	21	2963.8	3100	240	6600	20
14A	TOTAL SUSPENDED SOLIDS (MG/L)	14	142.1	52	4	690 .	
14A	WATER SURF. FR MP (M)	23	4.6	4.4	3	9.4 .	
14A	WATER SURF. ELVN (M, MSL)	12	227.6	227.6	227.2	227.9 .	•
14A	WATER SURF. ELVN (FT, MSL)	12	746.7	746.7	745.3	747.7	

Table 1. Kingston Groundwater Quality Summary. Data from 89/01/05 to 94/12/07.

WELL I.D.	PARAMETER	N		MEAN	MEDIAN	MIN	MAX	NUMBER OF EXCEEDANCES
14B	ORP (MV)		10	102.0	47	20	603	
14B	CONDUCTIVITY (UMHOS/CM)		19 19	102.9 1131.1			1572	
14B	DISSOLVED OXYGEN (MG/L)		19	0.5			1.6	
14B	TEMPERATURE (DEG C)		19	17.3			21.8	
14B	PH (STANDARD UNITS)		19	6.8			7.2	
14B	ALKALINITY (MG/L)		19	284.1			376	
14B	PHEN-PH ALKALINITY (MG/L)		5	0			0,0	
14B	ACIDITY (MG/L)		7	48.7			135	
14B	CO2 ACIDITY (MG/L)		9	90.2			182	
14B	CO2 (MG/L)		6	50			119	
14B	CA/MG HARDNESS (MG/L)		20	707.8			1142.6	
14B	NITRATE+NITRITE NITROGEN (MG/L)		11	0.6			6.5	0
14B	TOTAL ORGANIC CARBON (MG/L)		19	0.9	1	0.2	1.9	•
14B	TOTAL INORGANIC CARBON (MG/L)		20	102.5	94	50	230	
14B	SULFIDE (MG/L)		6	0	0	0	0	•
14B	CALCIUM (MG/L)		20	232.5	215	90	390	
14B	DISSOLVED CALCIUM (MG/L)		5	226	220	200	270	•
14B	MAGNESIUM (MG/L)		20	30.9	30.5	20	44	.•
14B	DISSOLVED MAGNESIUM (MG/L)		5	30.6	31	26	36	•
14B	SODIUM (MG/L)		20	7.1	6.6	2.6	14.6	•
14B	POTASSIUM (MG/L)		20	3.7	3.2	2.4	11	
14B	CHLORIDE (MG/L)		20	5.6	5.5	3	8	0
14B	SULFATE (MG/L)		20	382.9	375	68	610	19
14B	FLUORIDE (MG/L)		11	0.1		0.1	0.5	0
14B	ALUMINUM (UG/L)		20	643.5	360	50	2200	. 11
14B	DISSOLVED ALUMINUM (UG/L)		5	50	50	50	50	0
14B	ANTIMONY (UG/L)		5	1.2	1	1	2	0
14B	DISSOLVED ANTIMONY (UG/L)		1	1	1		1	0
14B	ARSENIC (UG/L)		20	1.6		1	8	0
14B	DISSOLVED ARSENIC (UG/L)		5	1.8		1	4	0
14B	BARIUM (UG/L)		18	46.7			100	0
14B	DISSOLVED BARIUM (UG/L)		5	40	30	20	70	
14B	BERYLLIUM (UG/L)		5	1	1		1	0
14B	DISSOLVED BERYLLIUM (UG/L)		1	1			1	0
14B	BORON (UG/L)		20	500			500	
14B	DISSOLVED BORON (UG/L)		5	500		500	500	
14B	CADMIUM (UG/L)		19	0.5	0.1		5.2	1
14B	DISSOLVED CADMIUM (UG/L)		5	0.2		0.1	0.3	0
14B	CHROMIUM (UG/L)		18	1.8	1	1	7	0
14B	DISSOLVED CHROMIUM (UG/L)		5	1			1	0
14B	COPPER (UG/L)		20	18			120	
14B	DISSOLVED COPPER (UG/L)		5	10			10	
14B	IRON - TOTAL (UG/L)		20	1417			3000	
14B	DISSOLVED IRON (UG/L)		5	814	770	720	1000	5

14B	LEAD (UG/L)	19	1.8	1	1	8	0
14B	DISSOLVED LEAD (UG/L)	5	1	1	1	1	0
14B	LITHIUM (UG/L)	12	23	20	10	60 .	
14B	DISSOLVED LITHIUM (UG/L)	5	21	. 20	10	40 .	
14B	MANGANESE (UG/L)	20	602.5	545	140	1200	20
14B	DISSOLVED MANGANESE (UG/L)	5	576	550	490	720	5
14B	MOLYBDENUM (UG/L)	8	20	20	20	20 .	
14B	DISSOLVED MOLYBDENUM (UG/L)	5	20	20	20	20 .	
14B	NICKEL (UG/L)	7	1.7	2	. 1	3	0
14B	DISSOLVED NICKEL (UG/L)	1	1	1	1	1	0
14B	SELENIUM (UG/L)	12	1.4	1	1	6	0
14B	SILICON (UG/L)	15	10126.7	10000	4300	14000 .	
14B	DISSOLVED SILICON (UG/L)	4	10400	10500	9600	11000 .	
14B	STRONTIUM (UG/L)	17	457.1	420	350	680 .	
14B	DISSOLVED STRONTIUM (UG/L)	5	374	370	240	490 .	
14B	VANADIUM (UG/L)	17	10	10	10	10 .	
14B	DISSOLVED VANADIUM (UG/L)	5	10	10	10	10 .	
14B	ZINC (UG/L)	20	16	10	10	90	0
14B	DISSOLVED ZINC (UG/L)	- 5	10	10	10	10	0
14B	TOTAL DISSOLVED SOLIDS (MG/L)	20	839	790	370	1300	19
14B	TOTAL SUSPENDED SOLIDS (MG/L)	13	22.1	14	3	81 .	
14B	WATER SURF. FR MP (M)	23	5.3	5	4.8	8.5°.	
14B	WATER SURF. ELVN (M, MSL)	11	226.7	227	223.9	227.3 .	
14B	WATER SURE FLVN (FT MSL)	11	743 7	744.8	734 7	745 7	

Table 1. Kingston Groundwater Quality Summary. Data from 89/01/03 to 94/12/08.

WELL								NUMBER OF
I.D.	PARAMETER "	Ν		MEAN	MEDIAN	MIN	MAX	EXCEEDANCES
15A	ORP (MV)		18	131	111.5	-70	308	•
15A	CONDUCTIVITY (UMHOS/CM)		19	403.3	408	340	427	•
15A	DISSOLVED OXYGEN (MG/L)		19	0.7	0.7	0.2	. 2	•
15A	TEMPERATURE (DEG C)		19	29.2	17.3	15	243	
15A	PH (STANDARD UNITS)		19	7.4	7.4	. 7.1	7.7	0
15A	ALKALINITY (MG/L)		19	195.6	193	180	221	•
15A	PHEN-PH ALKALINITY (MG/L)		5	0	0	0	0	
15A	ACIDITY (MG/L)		10	14.1	13.5	0	27	
15A	CO2 ACIDITY (MG/L)		6	16.8			21	
15A	CO2 (MG/L)		9	13.7	12	6.2	24	
15A	CA/MG HARDNESS (MG/L)		18	371.8	213.6	182.7	2439	
15A	NITRATE+NITRITE NITROGEN (MG/L)		12	0.1	0	0	1	0
15A	TOTAL ORGANIC CARBON (MG/L)	•	17	0.9	0.5	0.2	4.1	•
15A	TOTAL INORGANIC CARBON (MG/L)		18	77.8	69.5	46	130	
15A	SULFIDE (MG/L)		8	0	0	0	0	•
15A	CALCIUM (MG/L)		18	113.3	68	58	680	
15A	DISSOLVED CALCIUM (MG/L)		2	74			82	
15A	MAGNESIUM (MG/L)		18	21.6	11	9	180	•
15A	DISSOLVED MAGNESIUM (MG/L)		2	9.2	9.2		9.3	
15A	SODIUM (MG/L)		18	11.1			27	
15A	POTASSIUM (MG/L)		18	5.8			62	
15A	CHLORIDE (MG/L)		18	3.6	3	1	14	0
15A	SULFATE (MG/L)		18	127.3	22	12	1900	
15A	FLUORIDE (MG/L)		12	0.1		0.1	0.2	0
15A	ALUMINUM (UG/L)		18	1428.9	705	50	11000	10
15A	DISSOLVED ALUMINUM (UG/L)		2	50	50	50	50	0
15A	ANTIMONY (UG/L)		, 5	1	1	1	1	0
15A	ARSENIC (UG/L)		18	3.8	1	1	34	0
15A	DISSOLVED ARSENIC (UG/L)		2	1	1	1	1	0
15A	BARIUM (UG/L)		16	148.8	140	40	330	0
15A	DISSOLVED BARIUM (UG/L)		2	175	175	170	180	
15A	BERYLLIUM (UG/L)		5	1	1	1	1	. 0
15A	BORON (UG/L)		18	525			950	•
15A	DISSOLVED BORON (UG/L)		2	500	500	500	500	
15A	CADMIUM (UG/L)		17	0.9	0.1	0.1	9.5	1
15A	DISSOLVED CADMIUM (UG/L)		2	0.7	0.7	0.1	1.4	0
15A	CHROMIUM (UG/L)		15	2.6	1	1	14	0
15A	DISSOLVED CHROMIUM (UG/L)		2	1	1	1	1	0
15A	COPPER (UG/L)		18	14.4	10	10	40	0
15A	DISSOLVED COPPER (UG/L)		2	10	10	10	10	0
15A	IRON - TOTAL (UG/L)		18	12620	245	20	210000	8
15A	DISSOLVED IRON (UG/L)		2	90	90	10	170	0
15A	LEAD (UG/L)		16	2.9	1.2	1	14	0

15A	DISSOLVED LEAD (UG/L)	2	1	1	1	1	0
15A	LITHIUM (UG/L)	10	14	10	10	20 .	
15A	DISSOLVED LITHÌUM (UG/L)	2	10	10	10	10 .	
15A	MANGANESE (UG/L)	18	1611	110	9	25000	15
15A	DISSOLVED MANGANESE (UG/L)	2	40	40	28	52	1
15A	MOLYBDENUM (UG/L)	5	22	20	20	30 .	
15A	NICKEL (UG/L)	5	1.2	1	1	2	0
15A	SELENIUM (UG/L)	14	1.1	1	1	2	0
15A	DISSOLVED SELENIUM (UG/L)	2	1	1	. 1	1	0
15A	SILICON (UG/L)	13	10392.3	8500	4600	33000 .	
15A	DISSOLVED SILICON (UG/L)	2	8650	8650	8100	9200 .	
15A	STRONTIUM (UG/L)	16	353.8	215	90	2000 .	
15A	DISSOLVED STRONTIUM (UG/L)	2	340	340	230	450 .	
15A	TITANIUM (UG/L)	. 1	5	5	5	5 .	
15A	VANADIUM (UG/L)	16	12.5	10	10	40 .	
15A	DISSOLVED VANADIUM (UG/L)	2	10	10	10	10.	
15A	ZINC (UG/L)	18	17.8	10	10	50	0
15A	DISSOLVED ZINC (UG/L)	2	15	15	10	20	0
15A	TOTAL DISSOLVED SOLIDS (MG/L)	18	436.7	250	200	3500	2
15A	TOTAL SUSPENDED SOLIDS (MG/L)	12	68.6	25	1	390 .	
15A	WATER SURF. FR MP (M)	21	2.7	2.7	2.3	3.6 _. .	
15A	WATER SURF. ELVN (M, MSL)	13	239.5	239.9	237.2	240.4 .	
15A	WATER SURE, ELVN (FT, MSL)	13	785.7	787 2	778 1	788.7	

Table 1. Kingston Groundwater Quality Summary. Data from 89/01/03 to 94/12/08.

WELL	DADAMETED							NUMBER OF
I.D. 15B	PARAMETER ORD (AL)	Ν	4.0	MEAN	MEDIAN		MAX	EXCEEDANCES
15B 15B	ORP (MV)		16	8.7			184	
15B 15B	CONDUCTIVITY (UMHOS/CM)		17	577.1	584	530		
15B 15B	DISSOLVED OXYĞEN (MG/L)		17	0.3		0.1	0.6	
15B	TEMPERATURE (DEG C)		17	16.7		15	19.9	
15B	PH (STANDARD UNITS)		17	7.1	7.1	6.8	7.3	
15B	ALKALINITY (MG/L)		17	257.6		241	340	
15B	PHEN-PH ALKALINITY (MG/L)		5	0	0	0	0	
15B 15B	ACIDITY (MG/L) CO2 ACIDITY (MG/L)		7	25.4	23	0	45	
15B	CO2 (MG/L)		6	26.8		10	40	
15B	CA/MG HARDNESS (MG/L)		6	26.2		14.1	40	
15B			17	317.4		186.5	586	
15B	NITRATE+NITRITE NITROGEN (MG/L) TOTAL ORGANIC CARBON (MG/L)		11	0	0	0	0	, 0
15B	TOTAL ORGANIC CARBON (MG/L)		16	0.5	0.5	0.2	0.8	
15B	SULFIDE (MG/L)		17 6	85.3		48	140	
15B	CALCIUM (MG/L)		17	0 95.2	0 90	0	100	
15B	MAGNESIUM (MG/L)		17	19.4		61	190	
15B	SODIUM (MG/L)		17	11.5	19	8.3	27	
15B	POTASSIUM (MG/L)		17		12	5.9	14	
15B	CHLORIDE (MG/L)			3.5	3.5	3.3	3.8	
15B	SULFATE (MG/L)		17	6.2	6	3	8	0
15B	FLUORIDE (MG/L)		17	74.4	58	50	310	•
15B	ALUMINUM (UG/L)		11 17	0.1 381.8	0.1	0.1	0.1	0
15B	ANTIMONY (UG/L)		5		70	50	1400	7
15B	ARSENIC (UG/L)		17	1 1.1	1	1	1 2	0
15B	BARIUM (UG/L)		15	50	50	1 10	130	0
15B	BERYLLIUM (UG/L)		5	1	1	10	130	0
15B	BORON (UG/L)		17		500	500	500	
15B	CADMIUM (UG/L)		16	0.2	0.1	0.1	0.6	. 0
15B	CHROMIUM (UG/L)		15	1.5	1	1	5	0
15B	COPPER (UG/L)		17	22.4	10	10	150	0
15B	IRON - TOTAL (UG/L)		17	1021.8	660	320	4800	17
15B	LEAD (UG/L)		16	2.2	1	1	10	0
15B	LITHIUM (UĠ/L)		9	22.2	20	10	30	
15B	MANGANESE (UG/L)		17	162.7	140	86	330	17
15B	MOLYBDENUM (UG/L)		5	20	20	20	20	
15B	NICKEL (UG/L)		6	1	1	1	1	
15B	SELENIUM (UG/L)		13	1	1	1	1	0
15B	SILICON (UG/L)			10341.7	11000	5500	12000	
15B	STRONTIUM (UG/L)		15	630	670	200	790	
15B	VANADIUM (UG/L)		15	10	10	10	10	
15B	ZINC (UG/L)		17	50.6	10	10	320	
15B	TOTAL DISSOLVED SOLIDS (MG/L)		17	401.2	360	270	700	3
15B	TOTAL SUSPENDED SOLIDS (MG/L)		10	21.1	3	1	150	
15B	WATER SURF. FR MP (M)		19	1.9	1.9	1.4	2.4	
15B	WATER SURF. ELVN (M, MSL)		11	240.1	240.7	233.8	241.2	
15B	WATER SURF. ELVN (FT, MSL)		11	787.7	789.6	767.2	791.3	
								-

Table 1. Kingston Groundwater Quality Summary. Data from 89/01/04 to 94/12/08.

WELL								NUMBER OF
I.D.	PARAMETER	Ν		MEAN	MEDIAN	MIN	MAX	EXCEEDANCES
16A	ORP (MV)		21	-11.6	-35	-110	165	
16A	CONDUCTIVITY (UMHOS/CM)		21	392.8				
16A	DISSOLVED OXYGEN (MG/L)		21	0.4			0.9	
16A	TEMPERATURE (DEG C)		21	16.8				
16A	PH (STANDARD UNITS)		21	7.3				
16A	ALKALINITY (MG/L)		21	135.8				
16A	PHEN-PH ALKALINITY (MG/L)		6	0				
16A	ACIDITY (MG/L)		9	29.9	10	0	180	•
16A	CO2 ACIDITY (MG/L)		9	18.1			70	•
16A	CO2 (MG/L)		8	29.6	9.7	6.2	158	•
16A	CA/MG HARDNESS (MG/L)		23	172.5	170	149	278.1	•
16A	NITRATE+NITRITE NITROGEN (MG/L)		14	0	0	0	0.3	0
16A	TOTAL ORGANIC CARBON (MG/L)		22	0.6	0.5	0	1.2	
16A	TOTAL INORGANIC CARBON (MG/L)		23	56.3	55	28	100	
16A	SULFIDE (MG/L)		10	0	0	0	0	
16A	CALCIUM (MG/L)		23	50.4	49	45	85	
16A	DISSOLVED CALCIUM (MG/L)		6	51.8	51	47	59	
16A	MAGNESIUM (MG/L)		23	11.3	11	9	16	.•
16A	DISSOLVED MAGNESIUM (MG/L)		6	10.4	9.9	9.3		
16A	SODIUM (MG/L)		23	18.1	18	15	23.2	
16A	POTASSIUM (MG/L)		23	2.3	2.3	2.1	2.6	•
16A	CHLORIDE (MG/L)		23	1.4	. 1	1	4	0
16A	SULFATE (MG/L)		23	78.5	70	48	300	1
16A	FLUORIDE (MG/L)		14	0.4	0.4	0.1	0.6	0
16A	ALUMINUM (UG/L)		23	1174.8	550	50	4700	16
16A	DISSOLVED ALUMINUM (UG/L)		6	50	50	50	50	0
16A	ANTIMONY (UG/L)		5	1	1	1	1	0
16A	ARSENIC (UG/L)		23	1.3	1	1	3	0
16A	DISSOLVED ARSENIC (UG/L)		6	1	1	1	1	0
16A	BARIUM (UG/L)		20	50	50	30	80	0
16A	DISSOLVED BARIUM (UG/L)		6	60	60	30	100	. 0
16A	BERYLLIUM (UG/L)		5	1	1	1		0
16A	BORON (UG/L)		23	500				
16A	DISSOLVED BORON (UG/L)		6	500	500	500	500	•
16A	CADMIUM (UG/L)		22	0.2		0.1	1	0
16A	DISSOLVED CADMIUM (UG/L)		6	0.5	0.4	0.1	1.2	0
16A	CHROMIUM (UG/L)		20	2.5	1	1	15	0
16A	DISSOLVED CHROMIUM (UG/L)		6	1		1	1	_
16A	COPPER (UG/L)		23	12.6				
16A	DISSOLVED COPPER (UG/L)		6	10				
16A	IRON - TOTAL (UG/L)		23	1889.6				
16A	DISSOLVED IRON (UG/L)		6	603.3		210		
16A	LEAD (UG/L)		21	2.5				
16A	DISSOLVED LEAD (UG/L)		6	1	1	1	1	0

16A	LITHIUM (UG/L)	15	25.8	30	10	40 .	
16A	DISSOLVED LITHIUM (UG/L)	6	24.2	30	10	30 .	
16A	MANGANESE (UĞ/L)	23	1271.7	1300	150	1700	23
16A	DISSOLVED MANGANESE (UG/L)	6	1233.3	1250	1100	1300	6
16A	MOLYBDENUM (UG/L)	8	20	20	20	20 .	
16A	DISSOLVED MOLYBDENUM (UG/L)	4	20	20	20	20 .	
16A	NICKEL (UG/L)	6	4.2	2.5	1 '	13	0
16A	SELENIUM (UG/L)	16	1	1	1	1	0
16A	DISSOLVED SELENIUM (UG/L)	2	1	1	. 1	1	. 0
16A	SILICON (UG/L)	18	8722.2	8350	4200	12000 .	
16A	DISSOLVED SILICON (UG/L)	6	8333.3	8300	7700	9200 .	
16A	STRONTIUM (UG/L)	20	365.5	350	300	650 .	
16A	DISSOLVED STRONTIUM (UG/L)	6	330	340	190	450 .	
16A	VANADIUM (UG/L)	20	11	10	10	20 .	
16A	DISSOLVED VANADIUM (UG/L)	6	10	. 10	10	10 .	
16A	ZINC (UG/L)	23	22.2	10	10	150	. 0
16A	DISSOLVED ZINC (UG/L)	6	10	10	10	10	0
16A	TOTAL DISSOLVED SOLIDS (MG/L)	23	248.7	250	210	280	0
16A	TOTAL SUSPENDED SOLIDS (MG/L)	16	58.8	10	1	330 .	
16A	WATER SURF. FR MP (M)	25	2.7	2.9	1.1	4.6 .	
16A	WATER SURF. ELVN (M, MSL)	14	230.7	231	227.8	232.6 _、 .	
16A	WATER SURF. ELVN (FT, MSL)	14	756.9	758	747.4	763 .	

Table 1. Kingston Groundwater Quality Summary. Data from 89/01/04 to 94/12/08.

WELL I.D.	PARAMETER	N		MEAN	MEDIAN	MIN	MAX	NUMBER OF EXCEEDANCES
16B	ORP (MV)		19	138.6	90	-10	443	
16B	CONDUCTIVITY (UMHOS/CM)		19	403				
16B	DISSOLVED OXYGEN (MG/L)		19	0.3				
16B	TEMPERATURE (DEG C)		19	16.6				
16B	PH (STANDARD UNITS)		19	7.3	7.3	6.9	7.4	0
16B	ALKALINITY (MG/L)		19	136.6	137	- 117	145	
16B	PHEN-PH ALKALINITY (MG/L)		6	0	. 0	0	0	
16B	ACIDITY (MG/L)		7	30.4	9	0		
16B	CO2 ACIDITY (MG/L)		9	13.3				
16B	CO2 (MG/L)		6	31.3				
16B	CA/MG HARDNESS (MG/L)		20	174.4				
16B	NITRATE+NITRITE NITROGEN (MG/L)		10	0				
16B	TOTAL ORGANIC CARBON (MG/L)		19	0.5				
16B	TOTAL INORGANIC CARBON (MG/L)		20	54.1	39.5			
16B	SULFIDE (MG/L)		5	0		-		
16B 16B	CALCIUM (MG/L)		20	51.7				
16B	DISSOLVED CALCIUM (MG/L) MAGNESIUM (MG/L)		5	52.8				
16B	DISSOLVED MAGNESIUM (MG/L)		20 5	11 10	11 9.3			
16B	SODIUM (MG/L)		19	18.6				
16B	POTASSIUM (MG/L)		19	2.4				
16B	CHLORIDE (MG/L)		20	1.5		1.7	4	
16B	SULFATE (MG/L)		20	73.9				
16B	FLUORIDE (MG/L)		10	0.4				
16B	ALUMINUM (UG/L)		20	2297.5				
16B	DISSOLVED ALUMINUM (UG/L)		5	50				
16B	ANTIMONY (UG/L)		5	1	1	1	1	
16B	ARSENIC (UG/L)		20	1.2	1	1	. 3	0
16B	DISSOLVED ARSENIC (UG/L)		5	1	1	1	1	. 0
16B	BARIUM (UG/L)		18	64.4	50	30	200	. 0
16B	DISSOLVED BARIUM (UG/L)		5	50	40	20	. 80	0
16B	BERYLLIUM (UG/L)		5	1	1	1		-
16B	BORON (UG/L)		20	500				
16B	DISSOLVED BORON (UG/L)		5	500				•
16B	CADMIUM (UG/L)		19	0.2				0
16B	DISSOLVED CADMIUM (UG/L)		5	0.3				
16B	CHROMIUM (UG/L)		18	2.4		1	11	_
16B	DISSOLVED CHROMIUM (UG/L)		5	1	1		1	0
16B	COPPER (UG/L)		20	16				
16B	DISSOLVED COPPER (UG/L)		.5	10				
16B 16B	IRON - TOTAL (UG/L)		20	2516				
16B	DISSOLVED IRON (UG/L) LEAD (UG/L)		5	14				
16B	DISSOLVED LEAD (UG/L)		19 5	3 1				
100	ביססרגרם ברעם (מפור)		J	,	'	ı	1	U

16B	LITHIUM (UG/L)	13	22.5	20	10	70 .	
16B	DISSOLVED LITHIUM (UG/L)	5	16.4	20	10	20 .	
16B	MANGANESE (UG7L)	20	858	815	620	2000	20
16B	DISSOLVED MANGANESE (UG/L)	5	708	690	620	820	5
16B	MOLYBDENUM (UG/L)	10	20	20	20	20 .	
16B	DISSOLVED MOLYBDENUM (UG/L)	5	20	20	20	20 .	
16B	NICKEL (UG/L)	6	1	1	1	. 1	0
16B	SELENIUM (UG/L)	10	1	1	1	1	0
16B	SILICON (UG/L)	14	11271.4	9650	6500	28000 .	
16B	DISSOLVED SILICON (UG/L)	5	8040	7700	7500	8800 .	
16B	STRONTIUM (UG/L)	18	368.3	360	320	440 .	
16B	DISSOLVED STRONTIUM (UG/L)	5	324	320	280	360 .	
16B	VANADIUM (UG/L)	18	11.1	10	10	30 .	
16B	DISSOLVED VANADIUM (UG/L)	5	10	10	10	10 .	
16B	ZINC (UG/L)	20	13	10	10	40	0
16B	DISSOLVED ZINC (UG/L)	5	12	10	10	20	0
16B	TOTAL DISSOLVED SOLIDS (MG/L)	19	257.9	260	220	290	Ô
16B	TOTAL SUSPENDED SOLIDS (MG/L)	14	24	10.5	1	96 .	
16B	WATER SURF. FR MP (M)	21	2.2	1.9	1.2	7.	
16B	WATER SURF. ELVN (M, MSL)	10	231	231.7	223.2	232.4	
16B	WATER SURF, ELVN (FT, MSL)	10	757 9	760.2	732 3	762.6	

Table 1. Kingston Groundwater Quality Summary. Data from 92/12/07 to 94/12/07.

WELL I.D.	PARAMETER	N		MEAN	MEDIAN	MIN	MAX	NUMBER OF EXCEEDANCES
17	ORP (MV)		3	122	177	-13	202	
17	CONDUCTIVITY (UMHOS/CM)		3	2029.7			3160	
17	DISSOLVED OXYGEN (MG/L)		3	0.4		0.1	0.8	•
17	TEMPERATURE (DEG C)		3	17.9			19.3	
17	PH (STANDARD UNITS)		3	6			6.3	3
17	ALKALINITY (MG/L)		3	84	. 88	71	93	
17	PHEN-PH ALKALINITY (MG/L)		2	0			0	
17	CO2 ACIDITY (MG/L)		2	168	168	166	170	
17	CO2 (MG/L)		1	204	204	204	204	•
17	CA/MG HARDNESS (MG/L)		3	1011.6	935.4	910.4	1189	
17	TOTAL ORGANIC CARBON (MG/L)		2	0.9		0.4	1.5	•
17	TOTAL INORGANIC CARBON (MG/L)		3	40.3	42	36	43	,
17	CALCIUM (MG/L)		3	366.7	340	330	430	
17	DISSOLVED CALCIUM (MG/L)		2	360	360	340	380	
17	MAGNESIUM (MG/L)		3	23.3	21	21	28	
17	DISSOLVED MAGNESIUM (MG/L)		2	23	23	20	26	
17	SODIUM (MG/L)		3	8.3	8.1	7.5	9.2	•
17	POTASSIUM (MG/L)		3	21.7	17	14	34	
17	CHLORIDE (MG/L)		3	4	. 4	4	4	0
17	SULFATE (MG/L)		3	923.3	830	740	1200	3
17	ALUMINUM (UG/L)		3	17633.3	13000	1900	38000	3
17	DISSOLVED ALUMINUM (UG/L)		2	50	50	50	50	0
17	ANTIMONY (UG/L)		3	2.3	1	1	5	0
17	DISSOLVED ANTIMONY (UG/L)		2	3.5	3.5	2	5	0
17	ARSENIC (UG/L)		3	255	100	85	580	3
17	DISSOLVED ARSENIC (UG/L)		2	292.5	292.5	85	500	
17	BARIUM (UG/L)		3		140	30	310	0
17	DISSOLVED BARIUM (UG/L)		2		15	10	20	0
17	BERYLLIUM (UG/L)	•	3		1	1	1	0
17	DISSOLVED BERYLLIUM (UG/L)		2				1	0
17	BORON (UG/L)		3					
17	DISSOLVED BORON (UG/L)		2					
17	CADMIUM (UG/L)		2					
17	DISSOLVED CADMIUM (UG/L)		2				0.3	
17	CHROMIUM (UG/L)		2		40.5	25	56	
17	DISSOLVED CHROMIUM (UG/L)		2				1	0
17	COPPER (UG/L)		3					
17	DISSOLVED COPPER (UG/L)		2					
17	IRON - TOTAL (UG/L)		3					
17	DISSOLVED IRON (UG/L)		2					
17	LEAD (UG/L)		3		27	1	46	
17	DISSOLVED LEAD (UG/L)		2					0
17	LITHIUM (UG/L)		2					
17	DISSOLVED LITHIUM (UG/L)		2					
17	MANGANESE (UG/L)		3					
17	DISSOLVED MANGANESE (UG/L)		2	2600	2600	2000	3200	2

WELL								NUMBER OF
I.D.	PARAMETER	Ν		MEAN	MEDIAN	MIN	MAX	EXCEEDANCES
17	MOLYBDENUM (UG/L)		2	20	20	20	20	•
17	DISSOLVED MOLYBDENUM (UG/L)		2	20	20	20	20	•
17	NICKEL (UG/L)		3	28.7	28	9	49	0
17	DISSOLVED NICKEL (UG/L)		2	5	5	1	9	0
17	SELENIUM (UG/L)		1	1	1	1	1	0
17	STRONTIUM (UG/L)		3	1733.3	1600	1400	2200	•
17	DISSOLVED STRONTIUM (UG/L)		2	1750	1750	1500	2000	•
17	VANADIUM (UG/L)		3	60	40	10	130	
17	DISSOLVED VANADIUM (UG/L)		2	10	10	10	10	•
17	ZINC (UG/L)		3	77.7	73	30	130	0
17	DISSOLVED ZINC (UG/L)		2	40	40	40	40	0
17	TOTAL DISSOLVED SOLIDS (MG/L)		3	1400	1300	1000	1900	3
17	TOTAL SUSPENDED SOLIDS (MG/L)		3	980	940	200	1800	•
17	WATER SURF. FR MP (M)		4	2.5	2.6	2.3	2.6	•

Table 1. Kingston Groundwater Quality Summary. Data from 92/12/07 to 94/12/07.

WELL I.D.	PARAMETER	N		MEAN	MEDIAN	MIN	MAX	NUMBER OF EXCEEDANCES
19	ORP (MV)		3	124	169	-16	219	•
19	CONDUCTIVITY (ÜMHOS/CM)		3	2301.3	2391	2040	2473	
19	DISSOLVED OXYGEN (MG/L)		3	0.5	0.3	0.1	1.2	
19	TEMPERATURE (DEG C)		3	17.9	17.8	17.7	18.1	
19	PH (STANDARD UNITS)		3	6	5.9	5.9	6.2	3
19	ALKALINITY (MG/L)		3	95.3	102	70	114	•
19	PHEN-PH ALKALINITY (MG/L)		2	0	0	0	0	
19	CO2 ACIDITY (MG/L)		2	440	440	414	466	
19	CO2 (MG/L)		1	666		666	666	•
19	CA/MG HARDNESS (MG/L)		4	1601.3	1593.8	1525.6	1691.9	
19	TOTAL ORGANIC CARBON (MG/L)		3	0.5	0.6	0.4	0.6	
19	TOTAL INORGANIC CARBON (MG/L)	,	4	54.3	53.5	44	66	•
19	CALCIUM (MG/L)		4	570	560	550	610	
19	DISSOLVED CALCIUM (MG/L)		3	470	460	400	550	•
19	MAGNESIUM (MG/L)		4	43.3	43.5	37	49	
19	DISSOLVED MAGNESIUM (MG/L)		3	39.3	42	32	44	•
19	SODIUM (MG/L)		4	9.9	9.9	8.8	11	•
19	POTASSIUM (MG/L)		4	36.5	37	30	42	
19	CHLORIDE (MG/L)		4	4		4	4	0
19	SULFATE (MG/L)		4	1850		1400	2200	, 4
19	ALUMINUM (UG/L)		4	1467.5		870	2400	4
19	DISSOLVED ALUMINUM (UG/L)		3	56.7		50	60	0
19	ANTIMONY (UG/L)		4	1.3		1	2	0
19	DISSOLVED ANTIMONY (UG/L)		3	1.7		1	2	0
19	ARSENIC (UG/L)		4	59.3		47	79	2
19	DISSOLVED ARSENIC (UG/L)		3	48.3		43	58	1
19	BARIUM (UG/L)		4	37.5		30	40	0
19	DISSOLVED BARIUM (UG/L)		3	23.3	20	20	30	0
19	BERYLLIUM (UG/L)		4	1	1	1	1	. 0
19	DISSOLVED BERYLLIUM (UG/L)		3	1	1	1	1	0
19	BORON (UG/L)		4	2275	2400	1200	3100	
19	DISSOLVED BORON (UG/L)		3	1833.3		1200	2300	•
19	CADMIUM (UG/L)		3	0.1	0.1	0.1	0.1	0
19	DISSOLVED CADMIUM (UG/L)		3	0.1	0.1	0.1	0.1	0
19	CHROMIUM (UG/L)		3	1	1	1	1	0
19	DISSOLVED CHROMIUM (UG/L)		3	1	1	1	1	0
19	COPPER (UG/L)		4	10		10	10	0
19	DISSOLVED COPPER (UG/L)		3	10		10	10	0
19	IRON - TOTAL (UG/L)		4	312500			420000	4
19	DISSOLVED IRON (UG/L)		3	286667		. •	330000	3
19	LEAD (UG/L)		4	1.3	1	1	2	0
19	DISSOLVED LEAD (UG/L)		3	1	1	1	1	0
19	LITHIUM (UG/L)		3	273.3		200	310	
19	DISSOLVED LITHIUM (UG/L)		3	266.7	300	200	300	•
19	MANGANESE (UG/L)		4	9625		7100	12000	4
- 19	DISSOLVED MANGANESE (UG/L)		3	8033.3	8100	6800	9200	3

19	MOLYBDENUM (UG/L)	3	20	20	20	20 .	
19	DISSOLVED MOLYBDENUM (UG/L)	3	20	20	20	20 .	
19	NICKEL (UG/L)	4	1.3	1	1	2	0
19	DISSOLVED NICKEL (UG/L)	3	1	. 1	1	1	0
19	SELENIUM (UG/L)	1	1	1	1	1	0
19	STRONTIUM (UG/L)	4	3050	3000	2800	3400 .	
19	DISSOLVED STRONTIUM (UG/L)	3	2533.3	2600	2300	2700 .	
19	VANADIUM (UG/L)	4	10	10	10	10 .	
19	DISSOLVED VANADIUM (UG/L)	3	10	10	10	10 .	
19	ZINC (UG/L)	4	112.5	115	70	150	0
19	DISSOLVED ZINC (UG/L)	3	96.7	100	70	120	0
19	TOTAL DISSOLVED SOLIDS (MG/L)	4	2750	3000	1500	3500	4
19	TOTAL SUSPENDED SOLIDS (MG/L)	4	98	101	60	130 .	
19	WATER SURF. FR MP (M)	4	3.3	3.4	3.1	3.4 .	

Emory River Water Quality. Summary of 8 Stations near Kingston Fossil Plant. Data from 60/05/12 to 85/01/01.

WELL						
I.D.	PARAMETER	N	MEAN	MEDIAN	MIN	MAX
Emory R.	DISSOLVED OXYGEN (MG/L)	231		8.5	0.2	13.7
Emory R.	COD (MG/L)	45		5	1	25
Emory R.	PH (STANDARD UNITS)	259	7.2	7.3	5.5	8.5
Emory R.	ALKALINITY (MG/L)	340			1	189
Emory R.	PHEN-PH ALKALINITY (MG/L)	339			0	87
Emory R.	ACIDITY (MG/L)	206			0	10
Emory R.	CA/MG HARDNESS (MG/L)	125		32		170
Emory R.	CALCIUM as CaCO3 (MG/L)	207		17	6	63
Emory R.	CALCIUM (MG/L)	77			1	33
Emory R.	MAGNESIUM as CaCO3 (MG/L)	113			2.9	52
Emory R.	MAGNESIUM (MG/L)	171	3.4		0.5	24
Emory R.	SODIUM (MG/L)	270			0	63
Emory R.	POTASSIUM (MG/L)	271		1.1	0	50
Emory R.	CHLORIDE (MG/L)	312			0.93	21
Emory R.	SULFATE (MG/L)	270		14	3	80
Emory R.	ALUMINUM (UG/L)	123			20	50000
Emory R.	ANTIMONY (UG/L)	61			1	30
Emory R.	ARSENIC (UG/L)	75			1	110
Emory R.	BARIUM (UG/L)	129			5	400
Emory R.	BERYLLIUM (UG/L)	15			10	10
Emory R.	BORON (UG/L)	13		100	10	250
Emory R.	CADMIUM (UG/L)	132		1	0	30
Emory R.	CHROMIUM (UG/L)	125			1	113
Emory R.	COBALT (UG/L)	109			1	40
Emory R.	COPPER (UG/L)	220			10	1850
Emory R.	IRON - TOTAL (UG/L)	286			7	4600
Emory R.	LEAD (UG/L)	132			5	31
Emory R.	LITHIUM (UG/L)	15			10	30
Emory R.	MANGANESE (UG/L)	272			2	1350
Emory R.	NICKEL (UG/L)	200			0	290
Emory R.	SELENIUM (UG/L)	69			1	8
Emory R.	SILVER (UG/L)	124			1	10
Emory R.	STRONTIUM (UG/L)	1			40	40
Emory R.	ZINC (UG/L)	212			1	200
Emory R.	WATER TEMP. (Deg. C)	289			1	29.6
Emory R.	TURBIDITY (JTU)	322			0	330
Emory R.	BOD.5 Day (MG/L)	92			1	4.3
Emory R.	TOTAL DISSOLVED SOLIDS (MG/L)	36			20	210
Emory R.	TOTAL SUSPENDED SOLIDS (MG/L)	240	19.4	10	0	195

emory.xls

STATE OF TENNESSEE DEPARTMENT OF ENVIRONMENT AND CONSERVATION KNOXVILLE ENVIRONMENTAL FIELD OFFICE 2700 MIDDLEBROOK PIKE, SUITE 220 KNOXVILLE, TENNESSEE 37921-5602 (615) 594-6035 FAX (615) 594-6105

November 21, 1996

Mr. Randy M. Cole, Plant Manager Tennessee Valley Authority Kingston Fossil Plant P.O. Box 2000 Kingston, Tennesee 37763

RE: Closure/Post-Closure Plan for ash pond disposal area

Dear Mr. Cole:

The revisions to the closure-post closure plan for the ash pond disposal area at Kingston Fossil Plant, as prepared by Tennessee Valley Authority, Site and Environmental Engineering Section, and submitted to our office on November 18, 1996, have been reviewed in accordance with Rule Chapter 1200-1-7, Solid Waste Processing and Disposal. The revisions have satisfactorily addressed most of our previous comments; however, the following deficiency remains uncorrected:

The second alternative for the final cap has only a bentonite-impregnated fabric product over the final ash surface, with no soil component in the cap. This is unacceptable; if the cap consists of only a membrane, there will be no cap at all at any point where there is a puncture, tear, or defect. Also, having the dry ash material in contact with the bentonite fabric could cause the bentonite to dry out and desicate once it has been hydrated, which may render it less effective. Bentonite-impregnated fabrics are only approved in combination with soil liners, although a higher permeability would be allowed for the soil component if a GCL material is also used. It has been noted in the revision that there is a soil component; however, this is a vegetative layer over the bentonite fabric. There must also be a low-permeability clay layer under the fabric (over the ash) to assure that there will be uniform, continuous cap over all of the waste.

LYNN

WENDED TO DEVELOP AN OFFICENCESPONCE TO RICK BROWN'S COMMENT. PLEASE TAKE A COOK AT THE ATTACHED DIATA AND GIVE ME ACALL LOWEN YOU CET A CHANCE

DUE

Towns Dark

r. Randy M. Cole November 21, 1996 Page 2

Please prepare and submit revisions to the closure/post closure plan to address these items. If you should have any questions concerning this review, do not hesitate to contact me.

Pours truly, Rick Brown

Rick Brown

Environmental Engineeer

Division of Solid Waste Management

RSB a:\tvaknc2.doc

cc: DSWM-Nashville Central Office

July XX, 1997

Mr. Rick Brown
Environmental Engineer
Division of Solid Waste Management
Department of Environment and Conservation
2700 Middlebrook Pike
Knoxville, Tennessee 37921

Dear Mr. Brown:

KINGSTON FOSSIL PLANT - CLOSURE/POST-CLOSURE PLAN FOR ASH POND DISPOSAL AREA - SECOND ALTERNATIVE FOR CAP

This letter is in response to your letter to Randy Cole dated November 21, 1996 concerning the use of a bentonite-impregnated fabric without a soil component in the cap.

We recognize the need for a soil "cushion" underneath a geosynthetic clay liner (GCL) cap component in a typical waste landfill where there is a high probability that random shards of waste material would puncture the membrane. In our facility at Kingston, the enclosed material is made up uniformly of coal ash with almost no debris that could puncture a GCL material placed directly on the ash fill. We see the probability of such a puncture as very unlikely. As for the possibility of tears or seams splitting during placement of the GCL we would be receptive to a higher level of Quality Assurance/Quality Control to prevent such problems.

Your letter expressed concerns that placement of a GCL directly in contact with the ash material could cause the bentonite to dry out and desiccate rendering it less effective. We do not anticipate that happening. The vast majority of the material placed within the disposal area is fly ash. Field experiments and analyses conducted by TVA indicate that fly ash exhibits strong capillary forces and an ability to store water. We believe that the clay would remain sufficiently moist from evaporation of the underlying ground water to prevent desiccation. In the consideration of such a low probability of a failure in the GCL, we believe the soil liner component of a synthetic cap is not necessary in this unique case.

We would be happy to discuss this issue further. There may be other economic and innovative possibilities that we could jointly explore.

J:fossil/site/kifgcl.doc

Between now and the time the cap is actually placed there may well be advances in the technology associated with synthetic liners. We want to keep an open mind toward using any liner which may be better.

Field tests (tensiometers 200 square foot of claymax set up in the dredge cell area.)

In the unlikely event of a failure, some consideration should be given to the non/low hazard nature of the ash being stored. The consequences do not merit the use of a cushion in this situation.

Propose the use of the intermediate cover as a redundant cushion in lieu of the underlying clay.

ash will be as follows (from top layer downward):

- Soil suitable for support of vegetation twelve inches (12")
- Soil compacted to achieve a maximum hydraulic conductivity of 1 x 10⁻⁷ cm/sec twelve inches (12")

Appendix A is a printout of the HELP model that provides the justification for using this final In summary, the printout is to be used to evaluate the cap design only in regards to the anticipated average annual percolation through the The results indicate that for the 20 years modeled the average annual percolation through the cap is predicted to be 1.2447 inches/year. design will provide sufficient proposed cap protection from the percolation of water into fly ash stack. This is further supported by the field experiments and analyses conducted by TVA that indicate that the fly ash exhibits strong capillary forces and an ability to store water Reference is also made to the report "Design, Construction and Maintenance of Cover Systems for Hazardous Waste -An Engineering Guidance Document prepared by the Army Engineer Waterways Experiment Station for EPA, May 1987. Reference is also made to Sheet 5 of 5 the plans submitted as part of this Closure/Post-Closure Plan for additional details regarding the final cap.

July XX, 1997

Mr. Rick Brown
Environmental Engineer
Division of Solid Waste Management
Department of Environment and Conservation
2700 Middlebrook Pike
Knoxville, Tennessee 37921

Dear Mr. Brown:

KINGSTON FOSSIL PLANT - CLOSURE/POST-CLOSURE PLAN FOR ASH POND DISPOSAL AREA - SECOND ALTERNATIVE FOR CAP

This letter is in response to your letter to Randy Cole dated November 21, 1996 concerning the use of a bentonite-impregnated fabric without a soil component in the cap.

We recognize the need for a soil "cushion" underneath a geosynthetic clay liner (GCL) cap component in a typical waste landfill where there is a high probability that random shards of waste material would puncture the membrane. In our facility at Kingston, the enclosed material is made up uniformly of coal ash with almost no debris that could puncture a GCL material placed directly on the ash fill. We see the probability of such a puncture as very unlikely. As for the possibility of tears or seams splitting during placement of the GCL we would be receptive to a higher level of Quality Assurance/Quality Control to prevent such problems.

Your letter expressed concerns that placement of a GCL directly in contact with the ash material could cause the bentonite to dry out and desiccate rendering it less effective. We do not anticipate that happening. The vast majority of the material placed within the disposal area is fly ash. Field experiments and analyses conducted by TVA indicate that fly ash exhibits strong capillary forces and an ability to store water. We believe that the clay would remain sufficiently moist from evaporation of the underlying ground water to prevent desiccation. In the consideration of such a low probability of a failure in the GCL, we believe the soil liner component of a synthetic cap is not necessary in this unique case.

We would be happy to discuss this issue further. There may be other economic and innovative possibilities that we could jointly explore.

J:fossil/site/kifgcl.doc

July XX, 1997

Mr. Rick Brown
Environmental Engineer
Division of Solid Waste Management
Department of Environment and Conservation
2700 Middlebrook Pike
Knoxville, Tennessee 37921

Dear Mr. Brown:

KINGSTON FOSSIL PLANT - CLOSURE/POST-CLOSURE PLAN FOR ASH POND DISPOSAL AREA - SECOND ALTERNATIVE FOR CAP

This letter is in response to your letter to Randy Cole dated November 21, 1996 concerning the use of a bentonite-impregnated fabric without a soil component in the cap.

We recognize the need for a soil "cushion" underneath a geosynthetic clay liner (GCL) cap component in a typical waste landfill where there is a high probability that random shards of waste material would puncture the membrane. In our facility at Kingston, the enclosed material is made up uniformly of coal ash with almost no debris that could puncture a GCL material placed directly on the ash fill. We see the probability of such a puncture as very unlikely. As for the possibility of tears or seams splitting during placement of the GCL we would be receptive to a higher level of Quality Assurance/Quality Control to prevent such problems.

Your letter expressed concerns that placement of a GCL directly in contact with the ash material could cause the bentonite to dry out and desiccate rendering it less effective. We do not anticipate that happening. The vast majority of the material placed within the disposal area is fly ash. Field experiments and analyses conducted by TVA indicate that fly ash exhibits an ability to store water. Additionally, when there is a barrier placed that blocks the vertical evaporation of water, there is a tendency to redistribute the moisture within the stack. We believe that the clay would remain sufficiently moist from evaporation of the underlying ground water to prevent desiccation. In the consideration of such a low probability of a failure in the GCL, we believe the underlying clay liner component of a synthetic cap is not necessary in this unique case.

We would be happy to discuss this issue further. There may be other economic and innovative possibilities that we could jointly explore.

J:fossil/site/kifgcl.doc

Between now and the time the cap is actually placed there may well be advances in the technology associated with synthetic liners. We want to keep an open mind toward using any liner which may be better.

Field tests (tensiometers 200 square foot of claymax set up in the dredge cell area.)

In the unlikely event of a failure, some consideration should be given to the non/low hazard nature of the ash being stored. The consequences do not merit the use of a cushion in this situation.

Propose the use of the intermediate cover as a redundant cushion in lieu of the underlying clay.

STATE OF TENNESSEE DEPARTMENT OF ENVIRONMENT AND CONSERVATION KNOXVILLE ENVIRONMENTAL FIELD OFFICE

2700 MIDDLEBROOK PIKE, SUITE 220 KNOXVILLE, TENNESSEE 37921-5602 (615) 594-6035 FAX (615) 594-6105

November 21, 1996

Mr. Randy M. Cole, Plant Manager Tennessee Valley Authority Kingston Fossil Plant P.O. Box 2000 Kingston, Tennesee 37763

RE: Closure/Post-Closure Plan for ash pond disposal area

Dear Mr. Cole:

The revisions to the closure-post closure plan for the ash pond disposal area at Kingston Fossil Plant, as prepared by Tennessee Valley Authority, Site and Environmental Engineering Section, and submitted to our office on November 18, 1996, have been reviewed in accordance with Rule Chapter 1200-1-7, Solid Waste Processing and Disposal. The revisions have satisfactorily addressed most of our previous comments; however, the following deficiency remains uncorrected:

second alternative for the final cap has only a bentonite-impregnated fabric product over the final ash surface, with no soil component in the cap. This unacceptable; if the cap consists of only a membrane, there will be no cap at all at any point where there is a puncture, tear, or defect. Also, having the dry ash material contact with the bentonite fabric could cause the bentonite to dry out and dessicate once it has been hydrated, which may render it less effective. Bentoniteimpregnated fabrics are only approved in combination with soil liners, although a higher permeability would be allowed for the soil component if a GCL material is also used. It has been noted in the revision that there is a soil component; however, this is a vegetative layer over the bentonite fabric. There must also be a low-permeability clay layer under the fabric (over the ash) to assure that there will be uniform, continuous cap over all of the waste.

المرابط المراجع

Mr. Randy M. Cole November 21, 1996 Page 2

Please prepare and submit revisions to the closure/post closure plan to address these items. If you should have any questions concerning this review, do not hesitate to contact me.

Rick Brown

Rick Brown

Environmental Engineeer

Division of Solid Waste Management

RSB a:\tvaknc2.doc

cc: DSWM-Nashville Central Office