REPORT OF GEOTECHNICAL LABORATORY TESTING OF GEOTEXTILE COMPOSITE MATERIAL

ASH DISPOSAL AREA KINGSTON FOSSIL PLANT KINGSTON, TENNESSEE

Prepared For:

TENNESSEE VALLEY AUTHORITY

Chattanooga, Tennessee

Prepared By:

MACTEC ENGINEERING AND CONSULTING, INC.

Knoxville, Tennessee

MACTEC Project 3043051030.01

January 25, 2006

engineering and constructing a better tomorrow

January 25, 2006

Mr. Ron Purkey Tennessee Valley Authority 1101 Market Street, LP-2G Chattanooga, TN 37402

Subject: Report of Geotextile Laboratory Testing of Geotextile Composite Material Ash Disposal Area TVA Kingston Fossil Plant Kingston, Tennessee MACTEC Project 3043051030.01

Dear Mr. Purkey:

We at MACTEC Engineering and Consulting, Inc., (MACTEC) are pleased to submit this Report of Geotechnical Laboratory Testing for your project. Our services, as authorized through TAO No. MAC-0724-00082, were provided in general accordance with our proposal number Prop05Knox/182, dated June 9, 2005.

This letter report reviews the scope of geotechnical laboratory testing and provides the laboratory test results performed on the geotextile composite material.

Scope of Laboratory Testing

The geotechnical laboratory testing scope of work was provided by Parsons E&C and included the following:

- 2 Three-Point Interface Shear Tests ASTM D 5321
- 1 Gradient Ratio Test ASTM D 5101
- 1 Hydraulic Conductivity Ratio Test ASTM D 5567
- 2 Standard Proctor Compaction Tests ASTM D 698

www.mactec.com

Report of Geotextile Laboratory Testing and Geotextile Composite Material Ash Disposal Area, TVA Kingston Fossil Plant

Laboratory Testing Methodology

<u>3-Point Interface Shear Testing</u>

Two 3-point interface shear tests were performed in order to determine the shear resistance of the geotextile composite material against the on-site ash and soil materials. The first test was conducted on the geotextile composite material and a representative sample of the on-site ash material; while the second test was performed on the geotextile composite material and a representative sample of the on-site clayey fill soils. During the testing, the ash material was remolded to 95 percent of its standard Proctor maximum dry density at optimum moisture content, while the clay soils were remolded to 90 percent of its standard Proctor maximum dry density at optimum dry density at optimum moisture content. The laboratory test results are provided in the Appendix.

Gradient Ratio Test

One gradient ratio test was performed in order to evaluate the ash / geotextile system permeability and the clogging behavior of the ash material under unidirectional flow conditions. During the test the ash material was remolded to 95 percent of its standard Proctor maximum dry density at optimum moisture content. The test results and associated plots are provided in the Appendix.

Hydraulic Conductivity Ratio (HCR) Test

One hydraulic conductivity ratio test was conducted in order to evaluate the clayey fill soil / geotextile system permeability and the filtration behavior of the clayey fill soils. During the test the clay soils were remolded to 90 percent of its standard Proctor maximum dry density at optimum moisture content. The test results and associated plots are provided in the Appendix.

Standard Proctor Compaction Test

One standard Proctor test was performed on the representative on-site ash sample and the representative on-site clayey fill soil sample. The test results were used in order to specify the remolding requirements for the two materials during the Gradient Ratio and Hydraulic Conductivity Ratio testing. The test results are provided in the Appendix.

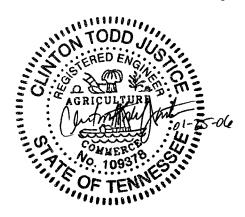
Report of Geotextile Laboratory Testing and Geotextile Composite Material Ash Disposal Area, TVA Kingston Fossil Plant

January 25, 2006 MACTEC Project 3043051030.01

We will be happy to provide any additional information or interpretation of the data presented here in which may be necessary.

Sincerely,

MACTEC ENGINEERING AND CONSULTING, INC.


C. Todd Justice, P.E. Project Engineer

Carl Jochsten by Som Carl D. Tockstein, P.E. Chief Engineer - Tennessee Operations

CTJ/CDT:sjm

Attachments:

Laboratory Testing Procedures Interface Shear Test Results Gradient Ratio Test Results Hydraulic Conductivity Ratio Test Results Standard Proctor Compaction Test Results

Report of Geotextile Laboratory Testing and Geotextile Composite Material Ash Disposal Area, TVA Kingston Fossil Plant

January 25, 2006 MACTEC Project 3043051030.01

LABORATORY TEST PROCEDURES AND RESULTS

LABORATORY TEST PROCEDURES

Interface Shear Test

This test method determines the shear resistance between a geosynthetic (geotextile) and a soil, or other material, by placing the geosynthetic and one or more contact surfaces, such as soil, within a direct shear box. A constant normal force representative of design stresses is applied to the specimen, and a tangential (shear) force is applied to the apparatus so that one section of the box moves in relation to the other section. The shear force is recorded as a function of the horizontal displacement of the moving section of the shear box.

The test is performed at a minimum of three different normal stresses, selected by the user, to model appropriate field conditions. The limiting values of shear stresses are plotted against the applied normal compressive stresses used for testing. The test data are generally represented by a best fit straight line whose slope is the coefficient of friction between the two materials where the shearing occurred. The y-intercept of the straight line is the adhesion. This test is conducted in accordance with ASTM D-5321.

Gradient Ratio Test

This test method requires setting up a cylindrical, clear plastic permeameter with a geotextile and soil material, and passing water through this system by applying various differential heads. Measurements of differential heads and flow rates are taken at different time intervals to determine hydraulic gradients.

The test method is recommended for evaluating the performance of various soil-geotextile systems under controlled test conditions. Gradient ratio values obtained may be plotted and used as an indication of the soil-geotextile system clogging potential and permeability. This test is conducted in accordance with ASTM D 5101.

Hydraulic Conductivity Ratio Test

This test method presents a procedure for performing permeability tests of soil/geotextile systems. The technique requires placement of the soil and geotextile in a flexible-wall permeameter. The hydraulic conductivity of the soil/geotextile specimen is measured and plotted as a function of clapsed time and volume of water passing through the sample. The hydraulic conductivity may increase or decrease during the test, depending on the behavior of the geotextile filter. The test is terminated when a stabilized hydraulic conductivity is obtained, or when the hydraulic conductivity decreases below the minimum value allowed by the drainage design. This test is conducted in accordance with ASTM D 5567.

Proctor Compaction Tests (Moisture-Density Relationship)

Compaction tests are performed on representative soil samples to determine the maximum dry density and optimum moisture content. The results of the tests are used in conjunction with other tests to determine engineering properties relating to settlement, bearing capacity, shear strength, and permeability. The results may also be used as a standard to determine the percent compaction of any soil embankment.

The two most commonly used compaction tests are the standard Proctor test and the modified Proctor test. They are performed in accordance with ASTM D 698 and D 1557, respectively. Generally, the standard Proctor compaction test is run on samples from building areas and areas where moderate

loads are anticipated. The modified Proctor compaction test is generally used for analyses of highways and other areas where large building loads are expected. Both tests have three procedures, depending upon soil particle size:

Test	Procedure	Hammer Weight (Pounds)	Hammer Fall (Inches)	Mold Diameter (Inches)	Screen Size (Material Finer Than)	Number of Layers	Number of Blows per Layer
Standard	А	5.5	12	4	No. 4 sieve	3	25
(D 698)	В	5.5	12	4	No. 3/8" sieve	3	25
	С	5.5	12	6	3/4" sieve	3	56
Modified	Λ	10	· 18	4	No. 4 sieve	5	25
(D 1557)	В	10	18	4	No. 3/8" sieve	5	25
	С	10	18	6	3/4" sieve	5	56

Test results are presented as a curve depicting dry unit weight versus moisture content. The compaction method used and any deviations from the recommended procedures are noted in the report.

INTERFACE SHEAR TEST RESULTS

GeoTesting express

Client:			
Project Name:	TVA Kingston Propos	ed Gypsym Stack Borrow Ar	ea
Project Location:			
GTX #:	G0958		· · ·
Start Date:	12/12/05	Tested By:	rmt
End Date:	12/13/05	Checked By:	jdt
Soil ID:	SOIL (CLAY)		
Soil Description:	Moist, dark reddish b	rown silty clay with sand	
Geosynthetic ID:	Geocomposite		e se
Geosynthetic Description:	Black, double non-wo	oven geocomposite	

Interface Shear Test Series by ASTM D 5321

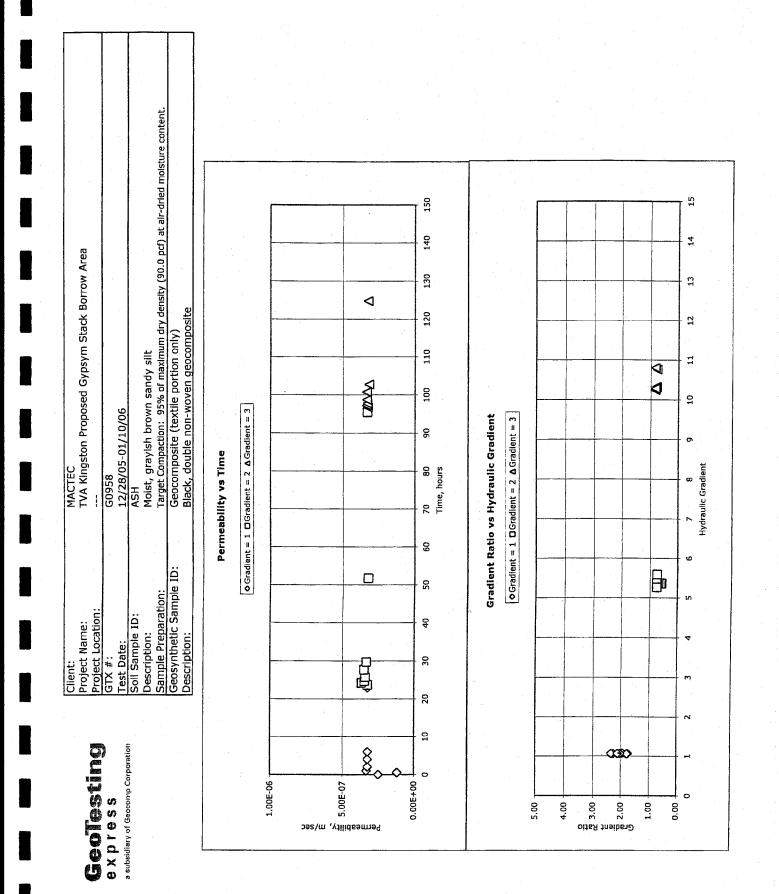
Test Series #:	2					
Test Profile - Top to Bottom:	Textured Gripp	oing Surface /	SOIL / GEOCOM	POSITE / Texture	ed Gripping Su	rface
Soil Preparation:	Compacted to	90% of Maxin	num Dry Density	at the Optimum	Moisture Cont	ent
Compaction Characteristics:	Maximum Dry Optimum Mois Compaction Te	ture Content	AST	103.5 pcf 20.0 % M D 698		
Geosynthetic Preparation:	Saturated for 2	24 hours unde	er normal load pri	or to shear.		
Test Equipment: Horizontal Displacement, in/min:	data acquisitio	n system for s		x 12 in; Load ce al load and horiz 4 in ² Test Condition:		
Parameter	Point 1	Point 2	Point 3	Point 4	Point 5	Point 6
Initial Moisture Content, %	20	20	20			
Initial Dry Density, pcf	93	93	93			
Percent Compaction, %	90	90	90			
Normal Compressive Stress, psf	500	1000	2000			
Peak Shear Stress, psf	427	812	1557			
Post Peak Shear Stress, psf	411	783	1538			
Final Moisture Content, %	27	27	26			
NOTES:	<u> </u>		Peak Friction Peak Cohesio	-	37 54	degrees psf
			Post Peak Fri		37	degrees
			Post Peak Col	-	34	psf
Figure a. Shear Force vs. Ho	prizontal Displac	ement	·]	re b. Shear Stres		
2000 psf				Peak Shear Stress —	Post Peak Shea	ir Stress
2000 <u>5</u> 1500 <u>5</u> 1000 <u>5</u> 500 <u>0</u> 1 2	3 4		2000 Se 1500 Stear 1000 Soo 500 0		1500 2000	
Displacement, ir	nches	· ·			Stress, psi	

TVA-00010673

GeoTesting express

Client:		- · · · · · · · · · · · · · · · · · · ·	
Project Name:	TVA Kingston Propos	ed Gypsym Stack Borrow A	rea
Project Location:			
GTX #:	G0958		
Start Date:	12/12/05	Tested By:	rmt
End Date:	12/12/05	Checked By:	jdt
Soil ID:	ASH		
Soil Description:	Moist, grayish brown	sandy silt	
Geosynthetic ID:	Geocomposite		
Geosynthetic Description:	Black, double non-wo	ven geocomposite	

Interface Shear Test Series by ASTM D 5321


Test Series #:	1					
Fest Profile - Top to Bottom:	Textured Gripp	oing Surface /	SOIL / GEOCOM	POSITE / Textur	ed Gripping S	urface
Soil Preparation:	Compacted to	95% of Maxi	mum Dry Density	at the Optimum	Moisture Con	tent
Compaction Characteristics:	Maximum Dry	Density		90.0 pcf		
	Optimum Mois		· · · · ·	20.5 %		
	Compaction Te	st Method	AST	4 D 698		
eosynthetic Preparation:	Saturated for 1	L hour under	normal load prior	to shear.		
est Equipment: orizontal Displacement, in/min:	data acquisitio	n system for	ttom box = 16 in shear force, norm surface area = 14	al load and hori:	zontal displace	connected to ement reading
Parameter	Doint 1	Decist 2	Delet 2	·····		
nitial Moisture Content, %	Point 1	Point 2	Point 3	Point 4	Point 5	Point 6
nitial Dry Density, pcf	20 85	20 85	20 85			
ercent Compaction, %	95	95	95			
lormal Compressive Stress, psf	500	1000	2000			
eak Shear Stress, psf	451	749	1520			
ost Peak Shear Stress, psf	437	665	1464			:
inal Moisture Content, %	27	27	27			
IOTES:	·····	·····		• I		
			Peak Friction Peak Cohesior	-	36	degrees
			Post Peak Fric		66 35	psf dograad
				don Angle.	22	degrees
	•			esion:	38	
Figure a. Shear Force vs. H	forizontal Displac	ement	Post Peak Coh		38	psf Stress
Figure a. Shear Force vs. F	lorizontal Displac	ement	Post Peak Coh	e b. Shear Stres	ss vs. Normal	Stress
500 psf		ement	Post Peak Coh		ss vs. Normal	Stress
500 psf		ement	Post Peak Coh	e b. Shear Stres	ss vs. Normal	Stress
2000 psf		ement	Post Peak Coh	e b. Shear Stres	ss vs. Normal	Stress
2000 psf		ement	Post Peak Coh	e b. Shear Stres	ss vs. Normal	Stress
2000 psf 2000 psf		ement	Post Peak Coh	e b. Shear Stres	ss vs. Normal	Stress
500 psf 2000 psf 2000 1500 2000 1000		ement	Post Peak Coh Figure 2000 S	e b. Shear Stres	ss vs. Normal	Stress
500 psf 2000 psf 2000 1500 2000 1000		ement	Post Peak Coh Figuro 2000 31500 31500 31000	e b. Shear Stres	ss vs. Normal	Stress
500 psf 2000 psf 2000 ≅ 1500		ement	Post Peak Coh Figuro 2000 31500 31500 31000	e b. Shear Stres	ss vs. Normal	Stress
500 psf 2000 psf 2000 psf 1500 300 1000 500 500		ement	Post Peak Coh	e b. Shear Stres	ss vs. Normal	Stress
2000 psf 2000 psf 2000 1500 90 1500 90 1000 1000 1000 1000	1000 psf	ement	Post Peak Coh Figuro 2000 31500 31500 31000	e b. Shear Stres	ss vs. Normal	Stress
2000 psf 2000 psf 2000 9 1500 9 1000 500		ement	Post Peak Coh Figure 2000 Si 1500 Si 1500 Si 1000 Lib US 1000 Lib US 500 O -	e b. Shear Stress	ss vs. Normal	Stress ar Stress
500 psf 2000 psf 2000 psf 1500 90 1000 1000 1000 1000 0	1000 psf	ement	Post Peak Coh Figure 2000 Si 1500 Si 1500 Si 1000 Lib US 1000 Lib US 500 O -	e b. Shear Stress	S VS. Normal	Stress ar Stress

GRADIENT RATIO TEST RESULTS

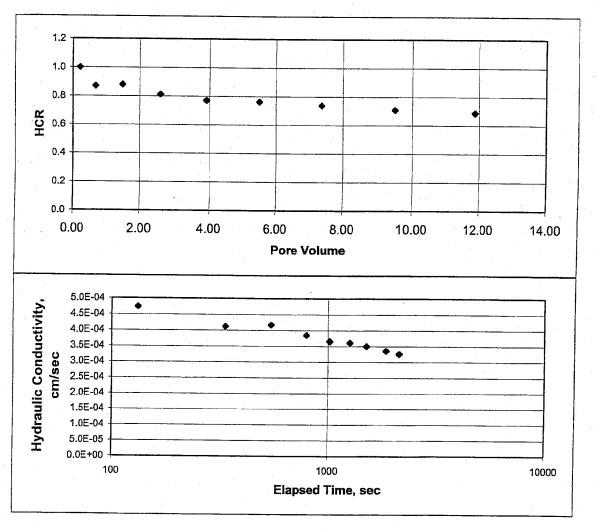
e×	express			Project Project	Project Name: Project Location:	Ë		≅ F	MALIEL TVA King 	jston Pro	posed Gyr	MALLEC TVA Kingston Proposed Gypsym Stack Borrow Area	Borrow An	aa Ba		
a subsi	a subsidiary of Geocomp Corporation	mp Corporatic	Ę	GTX #: Test Date:	ate:		•	0 7	G0958 12/28/0	G0958 12/28/05-01/10/06	06			-		
				Soil Sa	Soil Sample ID			A	ASH							
				Description: Sample Prep	Description: Sample Preparation;	ation:		Σ⊭	Molst, gi Target Co	ayish bri mpaction:	grayish brown sandy silt Compaction: 95% of maximu	' silt aximum dry de	ensity (90.0	pcf) at air-dri	Moist, grayish brown sandy silt Target Compaction: 95% of maximum dry density (90.0 pcf) at air-dried moisture content.	Ľ.
				Geosyntheti Description:	thetic S tion:	Geosynthetic Sample ID Description:	ä	U m	eocom lack, de	posite (te	Geocomposite (textile portion only) Black, double non-woven geocomp	Geocomposite (textile portion only) Black, double non-woven geocomposite				
		2	Measuring the	Iring	the	1	90-	ote	xtile	Sys	tem	Soil-Geotextile System Clogging		Potential		
				ַם	by th	e Gr	Gradient	ent F	Ratio	o by	ASTM	4 D 51				
					No.					-						
Date	Time of	Grad., i	∆ h, cm	-			auings,	5	,			Gradient		Flow	Temperature,	Permeability @
01/05/06	0.00	1.08	(0-T)	1 37 6	25.3	2 CE	4 C F C	ر م م مر د	9.74	Δhs	∆ h _{sf}	Ratio	0, 0 0	Time, sec	ູບ	20°C, m/sec
01/05/06	0.50	1.07	10.1	32.7	28.2			_	22.6	4.2	3.7	1.76	0.25	245	19	2.50E-07
01/05/06	1.00	1.06	10.0	32.6	29.1	····	23.3		22.6	4.4	3.9	1.79	0.69	245	18.5	3.32E-07
01/05/06	2.00	1.07	10.1	32.7	29.8			29.8 2	22.6	4.3	4.4	2.02	0.68	245	18	3.24E-07
	4.00	1.07	10.1	32.7	30.0		_		22.6	4.1	4.7	2.27	0.68	245	18	3.24E-07
01/06/06	23.00	1.07	10.1	32.7	30.1	32./	25.0	2 1.02	22.6	4.1	4.8 7	2.35	0.68	245	17.5	3.24E-07
01/06/06	23.50	2.68	25.4	32.5	28.3			-	7.1	t 4	18.5	7.71	1.97	245	17 5	3.24E-U/ 3.74E-07
01/06/06	23.75	5.36	50.8	69.0	32.0		+		18.2	24.5	7.7	0.62	3.43	245	17	3.256-07
01/06/06	24.25	5.36	50.8	69.0	44.7			· · · ·	18.2	30.3	8.6	0.57	3.88	245	17	3.68E-07
01/06/06	24.75	5.36	50.8	69.0	50.0	-+			18.2	31.9	9.5	0.60	3.66	245	16.5	3.47E-07
01/06/06	22.75	5.39	51.0	69.2	54.6				18.2	32.6	11.2	0.68	3.61	245	16	3.41E-07
01/06/06	24.75	5 60 1	0.10	71 C	00.0 2 2 2 2 2 2	69.3 71 7	31.4		18.2	32.6	12.2	0.75	3.70	245	15	3.49E-07
01/07/06	51.75	5.37	50.9	69.1	58.3			29.2	18.2	33.4	с.21 л с t	c/'0	3.6/	245	12	3.33E-07
01/09/06	95.50	5.27	49.9	68.1	59.1	-			18.2	33.1	12.4	0.75	24.C 7 44	245	16 5 16 5	3.24E-U/ 2 27E 07
01/09/06	96.00	7.53	71.3	72.3	43.2		4		1.0	28.1	28.9	2.06	5.09	245	15	3.44F-07
01/09/06	96.75	10.73	101.6	108.3	65.7				6.7	56.4	24.0	0.85	6.95	245	15	3.29E-07
01/09/06	97.25	10.76	101.9	108.6				28.2	6.7	63.3	24.1	0.76	7.12	245	15	3.37E-07
01/00/10	97.75	10.33	97.8	104.5					6.7	62.3	24.4	0.78	6.76	245	15	3.33E-07
01/00/10	5/.86	10.30	97.5	104.2	-+-				6.7	62.6	24.9	0.80	6.80	245	15	3.36E-07
00/00/10	37 201	10.20	0.72	103.8			4		6.8	61.9	25.5	0.82	6.78	245	15	3.37E-07
01/10/06	174 75	10 BU	107 3	104.1	α4.4 ου ο	104.1			6.7		25.7	0.83	6.47	245	15	3.20E-07
22/22/14	C / L 77	00.01	C.20T	102.01	מתימ		40.04	5/6	201		57.3	0 83	с б у	245	Li T	2 JEE 07

			e content.									•					
MACTEC TVA Kingston Proposed Gypsym Stack Borrow Area	G0958 12/28/05-01/10/06	ASH Moist, grayish brown sandy silt	Geocomposite (textile portion only) Black, double non-woven geocomposite	Gradient Ratio vs Time	♦ Gradient = 1 □ Gradient = 2 ▲ Gradient = 3			A	0 70 80 90 100 110 120 130 140 150 Time, hours	Flow Rate vs Time	= 1 OGradient = 2 AGradient = 3				60 70 80 90 100 110 120 140 150	Time, hours	
-	GTX #: Test Date:		Geosynthetic Sample ID: Description:		• Gradient =				0 20 30 40 50 60		♦ Gradient =				10 20 30 40 50 6		
	express					3.0	asi insibs	Gi 1.0	0		10.0	· ·	ate, cc	1.0			

TVA-00010677

TVA-00010678

HYDRAULIC CONDUCTIVITY RATIO TEST RESULTS


GeoTesting express

HYDRAULIC CONDUCTIVITY RATIO (ASTM D5567)

Project No.	GTX G0958	Tested By	HJ
Project Name	TVA Kingston Gypsym Stack	Test Date	12/14/2005-12/22/2005
Boring No.	Geotextile	Reviewed By	JW
Roll No.	Effluent appears to be clear	Review Date	12/22/2005
Geotextile		Lab No.	13731
Sample Descripti	on Remolded to 90% of Standard Pre	actor max dry dons	ity

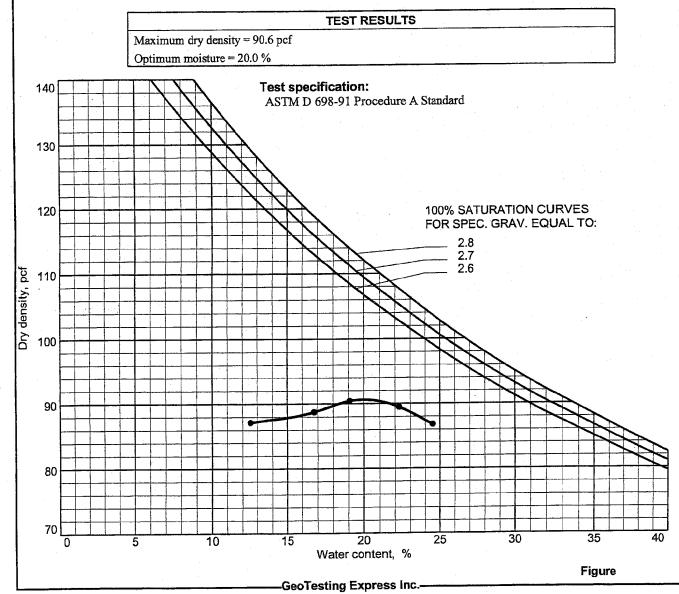
Sample Description Remolded to 90% of Standard Proctor max. dry density

Initial Hydraulic Conductivity, cm/sec	4.7E-04
Final Hydraulic Conductivity, cm/sec	3.3E-04
Final HCR	0.69
Hydraulic Gradient Range	12.7 - 10.9

STANDARD PROCTOR COMPACTION TEST RESULTS

Project No.: GTX G0958 Project: TVA Kingston Proposed Gypsum Stack Barrow Area

USCS:


Location: Ash Elev./Depth: Remarks: Tested by: PCS

Sample No. Bag Reviewed by: JDT

MATERIAL DESCRIPTION

Description:

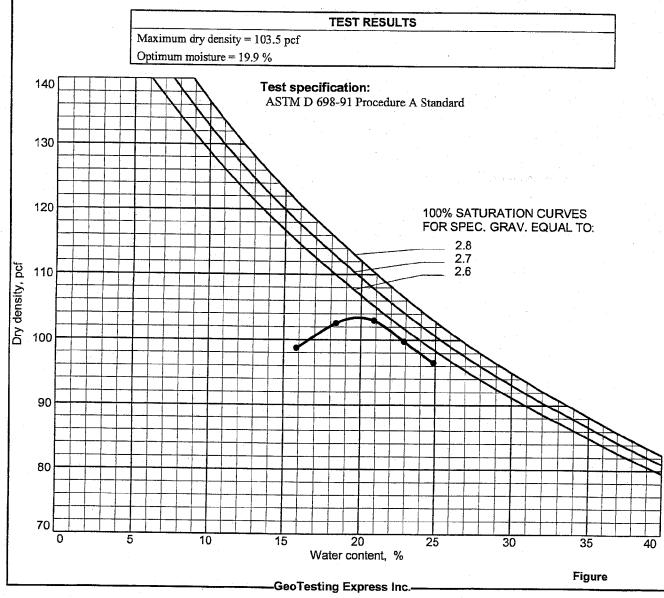
Classifications -Nat. Moist. = Liquid Limit = % > No.4 = % AASHTO: Sp.G. = 2.7 Plasticity Index = % < No.200 = Date: 12/20/05

Project No.: GTX G0958 Project: TVA Kingston Proposed Gypsum Stack Barrow Area

USCS:

Date: 12/20/06

Location: Clay Elev./Depth: Remarks: Tested by: PCS


Sample No. Bag Reviewed by: JDT

MATERIAL DESCRIPTION

Description:

Classifications -Nat. Moist. = Liquid Limit = % > No.4 = %

AASHTO: Sp.G. = 2.7 Plasticity Index = % < No.200 =

Ĩ

•