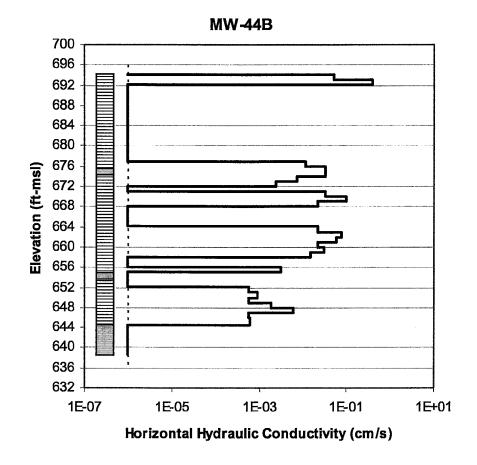
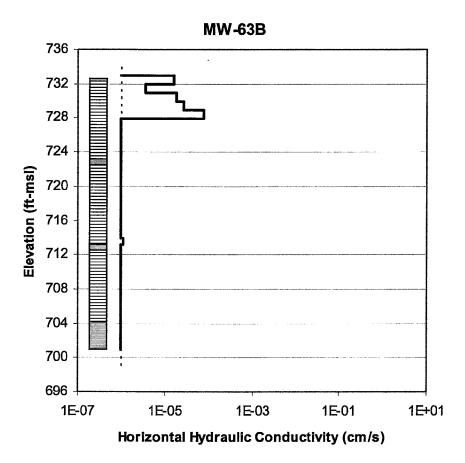
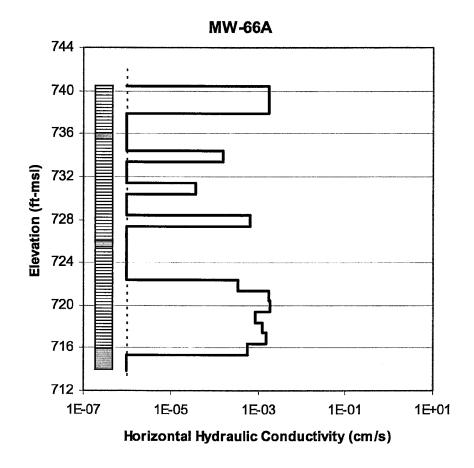
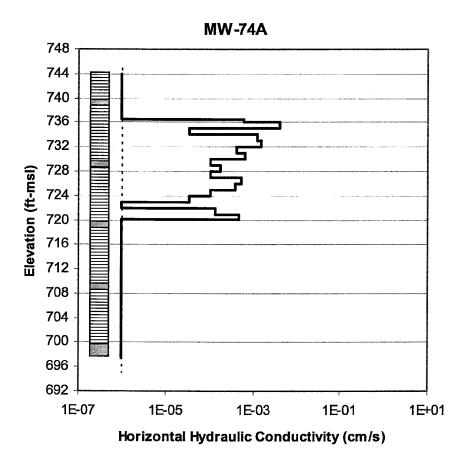
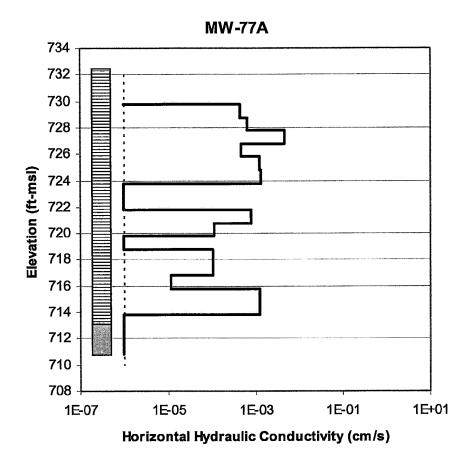

KIF Peninsula - Aquifer Testing Summary


						INITIAL	Intial	Alalytical Notalic	
114/211	toet fund	(man) O	emfm	TOC (ff-msl)	TOG Ele (ft-msl)	GW Depth (ft)	GW Ele (ft-msl)	K (ft/s)	K (cm/s)*
Well	adh rear	(mds) 5			7607	20.68	742.19	1.93E-06	5.88E-05
MW-10A	Sing	6 gallons		/71.8/	7.007	20:02	264.76	2 34F-06	7.13E-05
BAYAL 40B	chia	3 dallons		771.61	768.2	30.35	741.20	00 110.3	
MWY-10D	Spio	o salles o		7K2 34	7.27.7	21.33	741.01	1.25E-06	3.87E-U5
MW-21A	Sing	ogallons	,	750.34	787	2143	740.91	1.86E-05	5,67E-04
MW-21A	dwnd	0.18	< '	745.00	1. P. T.	4 00 & 3.88	741.00 & 741.12	- 3.17E-04	9.66E-03
MW-44A	dwnd	6.40 & 4.88	×	745.00	1.24	900000000000000000000000000000000000000	740 00 8. 741 40	6 03E-04	1.84E-02
WW.44B	amin	18.6 & 4.90	×	744.04	742.7	3.05 & 2.85	740.88 Q 141.13	10000	AC TACO
	dilind	الاستاليسي		766.38	762.9	25.13	741.25	2.715-03	6.20E-U4
MW-4/A	Sins	o gallone		2000	0 634	25.55	740.83	1,25E-04	3.81E-03
MW-47A	дшпд	4.17		100.30	2007	56.43	741.25	1,35E-03	4.11E-02
MW-47A	injection	<u>¥</u> .		766.38	(62.9	20.02	90 002	2 BAE-07	8 05E-06
MAY 62A	Shin	3.5 gallons		781.96	780.2	18.58	/03.30	10-11-0:7 10-11-0:1	
CO-1411	S	2 aplions		784.94	780.9	27.66	757.28	3.46E-U/	1.05=-05
MW-63B	Snis .	o galloris	>	787 04	780.9	24.99	759.95	2.10E-07	6.40E-06
MW-63B	Injection	0.2U	<	5	0.001	10 //	741.42	1,46E-05	4,45E-04
MW-66A	slug	6 gallons		756.39	6.70)			M 361 C	8.40F-03
ASS GRA	umina	0.35	×	756.39	752.9	14,81	(41.30	5	
TOD-MAIN		200		758.30	757.9	15.41	740.98	1.78E-05	
MW-66A	dwnd	5.20		3	7520	00 71	741,40	8.14E-05	2.48E-03
MW-66A	injection	0.76	×	(55.39	6.70	20.1	27777	4 ARE OR	5 12E-05
MW-744	Dills	6 gailons		756.01	752.0	14.58	/41.43	00-100.1	
	B I	, .	>	756.01	752.0	14.42	741.59	1.02E-05	
MW-74A	dwnd	0.20	<	2000	752 0	15.00	741.01	7.65E-06	2.33E-04
MW-74A	dwnd	co.r		10000	7/00	13.08	741.29	1.14E-05	3,47E-04
MW-77A	Bn/s	3.5 gallons		icito)		49.00	74 M	2.89E-05	8.81E-04
MW-77.4	umin	3.00	×	754.37	749.9	00,00			E,
	Arma .	250		754.37	749.9	9:38	744.39	3.89E-05	
477-MIN	dund.	October 6		785 25	763.4	23.95	741.30	6.00E-06	
MW-81A	Sals .	o gallons	>	765.05	763.4	23.84	741.41	2.00E-04	
MW-81A	noisection	0.00	<	764.27	762.9	22.84	741.43	1.03E-04	3.14E-03
MW-81B	onis			1					


^{*} Bold values considered most representative


Soil wells are A wells, bedrock wells are B wells



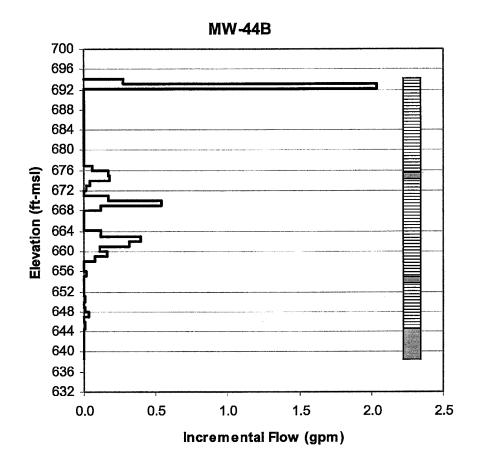


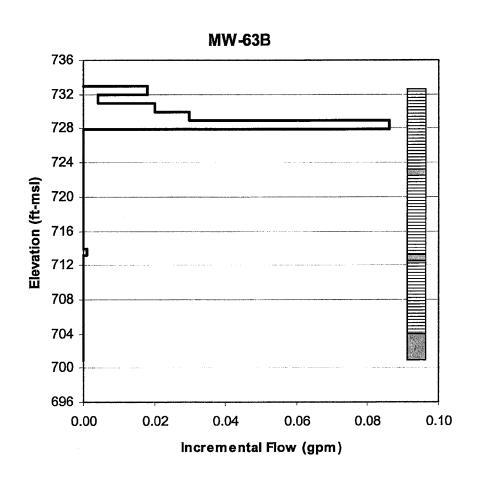
The aquifer test results above are considered final values for the KIF Peninsula. I conducted four additional pumping tests on Friday at 47A, 66A, 74A, and 77A. The most representative test results are longest tests, with highest drawdowns, and typically higher discharge rates. Likewise, pumping test results are typically preferred over injection tests. Values are higher than anticipated for many of the tests. Slug test analyses included Bouwer and Rice (1976) and Hvorslev (1951) methods. There were little differences between results of these two slug test analytical methods so Bouwer and Rice (1976) are reported in the table above. Pumping and injection test analyses included the Cooper-Jacob (1946) Time-Drawdown Method and the Theis (1935) Forward Solution. Similar results were obtained using the two analytical methods - the Cooper-Jacob (1946) Time-Drawdown Method is reported in the table above.

Bulk K values from single-well testing at soil wells were higher than anticipated at most locations. Results at soil wells range from 10^{-3} to 10^{-6} cm/s (average = 1.8E-3) – these values would suggest silty sand to loess. Results are likely to be affected skin effects to some degree – the wells were not adequately developed by MACTEC. Bulk K values for bedrock wells are simply estimates since apertures and dimensions of solutioned fractures are unknown – this was based on a porous media analyses rather than fractured bedrock.

For EMFM testing, smaller Q rates were sometimes necessary due to length of EMFM surveys and limitations of the pumping and metering equipment. Note that the lower threshold of the flowmeter is 10^{-6} cm/s as indicated on individual plots. We have yet to receive final well logs from MACTEC, hence, screen intervals are proximal. Incremental K_h values for bedrock wells are simply estimates since apertures and dimensions of solutioned fractures are unknown – this was based on a porous media analyses rather than fractured bedrock. We will probably present the final bedrock EMFM logs as normalized relative to total flow rather than discrete K values in the TDEC application.

References:


Bouwer, H. and R.C. Rice, 1976. A slug test method for determining hydraulic conductivity of unconfined aquifers with completely or partially penetrating wells, Water Resources Research, vol. 12, no. 3, pp. 423-428.


Bouwer, H. 1989. The Bouwer and Rice Slug Test - An Update, Ground Water, vol.27, No. 3, pp. 304-309.

Cooper, H.H. and C.E. Jacob, 1946. A generalized graphical method for evaluating formation constants and summarizing well field history, Am. Geophys. Union Trans., vol. 27, pp. 526-534.

Hvorslev, M.J., 1951. Time Lag and Soil Permeability in Ground-Water Observations, bul. no. 26, Waterways Experiment Station, Corps of Engineers, U.S. Army, Vicksburg, Mississippi.

Theis, C.V., 1935. The relation between the lowering of the piezometric surface and the rate and duration of discharge of a well using groundwater storage, Am. Geophys. Union Trans., vol. 16, pp. 519-524.

