
Naresh Handagama R&TA 632 2991

What is pH?

- Potential (p) of Hydrogen (H) = pH
- Concentration of Hydrogen ions in gram equivalent molecular weights (molar) in a liter [H⁺]/Liter

$$pH = -log_{10} [H^{\dagger}]$$

Range "pH=0" to "pH=14"

pH Fundamentals

- pH = 7 neutral amount of [OH-] is equal to [H+]
- pH < 7 down to zero: Acidic, more [H+] than [OH-]
- pH>7 up to 14: Basic or Alkaline, more [OH-] than [H+]

Major Influencing Factors on Ashpond pH

- Ammonia loading
 - formation of ammonium bisulfate??
 - pH = Hi and low net effect
- Coal blend: Coal "Sulfur" Hi-Mid-Low
 - Sulfates formation = pH low
- Plant Operational Conditions

Define Problem

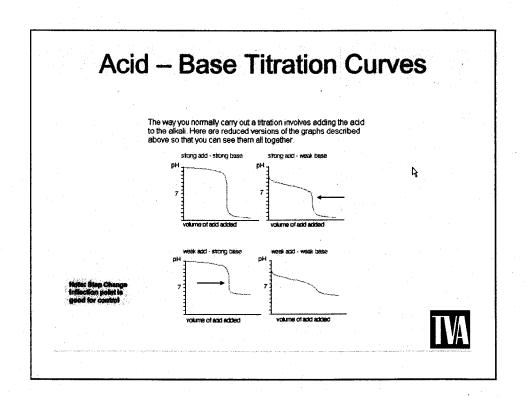
Design Criteria:

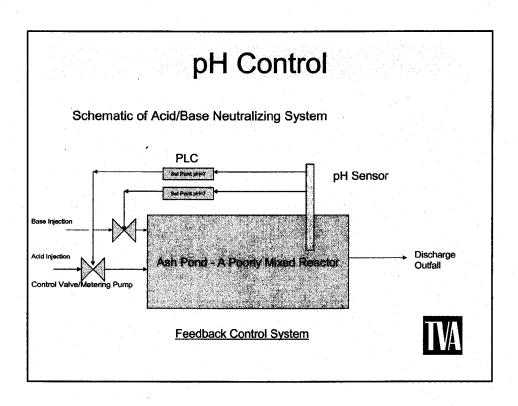
- Minimum pH in the pond (Lower Limit) pH=5
- Maximum pH in the pond (Upper Limit) pH=10
- Minimum Flow Rate 40 mgd
- Maximum Flow Rate 80 mgd

Does Ammonia Hike the pH?

- · Ammonia Source is the SCR
- Under plant operating conditions the thermodynamics favor the formation of ammonium bisulfate...when hits the water

Sulfur's Role in pH Pull-Down


The Source of "S" is COAL


Combustion is an oxidative process, therefore:

$$H_2 + \frac{1}{2} O_2 \rightarrow H_2 O$$

 SO_{2} , SO_{3} and $H_{2}O$ will make sulfuric acid $H_{2}SO_{4}$.

		System	Advantages	Disadvantages			
	1	Gaseous CO2 Sparging	a)User friendly b)Non-Toxic c) Moderate Capital Cost	a)Very Low Process Efficiencies Solubility b)Could strip O2 = low DO c) Sluggish End-Point = Poor Control			
·	2	Cryogenic CO2 Water Premix	a)User friendly b)Non-Toxic c) Higher Mass Transfer Efficiency	a) Extremely Hi- Capital and Operational Cost			
	3	Hydrochloric Acid Injection	a)Fast Response b)Low handling volumes c)Low Capital and Op. costs	a)Highly Reactive b)Safety of Vapor Cloud c) Addition of Cl with coal by-products = Dioxin Carcinogen & Endocrine Disruptor			
,	4	Sulfuric Acid Injection	a)Fast Response b)Low handling volumes c)Low Capital and Op. costs	a)Highly Reactive b)Safety of Vapor Cloud c) Addition of S to the effluent		Land	ster
t used_ Utility Sustry to	→	Acetic Acid Monitored Injection Concentrated "Vinegar"	a)Fast Response b)Low handling volumes c)Low Capital and Op. costs d) Biodegradable and Environmentally Friendly		which	grogod \	
dustry to	6	Citric Acid Monitored Injection "Lemonade" without sugar	a)Fast Response b)Low handling volumes c)Low Capital and Op. costs d) Biodegradable and Environmentally Friendly	Costlier than Acetic Acid	MA I		8.2

Control Systems Considered for Low pH

	System	Advantages	Disadvantages
1	Hydrated Lime injection	a)User friendly b)Non-Toxic c) Moderate Capital Cost	a)Very Low Process Efficiencies Solubility b) Sluggish End-Point = Poor Control c) Large quantities
2	Sodium Hydroxide Injection	a)Non-Toxic b) Higher Mass Transfer Efficiency/solubility c) Cheap d) Low volumes	a) Caustic

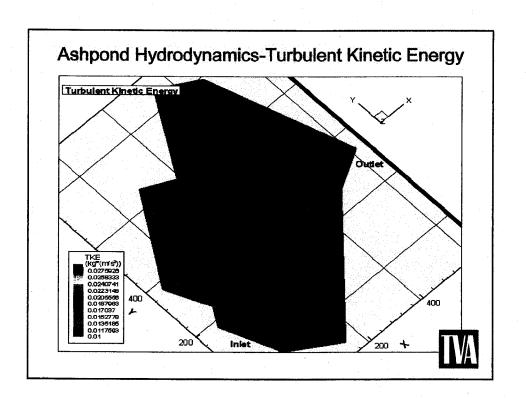
(Temp. Candrol

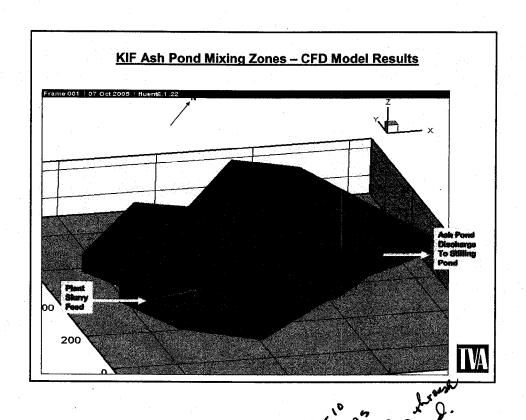
Control System Recommendations

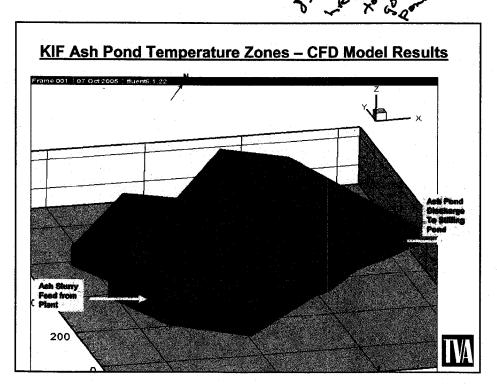
40 galdas

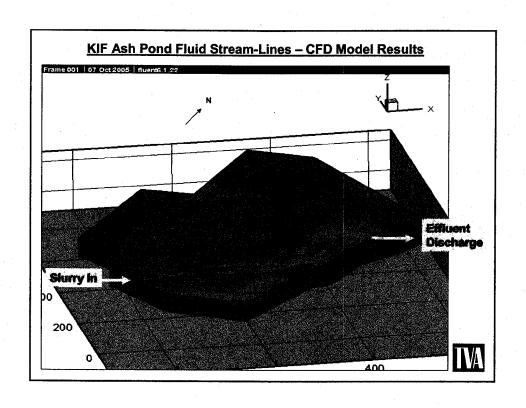
- For Low pH Acidic Conditions
 Sodium Hydroxide Injection
- For High pH Alkaline (Basic) Conditions
 Acetic Acid Injection "Vinegar"

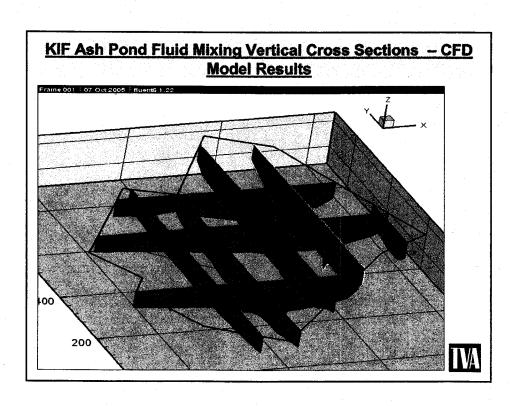
These two choices will be the most environmentally friendly options




Computational Fluid Dynamics (CFD) Modeling


Determination of the Injection Points


- To characterize the "Reactor," mixing zones are identified
- Flow patterns are crucial to determine the Residence Time Distribution (RTD)
- Stratification is important, whether due to thermo-cline or density gradient
- All the above, impact on the reaction rates



Summary

- ► For the design of the "Ashpond" pH control the inside primary ashpond parameters should be considered system
- ► All contributing factors outside the boundary should be considered
- ► To control alkalinity the "best" choice is "Acetic Acid" injection
- ► To control acidity the "best" choice is the sodium hydroxide injection

Conclusion

- Chemical Engineering Design should be incorporated with the Civil and Mechanical Engineering Designs
- Perform a Comprehensive Cost Benefit Analysis
- A Final Decision Based on Best Science and Engineering Practices

