GEOSYNTEC CONSULTANTS PAGE 13 OF 149 Written by: Sowmya Bulusu / Alexander Maestre Date: 12/07/06 Reviewed by: Ganesh Gopalakrishnan Date: 12/13/06

Project: Kingston Fossil Plant Gypsum Disposal Facility Project/Proposal No.: GR3731 Task No.: 06

Attachment 2

Schematic Surface Water Management Plan

GEOSYNTEC CONSULTANTS PAGE _ 15 OF _ 149 Written by: Sowmya Bulusu / Alexander Maestre Date: 12/07/06 Reviewed by: Ganesh Gopalakrishnan Date: 12/13/06 Client: TVA Project: Kingston Fossil Plant Gypsum Disposal Facility Project/Proposal No.: GR3731 Task No.: 06

Attachment 3A

Rainfall Distribution

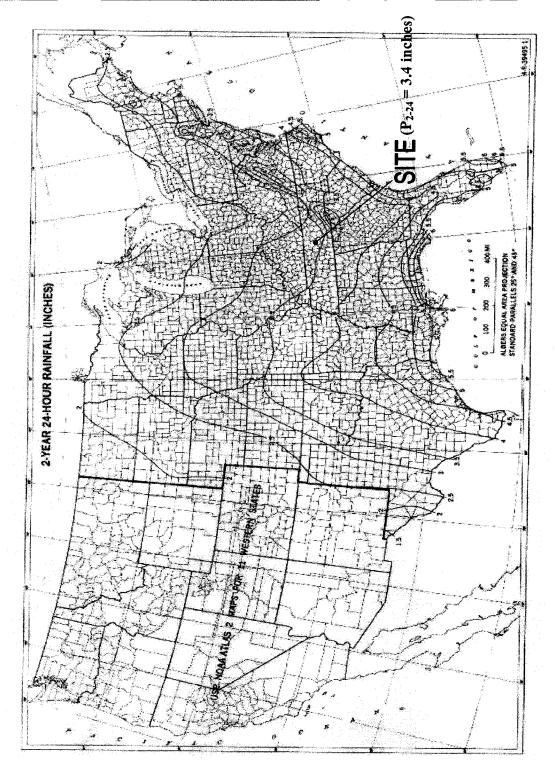
Written by: Sowmya Bulusu / Alexander Maestre Date: 12/07/06 Reviewed by: Ganesh Gopalakrishnan Date: 12/13/06

Client: TVA Project: Kingston Fossil Plant Gypsum Disposal Facility Project/Proposal No.: GR3731 Task No.: 06

GEOSYNTEC CONSULTANTS PAGE 17 OF 149 Written by: Sowmya Bulusu / Alexander Maestre Date: 12/07/06 Reviewed by: Ganesh Gopalakrishnan Date: 12/13/06

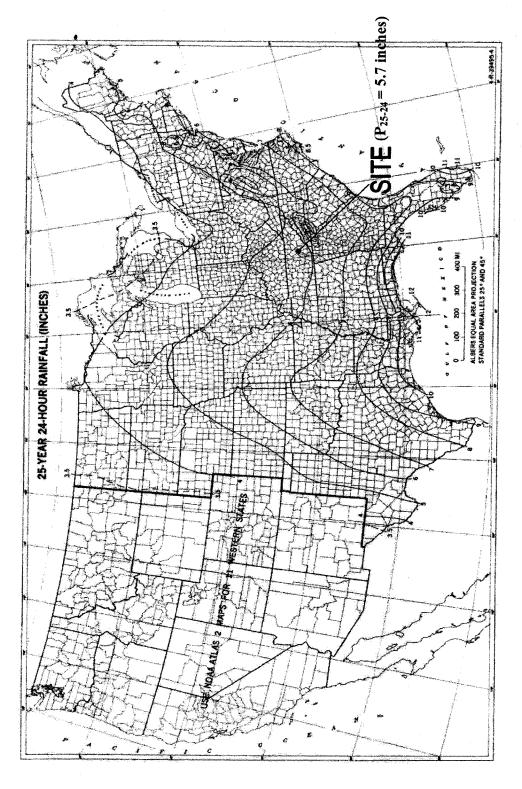
Client: TVA Project: Kingston Fossil Plant Gypsum Disposal Facility Project/Proposal No.: GR3731 Task No.: 06

Attachment 3B


Rainfall Depths

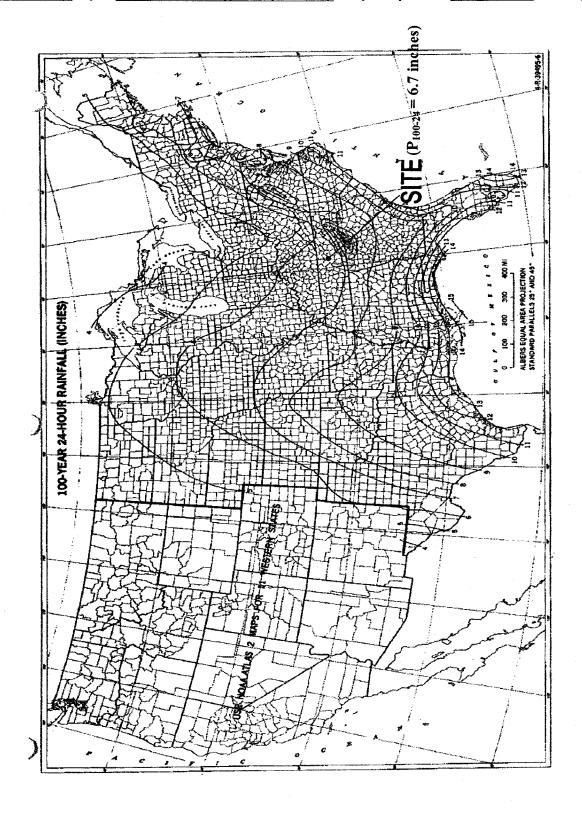
Written by: Sowmya Bulusu / Alexander Maestre Date: 12/07/06 Reviewed by: Ganesh Gopalakrishnan

Date: 12/13/06


Client: TVA

Project: Kingston Fossil Plant Gypsum Disposal Facility Project/Proposal No.: GR3731 Task No.: 06

Written by: Sowmya Bulusu / Alexander Maestre Date: 12/07/06 Reviewed by: Ganesh Gopalakrishnan Date: 12/13/06


Client: TVA Project: Kingston Fossil Plant Gypsum Disposal Facility Project/Proposal No.: GR3731 Task No.: 06

surface water-Attachments1-TVA_AM 121306 final.doc

Written by: Sowmya Bulusu / Alexander Maestre Date: 12/07/06 Reviewed by: Ganesh Gopalakrishnan Date: 12/13/06

Client: TVA Project: Kingston Fossil Plant Gypsum Disposal Facility Project/Proposal No.: GR3731 Task No.: 06

GEOSYNT	EC CONSULTANT	S		PAGE	21	OF <u>149</u>	_
Written by: Sowmy	a Bulusu / Alexander Maestre	Date: 12/07/06	Reviewed by: Ganesh Gopalakrishnan		Date: _	12/13/06	_
Client: TVA	Project: Kingston Fossil Plan	at Gynsum Disnosal	Facility Project/Proposal No.: GR373	31 T	ask No	.: 06	

Attachment 4

Hydrologic Soil Groups

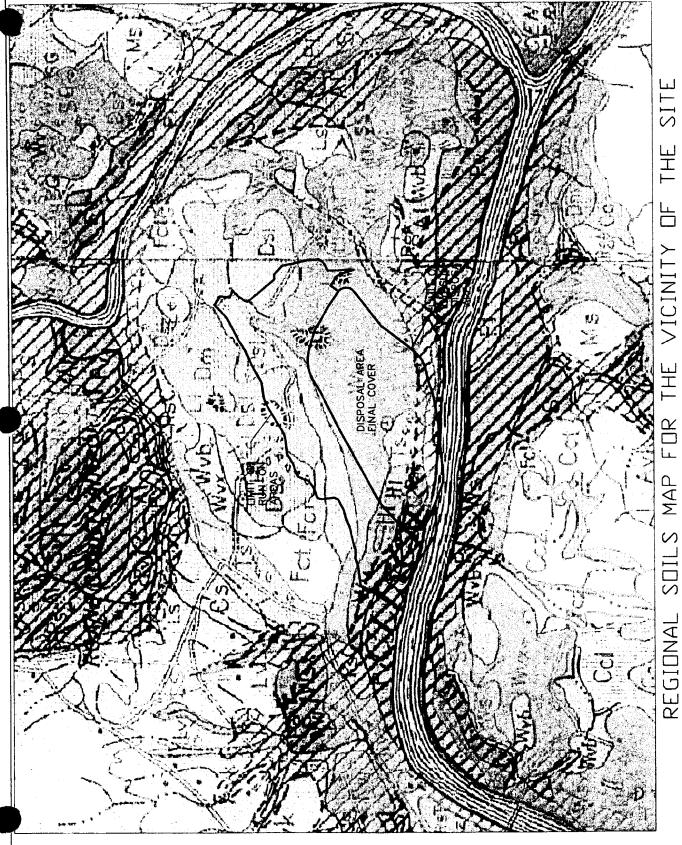
Written by: Sowmya Bulusu / Alexander Maestre

Client: TVA

Source: Natural Resources Conservation Service (NRCS) Web Soil Survey [http://websoilsurvey.nrcs.usda.gov/app/]

Project: TVA Kingston Fossil Plant Gypsum Disposal Facility Project/Proposal No.: GR3731

Date: 12/07/06


PAGE 21 OF 149

Reviewed by: Ganesh Gopalakrishnan

Task No.: 06

Date: 12/13/06

1. THE SOIL MAP SHOWN ON THIS DRAWING IS OBTAINED FROM THE REPORT TITLED "SOIL SURVEY, ROANE COUNTY, TENNESSEE", BY USDA BUREAU OF PLANT INDUSTRY, SERIES 1936, NO. 15, ISSUED MAY 1942.

Cadd/Dwg1/CADD/GR3731/figures/HSG-TVA.dwg, S/10/2006 12:03:45 PM, 1:1,

PAGE 23 OF 149

Written by: Sowmya Bulusu / Alexander Maestre Date: 12/07/06 Reviewed by: Ganesh Gopalakrishnan Date: 12/13/06

Client: TVA Project: Kingston Fossil Plant Gypsum Disposal Facility Project/Proposal No.: GR3731 Task No.: 06

TABLE 1. MAJOR TYPES OF SOILS FOR RUN-ON AREAS IN THE SOIL MAP

Soil Unit ⁽¹⁾	Soil Unit Description ⁽¹⁾	Hydrologic Soil Group ⁽²⁾		
Dm	Dewey Silt Loam	В		
Ds	Dewey Silt Clay Loam	В		
Dsl	Dewey Silt Clay Loam, Hilly Phase	В		
Fcr	Fullerton Cherty Silt Loam, Eroded Phase	В		
HI	Huntington Silt Loam	В		
Wv	Waynesboro Very Fine Sandy Loam	В		
Wvx	Waynesboro Very Fine Sandy Loam, Slope Phase	В		

Notes:

⁽¹⁾ Map Symbols and Map Soil Unit Names for the soil survey area obtained from the report titled "Soil Survey, Roane County, Tennessee", by USDA Bureau of Plant Industry, Series 1936, No. 15, Issued May 1942.

⁽²⁾ Hydrologic Soil Groups for the soil groups obtained from SCS [1986], and http://www.aces.edu/department/aawm/ALSoilHydroGroups.pdf,

PAGE <u>24</u> OF <u>149</u>

Written by: Sowmya Bulusu / Alexander Maestre Date: 12/07/06 Reviewed by: Ganesh Gopalakrishnan Date: 12/13/06

Client: TVA Project: Kingston Fossil Plant Gypsum Disposal Facility Project/Proposal No.: GR3731 Task No.: 06

Attachment 5

Curve Number

itten by: Sowmya Bulusu / Alexander Maestre Date: 12/07/06	Reviewed by: <u>Ga</u>	nesh Gopala	krishnan	Dat	te: <u>12/13</u>	/06
ent: TVA Project: Kingston Fossil Plant Gypsum Disposal	Facility Project	/Proposal No	.:_ GR3731	Ta	isk No.: _	06
Table 2-2a Runoff curve numbers for urban areas ^y						
				umbers for		
Cover description	***************************************		—hydrologic	soil group	p ———	
	Average percent					
Cover type and hydrologic condition	impervious area ≱	A	В	С	D	
Fully developed urban areas (vegetation established)						
Open space (lawns, parks, golf courses, cemeteries, etc.) 3:						
Poor condition (grass cover < 50%)	****	68	79	86	89	
Fair condition (grass cover 50% to 75%)		49	69	79	84	Final
Good condition (grass cover > 75%)		39	61	74	80	Cove
Impervious areas:					لتتنا	0010
Paved parking lots, roofs, driveways, etc.						
(excluding right-of-way)	x * 4	98	98	98	98	Road
Streets and roads:					السبيب	
Paved; curbs and storm sewers (excluding						
right-of-way)	**** **	98	98	98	98	
Paved; open ditches (including right-of-way)	3 40 5 4x	83	89	92	93	
Gravel (including right-of-way)	. >***	76	85	89	91	
Dirt (including right-of-way)	*35995	72	82	87	89	
Western desert urban areas:						
Natural desert landscaping (pervious areas only) 4'	9.2F € F3	63	77	85	88	
and basin borders)		96	96	96	96	
Urban districts:	*****		-			
Commercial and business	85	89	92	94	95	
Industrial		81	88	91	93	
Residential districts by average lot size:						
1/8 acre or less (town houses)	65	77	85	90	92	
1/4 acre		61	75	83	87	
1/3 acre	30	57	72	81	86	
1/2 acre		54	70	80	85	
1 acre		51	68	79	84	
2 acres		46	65	77	82	
Developing urban areas						
Newly graded areas						
(pervious areas only, no vegetation) b/	at antaŭ	77	86	91	94	
Idle lands (CN's are determined using cover types						

similar to those in table 2-2c).

1 Average runoff condition, and $I_a = 0.2S$.

The average percent impervious area shown was used to develop the composite CN's. Other assumptions are as follows: impervious areas are directly connected to the drainage system, impervious areas have a CN of 98, and pervious areas are considered equivalent to open space in good hydrologic condition. CN's for other combinations of conditions may be computed using figure 2-3 or 2-4.

³ CN's shown are equivalent to those of pasture. Composite CN's may be computed for other combinations of open space cover type.

⁴ Composite CN's for natural desert landscaping should be computed using figures 2-3 or 2-4 based on the impervious area percentage (CN = 98) and the pervious area CN. The pervious area CN's are assumed equivalent to desert shrub in poor hydrologic condition.

⁵ Composite CN's to use for the design of temporary measures during grading and construction should be computed using figure 2-3 or 2-4 based on the degree of development (impervious area percentage) and the CN's for the newly graded pervious areas.

PAGE 26 OF 149

Written by: Sowmya Bulusu / Alexander Maestre Date: 12/07/06 Reviewed by: Ganesh Gopalakrishnan Date: 12/13/06

Client: TVA Project: Kingston Fossil Plant Gypsum Disposal Facility Project/Proposal No.: GR3731 Task No.: 06

Table 2-2c Runoff curve numbers for other agricultural lands 1/

——————————————————————————————————————		Curve numbers for ———— hydrologic soil group			
Cover type	Hydrologic condition	A	В	c	D
Pasture, grassland, or range—continuous	Poor	68	79	86	89
forage for grazing. 2/	Fair	49	69	79	84
· · · · · · · · · · · · · · · · · · ·	Good	39	61	74	80
Meadow—continuous grass, protected from grazing and generally mowed for hay.	_	30	58	71	78
Brush—brush-weed-grass mixture with brush	Poor	48	67	77	83
the major element. ²⁷	Fair	35	56	70	77
	Good	30 ₹	48	65	73
		Run-on Areas			
Woods—grass combination (orchard	Poor	57	78 65	82	86
or tree farm). 🗗	Fair	43		76	82
	Good	32	58	72	79
Voods, ¥	Poor	45	66	77	83
	Fair	36	60	73	79
	Good	30 4⁴	55	70	77
Farmsteads—buildings, lanes, driveways,	· .	59	74	82	86
and surrounding lots.					

¹ Average runoff condition, and $I_a = 0.28$.

Poor: <50%) ground cover or heavily grazed with no mulch.</p>

Fair: 50 to 75% ground cover and not heavily grazed.

Good: > 75% ground cover and lightly or only occasionally grazed.

³ Poor: <50% ground cover.

Fair: 50 to 75% ground cover.

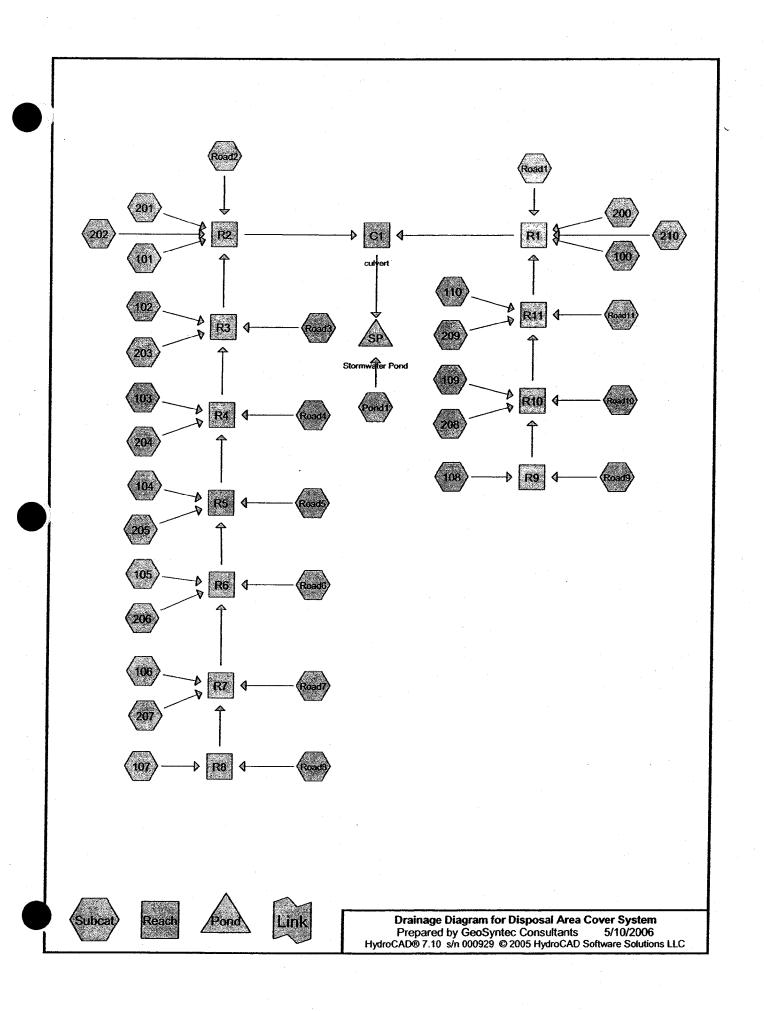
Good: >75% ground cover.

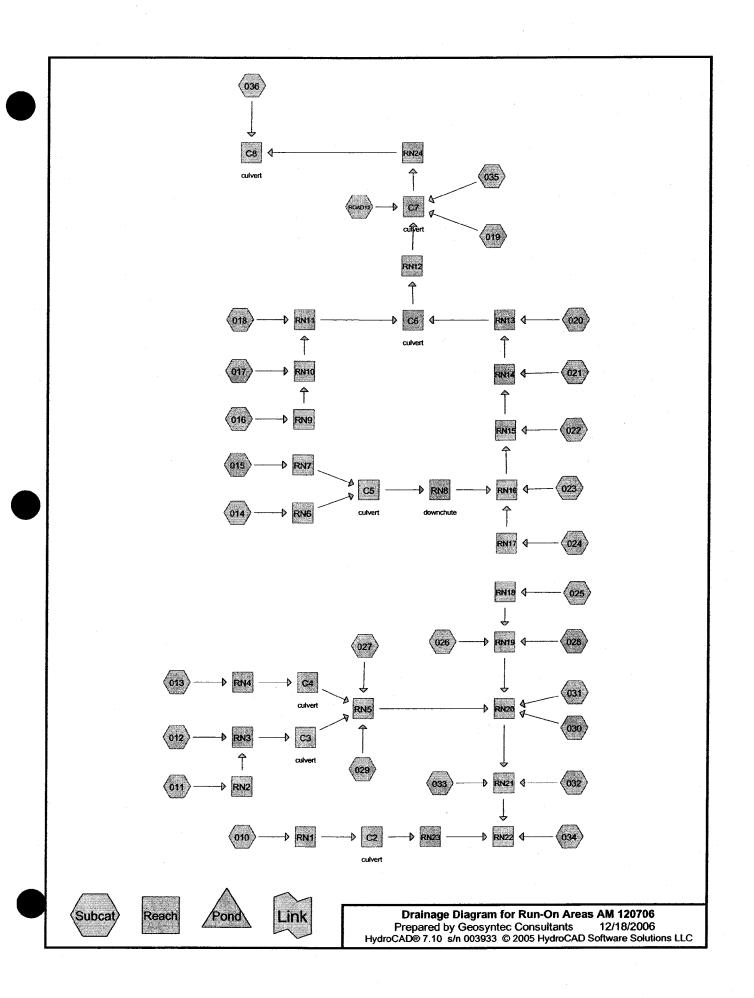
⁴ Actual curve number is less than 30; use CN = 90 for runoff computations.

b CN's shown were computed for areas with 50% woods and 50% grass (pasture) cover. Other combinations of conditions may be computed from the CN's for woods and pasture.

⁶ Poor: Forest litter, small trees, and brush are destroyed by heavy grazing or regular burning.

Fair: Woods are grazed but not burned, and some forest litter covers the soil.


Good: Woods are protected from grazing, and litter and brush adequately cover the soil.


GEOSYNTEC CONSULTANTS PAGE 27 OF 149 Written by: Sowmya Bulusu / Alexander Maestre Date: 12/07/06 Reviewed by: Ganesh Gopalakrishnan Date: 12/13/06

Client: TVA Project: Kingston Fossil Plant Gypsum Disposal Facility Project/Proposal No.: GR3731 Task No.: 06

Attachment 6

Nodal Network Diagrams

GEOSYNTEC CONSULTANTS PAGE. 30 OF 149 Written by: Sowmya Bulusu / Alexander Maestre Date: 12/07/06 Reviewed by: Ganesh Gopalakrishnan Date: 12/13/06 Project: Kingston Fossil Plant Gypsum Disposal Facility

Project/Proposal No.: GR3731

Task No.: <u>06</u>

Attachment 7

Properties of Subareas

PAGE 31 OF 149

Written by: Sowmya Bulusu / Alexander Maestre Date: 12/07/06 Reviewed by: Ganesh Gopalakrishnan Date: 12/13/06

Client: TVA Project: Kingston Fossil Plant Gypsum Disposal Facility Project/Proposal No.: GR3731 Task No.: 06

METHODOLOGY

The Time of concentration (Tc) is generally defined as the time required for a drop of water to travel from the most hydrologically remote point in the subcatchment to the point of collection. Tc for each subarea was calculated as the travel time along the assumed longest flow path within the subarea. The assumed longest flow paths for each subarea are shown on the figure "Post-Development Watershed Delineation" in Attachment 2.

Along each assumed flow path, the flow was subdivided into various segments based on flow type (i.e., sheet flow, shallow concentrated flow, ditch flow and culvert/pipe flow). The length and longitudinal slope for each flow type were estimated. The travel time for each segment was calculated based on methods appropriate for each flow type. The travel time along the flow path was calculated as the sum of the travel times for individual segments. The calculations of travel time assumed flow paths are shown in the following tables.

The curve number (CN) and Tc for each subarea were used as input parameters for modeling using computer program HydroCAD.