ALTERNATIVE FINAL COVER SYSTEM DEMONSTRATION

COMPUTATION COVER SHEET

Client: <u>TVA</u> Pro	ect: <u>KIF Gypsum Disposal</u> Proj Facility	ject/Proposal #: <u>GR3731</u> Task #: <u>0</u>
TITLE OF COMPUTATIONS	ALTERNATIVE FINAL COVE	R SYSTEM DEMONSTRATION
COMPUTATIONS BY:	Signature Superior Printed Name Sowmya Bulusu and Title Staff Engineer	04 11 06 DATE
ASSUMPTIONS AND PROCED CHECKED BY: (Peer Reviewer)	Printed Name Tamer Y. Elkady and Title Engineer	 DATE
COMPUTATIONS CHECKED BY:	Signature Basak Gulu Printed Name Basak Gulec and Title Engineer	<u>об/[1/06</u> DATE
COMPUTATIONS BACKCHEC (Originator)	KED BY: Signature Printed Name Sowmya Bulusu	05 10 06 DATE
APPROVED BY: (PM or Designate)	and Title Staff Engineer Signature RNulfunction Printed Name Neil Davies and Title Principal/Vice Presi	<u></u> <u>May</u> 11, 2006 DATE
APPROVAL NOTES:		
REVISIONS (Number and initial a	ll revisions)	
NO. SHEET DAT	TE BY CHE	ECKED BY APPROVAL
cover-FC Demo.doc		5/10/2006

TVA-00005079

GEOSYNTEC CONSULTANTS	PAGE	1	OF	24	
Written by: <u>Sowmya Bulusu</u> Date: <u>04/11/06</u> Reviewed by: <u>Basak Gulec</u>		_ Da	te: <u>04</u>	/27/06	
Client: TVA Project: Kingston Fossil Plant Gypsum Disposal Facility Project/Proposal No.: GR37	31	Tas	k No.:	06	

ALTERNATIVE FINAL COVER SYSTEM DEMONSTRATION

PURPOSE OF ANALYSES

- O- ----

The purpose of the analyses presented in this calculation package is to demonstrate the equivalency of an alternative final cover system for Kingston Fossil Plant Gypsum disposal facility (herein referred as KIF Gypsum disposal facility) to the prescribed final cover system meeting minimum technical requirements of Tennessee Department of Environment and Conservation (TDEC) Chapter 1200-1-7 [TDEC, 2005].

INTRODUCTION

Waste placement activities in the disposal area will be followed by the construction of a final cover system. The proposed alternative final cover consists of (from top to bottom):

- a 12-inch thick vegetative layer;
- a geocomposite drainage layer, consisting of a High-Density PolyEthylene (HDPE) geonet with geotextile filters heat bonded to both sides of the geonet;
- a 40-mil thick linear HDPE geomembrane; and
- a 12-inch thick compacted soil layer.

Regulations that describe the minimum technical requirements for final cover system at Class I and Class II facilities are included in Chapter 1200-1-7 of "*Rules of TDEC, Division of Solid Waste Management*" [TDEC, 2005]. According to this rule, the final cover system should consist of (from top to bottom):

- a vegetative layer at least 12 inches in thickness; and
- a compacted soil layer below it, at least 24 inches in thickness with permeability no greater than 1×10^{-7} cm/sec.

The details of the prescribed and proposed alternative final cover systems are shown in Figure 1.

DEMONSTRATION OF EQUIVALENCY OF THE PROPOSED FINAL COVER SYSTEM

According to Rule 1200-1-7, the Department may approve alternative final cover designs if determined by the staff to meet or exceed the minimum standards. The performances of the prescribed and alternative final cover systems are compared in terms of the infiltration through the final cover. The vegetative layer of the proposed final cover system (12-in thickness) is consistent with the Regulation 200-1-7 prescribed vegetative layer and therefore it will not be discussed further.

GEOSYNTEC CONSULTANTS	PAGE	<u>2</u> OF	24
Written by: <u>Sowmya Bulusu</u> Date: <u>04/11/06</u> Reviewed by: <u>Basak Gulec</u>			/27/06
Client: <u>TVA</u> Project: Kingston Fossil Plant Gypsum Disposal Facility Project/Proposal No.: G	GR3731	<u> </u>	06

In the proposed alternative final cover system, the upper component of the composite infiltration barrier system is a geomembrane, below which is a 12-inch thick layer of compacted soil. In addition, the proposed alternative final cover has a geocomposite drainage layer that is placed above the geomembrane to reduce the hydraulic head on the infiltration barrier.

METHOD OF ANALYSIS

Comparison of hydraulic performances of the alternative and prescribed final cover systems is carried out using the Hydrologic Evaluation of Landfill Performance (HELP) model, Version 3.07, developed by the U.S. Environmental Protection Agency (USEPA) [Schroeder et al., 1994 a, b]. The HELP program is a quasi two-dimensional hydrologic model of water movement across, into, through, and out of landfills. The program accepts climatologic, soil, and design data, and uses a solution technique that accounts for the effects of surface storage, runoff, infiltration, percolation, evaporation, soil moisture storage, and lateral drainage.

PARAMETERS USED IN HELP MODEL ANALYSIS

Climatic Data

- The mean monthly precipitation data was obtained from the National Climatic Data Center CDROM "NCDC SUMMARY OF THE DAY" published by EarthInfo Inc. [EarthInfo, 2005]. Daily precipitation data between 1948 and 2005 for the closest weather station to the site (i.e., Kingston, Weather Station ID: 404871) were averaged to obtain the normal mean monthly precipitation data. The precipitation was modeled in the HELP program using the synthetic daily weather generation option for Knoxville, Tennessee (over a 100-year modelling period) in conjunction with the calculated normal mean monthly precipitation data.
- The temperature, relative humidity, and solar radiation were modeled for Knoxville, Tennessee using the synthetic daily weather generation over a 100-year modeling period.
- The evaporative zone depth was selected as 12 in. from HELP default values, since the thickness of the vegetative cover soil for the prescribed and alternative final cover systems is 12 in.

Layer Material Properties

Final Cover System Data

The material properties used to represent the different components of the final cover are presented in Table 1. The final cover system was assumed to be vegetated with good stand of grass and runoff was allowed.

GEOSYNTEC CONSULTANTS	PAGE	3	OF	24	
Written by: <u>Sowmya Bulusu</u> Date: <u>04/11/06</u> Reviewed by: <u>Basak Gulec</u>		_ Da	te: <u>04</u> /	27/06	
Client: TVA Project: Kingston Fossil Plant Gypsum Disposal Facility Project/Proposal No.: GR373	31	<u> </u>	k No.:	06	

The analyzed drainage path is the length between the drainage benches on the final cover, i.e., 90 feet, at a slope of 33.3% (3 horizontal: 1 vertical).

Cover	Component	Thickness	HELP Material Texture #	Type / Classification	Total Porosity	Field Capacity	Wilting Point	Saturated Hydraulic Conductivity, k (cm/s)
Prescribed	Vegetative Cover ⁽¹⁾	12-inch	12	CL	0.471	0.342	0.210	4.2 x 10 ⁻⁵
Fleschoed	Compacted Clay Layer	24-inch	16	Barrier Soil	0.427	0.418	0.367	1 x 10 ⁻⁷
	Vegetative Cover ⁽¹⁾	12-inch	12	CL	0.471	0.342	0.210	4.2 x 10 ⁻⁵
Alternative	Geocomposite ⁽³⁾ Drainage Layer	200-mil	20	Drainage Net	0.850	0.01	0.005	4.17 ⁽³⁾
	Geomembrane ⁽²⁾	40-mil	35	GM	0.000	0.000	0.000	2×10^{-13}
	Compacted Soil Layer ⁽¹⁾	12-inch	26	CL	0.445	0.393	0.277	1.9 x 10 ⁻⁶

Table 1. Layer Material Properties for Prescriptive and Proposed Alternative Final Cover System

Notes:

- (1) It was assumed that soils obtained from the on-site borrow areas would be used as vegetative cover and compacted soil layers. Information on the on-site potential borrow soils was obtained from the report titled "Report of Geotechnical Investigation" prepared by MACTEC in April 2006 [MACTEC, 2006]. Three types of soil s were identified during MACTEC [2006] subsurface explorations and laboratory testing. These soils were classified as MH, CH, and CL based on the Unified Soil Classification System (USCS). In the HELP analysis, CL and compacted CL were used for the vegetative cover and the compacted soil layer, respectively. HELP's default hydraulic conductivities were used for these layers. The default hydraulic conductivities were within the range of hydraulic conductivities obtained from laboratory testing (i.e., 2.8x10⁻⁵ cm/s to 6.7x10⁻⁸ cm/s) for MH, CH, and CL soil samples [MACTEC, 2006].
- (2) Geomembrane was assumed to contain one hole per acre assuming good placement quality can be achieved through third-party CQA testing. The hole size was assumed to be 0.16 in², as recommended for these types of calculations by Giroud and Bonaparte [1989].
- (3) The geocomposite drainage layer hydraulic conductivity value was estimated using a procedure described in the Attachment 1 of this calculation package.

RESULTS

The results of the HELP Model analyses are summarized in Table 2. The HELP model output files are included in Attachment 2.

GEOSYNTEC CONSULTANTS	PAGE	4 OF	24
Written by: <u>Sowmya Bulusu</u> Date: <u>04/11/06</u> Reviewed by: <u>Basak Gulec</u>			27/06
Client: TVA Project: Kingston Fossil Plant Gypsum Disposal Facility Project/Proposal No.: GR3'	731	Task No.:	06

I able 2. Infiltration rate comparison fo	for the prescribed and alternative final cover sy	stems.
---	---	--------

Final Cover System	Average Annual Infiltration (in/day)	Peak Daily Infiltration (in/day)	Head on the geomen (in) (pea	ıbrane
			Average	Maximum
Prescribed	3.20 x 10 ⁻³	5.10 x 10 ⁻³	12	12
Alternative	6.03 x 10 ⁻⁹	9.09 x 10 ⁻⁸	0.021	0.040

The results of these analyses (Attachment 2) show that less infiltration would occur through the proposed alternative final cover system than through the prescribed (i.e., compacted clay) final cover system.

In order to ensure that the synthetic component of the proposed final cover system will perform as analyzed, it is presented that, the synthetic component of the final cover will be constructed in accordance with the Material Specifications and Construction Quality Assurance and Quality Control (QA/QC) plan presented as part of this permit application.

CONCLUSION

Based on the analyses above, less infiltration would occur through the proposed alternative final cover system than for the prescribed (i.e., compacted clay) final cover system. The head in the final cover protection layer will also be less for the alternative final cover system compared to the prescribed one. Therefore, the alternative final cover system is considered superior to the prescribed final cover system.

GEOSYNTEC CONSULTANTS		PAGE	<u>5</u> OF	24
Written by: <u>Sowmya Bulusu</u>	Date: 04/11/06 Reviewed by: Basak Gulec		_ Date: _04	4/27/06

Client: TVA Project: Kingston Fossil Plant Gypsum Disposal Facility Project/Proposal No.: GR3731 Task No.: 06

REFERENCES

EarthInfo Inc., NCDC Summary of the Day, Reference Manual, EarthInfo Inc., 2005.

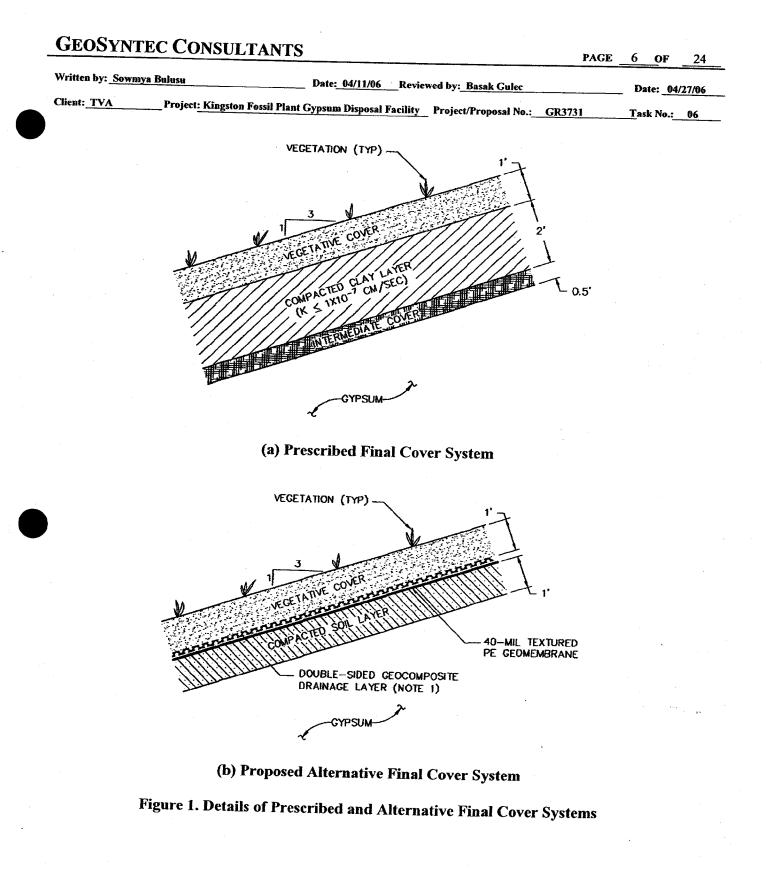
Giroud, J.P., Zornberg, J.G., and Zhao, A. "Hydraulic Design of Geosynthetic and Granular Liquid Collection Layers", *Geosynthetics International*, Vol. 7, Nos. 4-6, 2000.

Giroud, J.P. and Bonaparte, R. "Leakage Through Liners Constructed with Geomembranes, Part I: Geomembrane Liners", *Geotextiles and Geomembranes*, Vol. 8, No. 1, pp. 27-67, 1989.

GRI-GC8, "Determination of the Allowable Flow Rate of a Drainage Geocomposite", Standard Guide, Geosynthetic Research Institute, April, 2001.

Koerner, R.M., "Designing with Geosynthetics", Third Edition, Prentice Hall, pp. 302 - 304, 1998.

MACTEC, "Report of Geotechnical Investigation", Prepared for Tennessee Valley Authority by MACTEC Engineering and Consulting, Inc., Project 3043051064.02, April 2006.


Schroeder, P. R., Lloyd, C. M., and Zappi, P. A., "*The Hydraulic Evaluation of Landfill Performance (HELP) Model, User's Guide for Version 3*", U.S. Environmental Protection Agency, Office of Research d Development Washington, D.C., Report No. EPA/600/R094/168a, 1994 a.

Schroeder, P. R., Dozier, T. S., Zappi, P. A., McEnroe, B. M., Sjostrom, J. W., and Peyton, R. L., "The Hydraulic Evaluation of Landfill Performance (HELP) Model, Engineering documentation for Version 3", U.S. Environmental Protection Agency, Office of Research and Development Washington, D.C., Report No. EPA/600/R094/168b, 1994 b.

TDEC, "Rules of Tennessee Department of Environment and Conservation, Chapter 1200-1-7 – Solid Waste Processing and Disposal", Division of Solid Waste Management, January 2005.

PAGE 7 OF 24

 Written by:
 Sowmya Bulusu
 Date:
 04/11/06
 Reviewed by:
 Basak Gulec
 Date:
 04/27/06

 Client:
 TVA
 Project:
 TVA Kingston Fossil Plant Landfill
 Project/Proposal No.:
 GR3731
 Task No.:
 06

ATTACHMENT 1

DRAINAGE LAYER HYDRAULIC CONDUCTIVITY DESIGN VALUES

GEOSYNTEC CONSULTANTS	PAGE	8	OF	24	
Written by: <u>Sowmya Bulusu</u> Date: <u>04/11/06</u> Reviewed by: <u>Basak Gulec</u>		Dat	te: 04,	27/06	•
Client: TVA Project: TVA Kingston Fossil Plant Landfill Project/Proposal No.: GR3731		Task	No.:	06	-

Drainage Layer Hydraulic Conductivity Design Values

For geocomposite drainage layer (Alternative Final Cover System)

The hydraulic conductivity of a geocomposite drainage layer is related to the hydraulic transmissivity (θ) and the thickness of the geocomposite drainage layer (t) as follows:

 $k = \frac{\theta}{t}$ (1)

where:

k = hydraulic conductivity (cm/sec); θ = hydraulic transmissivity (cm²/sec); and t = drainage layer thickness (cm).

The following equations proposed by Giroud et al. [2000] are used to estimate an appropriate transmissivity design value for the geocomposite drainage layer.

$$\theta_{\rm LTIS} = \frac{\theta_{\rm measured}}{\Pi(\rm RF)} = \frac{\theta_{\rm measured}}{\rm RF_{\rm IMCO} \times \rm RF_{\rm IMIN} \times \rm RF_{\rm CR} \times \rm RF_{\rm IN} \times \rm RF_{\rm CD} \times \rm RF_{\rm PC} \times \rm RF_{\rm CC} \times \rm RF_{\rm BC}}$$
(2)

where:

θ_{LTIS}	=	long-term-in-soil hydraulic transmissivity of the geocomposite;
$\theta_{measured}$	•= .	value of hydraulic transmissivity measured in laboratory tests;
Π(RF)	=	product of all reduction factors;
RFIMCO	=	reduction factor for immediate compression, i.e. decrease of hydraulic transmissivity due to compression of the transmissive core
RFIMIN	=	immediately following the application of stress; reduction factor for immediate intrusion, i.e. decrease of hydraulic transmissivity due to geotextile intrusion into the transmissive core
RF _{CR}	-	immediately following the application of stress; reduction factor for creep, i.e. time-dependent hydraulic transmissivity reduction due to creep of the transmissive core under the applied stress;
RF _™	=	reduction factor for delayed intrusion, i.e. decrease of hydraulic transmissivity over time due to geotextile intrusion into the transmissive core resulting from time-dependent deformation of the

Written by: <u>Sowmya B</u> a	lusu Date: 04/11/06 Reviewed by: Basak Gulec	Date: 04/27/06
Client: TVA	Project: TVA Kingston Fossil Plant Landfill Project/Proposal No.: GR373	1 Task No.: 06
RF _{CD}	geotextile; = reduction factor for chemical degradation, i.e. of transmissivity due to chemical degradation	
RF _{PC}	 compound(s) used to make the geocomposite; reduction factor for particulate clogging, i.e. d transmissivity due to clogging by particles 	-
RF _{CC}	 transmissive core; reduction factor for chemical clogging, i.e. de transmissivity due to chemical clogging of the transmissivity due to chemical clogging due to chemical clogging of the transmissivity due to chemical clogging due to chemical cloggin	-
RF _{BC}	 reduction factor for biological clogging of the transmissivity due to biological clogging due to	ecrease of hydraulic
θ_{design}	= geocomposite transmissivity appropriate for use	in design; and
FS	= factor of safety to account for all possible uncerta	ainties.

An overall factor of safety 1.5 is applied to the drainage layer transmissivity value. Therefore, θ_{design} can be calculated as follows:

$$\theta_{design} = \frac{\theta_{LTIS}}{FS}$$

where:

 $\theta_{\text{design}} =$ geocomposite transmissivity appropriate for use in design; and FS = overall factor of safety to account for all possible uncertainties.

The selection of each reduction factor was based on certain mechanisms that reduce the flow capacity of the geocomposite layer due to thickness reduction caused by applied stresses, and hydraulic conductivity reduction caused by clogging. Recommendations on the selection of these reduction factors were obtained from several sources available in the technical literature [Giroud et al, 2000; GRI-GC8, 2001; and Koerner, 1998]. Reduction factors incorporated for the alternative final cover are discussed as follows:

The final cover system experiences a low confining pressure and is designed to function for a long time. Immediate compression, immediate intrusion, chemical degradation, and chemical clogging will be negligible for the proposed final cover and therefore a RF of 1 was assumed for these factors. Creep, delayed intrusion, and particulate clogging were assumed to happen to a small degree ($RF_{CR} = RF_{IN} = RF_{PC} = 1.1$); some biological clogging were also assumed to occur ($RF_{BC} = 1.2$). The overall factor of safety was assumed equal to 1.5.

Alternative Final Cover demo.doc

(3)

Written by: <u>Sowmya Bulusu</u>

Client: TVA

Date: 04/11/06

06 Reviewed by: Basak Gulec

Project/Proposal No.: GR3731

_ Date: <u>04/27/06</u> Task No.: <u>06</u>

Table 1. Reduction Factors for Geocomposite Drainage Layer

Project: TVA Kingston Fossil Plant Landfill

Reduction Factors						
		Range of Values	Alternative Final Cover			
RF _{IMCO} =	Reduction factor for immediate compression	1.0 ⁽¹⁾	1.0			
RF _{IMIN} =	Reduction factor for immediate intrusion	1.0 ⁽¹⁾	1.0			
RF _{CD} =	Reduction factor for chemical degradation	1.2	1.0			
RF _{cc} =	Reduction factor for chemical clogging	1.0-1.2 ⁽¹⁾	1.0			
RF _{cr} =	Reduction factor for creep	1.1-1.4 ⁽¹⁾	1.1			
RF _{IN} =	Reduction factor for delayed intrusion	1.0-1.2 ⁽¹⁾	1.1			
RF _{PC} =	Reduction factor for particulate clogging	1.2	1.1			
RF _{BC} =	Reduction factor for biological clogging	1.2-1.5 ⁽¹⁾	1.2			
	Overall Reduction Factors =	П (RF)	1.6			
FS =	Factor of safety to account for all possible uncertainties		1.5			

Range of published values.

For this project, a bi-planar geocomposite drainage layer with an assumed thickness of 200 mils (i.e., 0.20 inches) and a measured hydraulic transmissivity ($\theta_{measured}$) of 5.08 x 10⁻⁴ m²/sec was considered. A geocomposite product with these properties is a standard commercially available product. Based on the reduction factors described above, θ_{design} and k_{design} values were calculated based on the $\theta_{measured}$ using Equations (1) through (3). The corresponding k_{design} values are presented in Table 2.

Table 2. Design Hydraulic Conductivity for Geocomposite Drainage Layer

Operation Condition	θ _{measured} (m²/s)	П (RF)	θ _{LTIS} (m²/s)	FS	θ _{design} (m²/s)	t (mm)	k _{design} (cm/s)
Alternative Final Cover	5.08E-04	1.6	3.18E-04	1.5	2.12E-04	5.08	4.17

PAGE 11_OF 24

Client: TVA

Written by: Sowmya Bulusu

Date: 04/27/06 Task No.: 06

ATTACHMENT 2

HELP RUNS

PAGE <u>12</u> OF <u>24</u>

Written by: Sowmya Bulusu	Date: 04/11/06 R	eviewed by: <u>Basak Gul</u>	ec	Date: 04/27/06
Client: TVA Project: TVA Ki	ingston Fossil Plant Landfill	Project/Proposal No.:	GR3731	Task No.: 06

PRESCRIBED FINAL COVER SYSTEM

Written by: <u>Sowmy</u>	a Bulusu	Date: 04/11/06		ilec	Date: 04/27/06
Client: <u>TVA</u>	Project: TVA Kingston H	ossil Plant Landfill	Project/Proposal No.: _	GR3731	Task No.:06
******	******	****	*****	* * * * * * * * * * * * *	* * * * * * * * * *

**					**
**					* *
**	HYDROLOGIC EV	ALUATION OF 1	LANDFILL PERFORM	ANCE	**_
**		VERSION 3.07			**
**			ENTAL LABORATORY	ľ	**
**			RIMENT STATION		**
**	FOR USEPA RISK	REDUCTION EN	NGINEERING LABOR	RATORY	**
**					**
	*****				**
DDDOIDIMAMT					
		:\HELP\TVA_1.			
TEMPERATURE		:\HELP\TVA_1.			
		:\HELP\TVA_1.			
		:\HELP\TVA_1. :\HELP\TVA.D1			
OUTPUT DATA		:\HELP\TVA.OU			
FIME: 12:2	1 DATE: 5/5	/2006			
********	* * * * * * * * * * * * * * * * * * * *	* * * * * * * * * * * * * *	*****	* * * * * * * * * * * *	* * * * * * * * *
TITLE:	TVA Kingston Fos	sil Plant Lan	dfill		
*********	*****	* * * * * * * * * * * * *	****	****	* * * * * * * * * *
NOTE:	INITIAL MOISTURE (COMPUTED AS NEAR	CONTENT OF TH RLY STEADY-ST.	E LAYERS AND SN ATE VALUES BY T	OW WATER WERN HE PROGRAM.	£ .
					1
		7 5 11000	1		
		LAYER	1	х.	
	TYPE 1 ~	VERTICAL PER	COLATION LAYER	2	
		IAL TEXTURE 1			
Т	HICKNESS	=	12.00 INCHE	ES	
P	OROSITY	=	0.4710 VOL/V		
	IELD CAPACITY	=	0.3420 VOL/\	/OL	
	ILTING POINT		0.2100 VOL/V		
I	NITIAL SOIL WATER	CONTENT =	0.4209 VOL/V	/OL	

INITIAL SOIL WATER CONTENT = 0.4209 VOL/VOL EFFECTIVE SAT. HYD. COND. = 0.419999997000E-04 CM/SEC NOTE: SATURATED HYDRAULIC CONDUCTIVITY IS MULTIPLIED BY 5.00 FOR ROOT CHANNELS IN TOP HALF OF EVAPORATIVE ZONE.

PAGE	-14	OF	24

____ Date: 04/27/06

Written by: <u>Sowmya Bulusu</u>

Client: TVA Project: TVA Kingston Fossil Plant Landfill Project/Proposal No.: GR3731 Task No.: 06

LAYER 2

____ Date: 04/11/06 Reviewed by: Basak Gulec

TYPE 3 - BARF	RIER	SOIL LINER		
MATERIAL TEXI	URE	NUMBER 16		
THICKNESS	=	24.00	INCHES	
POROSITY		0.4270	VOL/VOL	
	=		VOL/VOL	
WILTING POINT		0.3670	VOL/VOL	
INITIAL SOIL WATER CONTENT	=	0.4270	VOL/VOL	
EFFECTIVE SAT. HYD. COND.	-	0.10000001	L000E-06	CM/SEC

GENERAL DESIGN AND EVAPORATIVE ZONE DATA

NOTE: SCS RUNOFF CURVE NUMBER WAS COMPUTED FROM DEFAULT SOIL DATA BASE USING SOIL TEXTURE #12 WITH A GOOD STAND OF GRASS, A SURFACE SLOPE OF 33.8 AND A SLOPE LENGTH OF 90. FEET.

SCS RUNOFF CURVE NUMBER	= '	85.30	
FRACTION OF AREA ALLOWING RUNOFF	=	100.0	PERCENT
AREA PROJECTED ON HORIZONTAL PLANE	=	1.000	ACRES
EVAPORATIVE ZONE DEPTH	272	12.0	INCHES
INITIAL WATER IN EVAPORATIVE ZONE	=	5.050	INCHES
UPPER LIMIT OF EVAPORATIVE STORAGE		5.652	INCHES
LOWER LIMIT OF EVAPORATIVE STORAGE	=	2.520	INCHES
INITIAL SNOW WATER	=	0.000	INCHES
INITIAL WATER IN LAYER MATERIALS	=	15.298	INCHES
TOTAL INITIAL WATER	=	15.298	INCHES
TOTAL SUBSURFACE INFLOW	-	0.00	INCHES/YEAR

EVAPOTRANSPIRATION AND WEATHER DATA

NOTE: EVAPOTRANSPIRATION DATA WAS OBTAINED FROM KNOXVILLE TENNESSEE

STATION LATITUDE	=	35.49 DEGREES
MAXIMUM LEAF AREA INDEX		4.50
START OF GROWING SEASON (JULIAN DATE)	=	85
END OF GROWING SEASON (JULIAN DATE)	=	307
EVAPORATIVE ZONE DEPTH	=	12.0 INCHES
AVERAGE ANNUAL WIND SPEED	=	7.10 MPH
AVERAGE 1ST QUARTER RELATIVE HUMIDITY	=	68.00 %
AVERAGE 2ND QUARTER RELATIVE HUMIDITY	=	69.00 %
AVERAGE 3RD QUARTER RELATIVE HUMIDITY	=	76.00 %

PAGE 15 OF 24

	Written by: <u>Sowmya Bulusu</u>	Date: 04/11/06	Reviewed by: Basak Gulec	Date: 04/27/06
_	Client: TVA Project: TVA Kingston Foss	il Plant Landfill	Project/Proposal No.: GR3731	Task No.: 06

AVERAGE 4TH QUARTER RELATIVE HUMIDITY = 72.00 %

NOTE: PRECIPITATION DATA WAS SYNTHETICALLY GENERATED USING COEFFICIENTS FOR KNOXVILLE TENNESSEE

	NORMAL M	EAN MONTHLY	PRECIPITATION	(INCHES)	
JAN/JUL	FEB/AUG	MAR/SEP	APR/OCT	MAY/NOV	JUN/DEC
5.28 4.72	4.94 3.50	5.67 3.78	4.32 2.88	4.56 4.55	4.00 5.48

NOTE: TEMPERATURE DATA WAS SYNTHETICALLY GENERATED USING COEFFICIENTS FOR KNOXVILLE TENNESSEE

NORMAL MEAN MONTHLY TEMPERATURE (DEGREES FAHRENHEIT)

JAN/JUL	FEB/AUG	MAR/SEP	APR/OCT	MAY/NOV	JUN/DEC
35.40 77.20	40.30 76.50	49.80 70.30	59.10 60.20	67.10 50.30	73.50 38.40

NOTE: SOLAR RADIATION DATA WAS SYNTHETICALLY GENERATED USING COEFFICIENTS FOR KNOXVILLE TENNESSEE AND STATION LATITUDE = 35.49 DEGREES

AVERAGE MONTHLY VALUES IN INCHES FOR YEARS 1 THROUGH 100

	JAN/JUL	FEB/AUG	MAR/SEP	APR/OCT	MAY/NOV	JUN/DEC
PRECIPITATION			<u></u>			
TOTALS	4.90 4.90	5.10 3.64	5.40 4.24	4.25	4.94	3.89 5.63
STD. DEVIATIONS	2.19 2.25	2.35 1.51	2.54 2.29	2.05 1.75	2.10 2.33	1.80 3.09
RUNOFF						
TOTALS	3.659 0.295	4.094 0.124	2.718 0.570	0.999 0.606	0.563 2.492	0.223 4.138
STD. DEVIATIONS	2.455 0.536	2.374 0.357	2.353 0.995	1.350 1.023	1.086 2.170	0.531 2.888

Alternative Final Cover demo.doc

Written by: Sowmya Bulusu		Date: 04/	11/06	Reviewed by: H	larak Culac		Date: 04/23	
	VA Kingston Fo			_ •	al No.: GR373	31	Date: Task No.: 00	
				}				
EVAPOTRANSPIRATION								
TOTALS			.415 .787	2.937 2.764	3.819 1.440	5.148 1.083	4.070 0.874	
STD. DEVIATIONS			.349 .231	0.277 0.957	0.667 0.334	1.035 0.150	1.493 0.173	
PERCOLATION/LEAKAGE	E THROUGH	LAYER 2	2					
TOTALS			- .1347 .0307	=	0.1314 0.0928	0.0897 0.1282		
STD. DEVIATIONS			0084 0367		0.0077 0.0578	0.0374 0.0383		
AVERAG	SES OF MON	THLY AVE	RAGE	D DAILY HE	ADS (INCH	 ES)		
			_					
DAILY AVERAGE HEAD	ON TOP OF	LAYER	2					
AVERAGES	10.1 1.1		6411 8844	$9.3980 \\ 1.9264$	6.9105 4.9000	3.3748 8.7509	1.1266 10.8001	
STD. DEVIATIONS			0931 4301	1.2863 2.4567	1.8024 3.8209	2.4958 3.3481	1.7182 1.4147	
* * * * * * * * * * * * * * * * * * * *	*****	****	****	* * * * * * * * * *	* * * * * * * * * *	****	****	
AVERAGE ANNUAL T	OTALS & (STD. DEV	IATIC	ONS) FOR YI	EARS 1	THROUGH	100	
		II	NCHES	;	CU. FEE	T 	PERCENT	
PRECIPITATION		54.24	(7.873)	196891	.6 1	00.00	-
RUNOFF		20.479	(6.4228)	74340	.14	37.757	
EVAPOTRANSPIRATION		32.588	(3.0575)	118293	.12	60.080	
PERCOLATION/LEAKAGE	THROUGH	1.1683	35 (0.15528)	4241	.115	2.15404	
AVERAGE HEAD ON TOP OF LAYER 2		5.752	(0.939)				
CHANGE IN WATER STORA	AGE	0.005	(1.2363)	17	.20	0.009	
* * * * * * * * * * * * * * * * * * * *	*******	******	****	* * * * * * * * * *	* * * * * * * * *	* * * * * * * * *	* * * * * * * * *	
							* * * * * * *	

_____ Task No.: _____06

Written by: Sowmya Bulusu

Date: 04/11/06 Reviewed by: Basak Gulec

Date: 04/27/06

Client: TVA Project: TVA Kingston Fossil Plant Landfill Project/Proposal No.: GR3731 PEAK DAILY VALUES FOR YEARS 1 THROUGH 100

	(INCHES)	(CU. FT.)
PRECIPITATION	5.13	18621.900
RUNOFF	5.047	18321.5332
PERCOLATION/LEAKAGE THROUGH LAYER 2	0.005102	18.52133
AVERAGE HEAD ON TOP OF LAYER 2	12.000	
SNOW WATER	7.25	26300.9785
MAXIMUM VEG. SOIL WATER (VOL/VOL)	0.4	1710
MINIMUM VEG. SOIL WATER (VOL/VOL)	0.2	2100

 FINAL WATER	STORAGE AT EN	ND OF YEAR 100
LAYER	(INCHES)	(VOL/VOL)
1	5.5243	0.4604
. 2	10.2480	0.4270
SNOW WATER	0.000	

Alternative Final Cover demo.doc

TVA-00005096

PAGE 18 OF 24

Written	by:	Sowmya	Bulusu
	•		

Client: TVA

Date: 04/11/06 Reviewed by: Basak Gulec Project: TVA Kingston Fossil Plant Landfill Project/Proposal No.: _____GR3731

Date: 04/27/06 _____ Task No.: __06

ALTERNATIVE FINAL COVER SYSTEM

GEOSYNTEC CONSULTANTS PAGE 19 OF 24 Written by: Sowmya Bulusu Date: 04/11/06 Reviewed by: Basak Gulec Date: 04/27/06 Client: TVA Project: TVA Kingston Fossil Plant Landfill Project/Proposal No.: GR3731 Task No.: 06 * * ** ** ** ** HYDROLOGIC EVALUATION OF LANDFILL PERFORMANCE **. ** HELP MODEL VERSION 3.07 (1 NOVEMBER 1997)

DEVELOPED BY ENVIRONMENTAL LABORATORY

**	USAE	E WATERWAYS EXPERIMENT STATION	**
**	FOR USEPA R	RISK REDUCTION ENGINEERING LABORATORY	**
**			**
**			**
*******	****	***************************************	******
*******	*****	******************	******
ъ			
PRECIPITAT	ION DATA FILE:	C:\HELP\TVA 1.D4	

TEMPERATURE DATA FILE: C:\HELP\TVA 1.D7 SOLAR RADIATION DATA FILE: C:\HELP\TVA 1.D13 EVAPOTRANSPIRATION DATA: C:\HELP\TVA 1.D11 SOIL AND DESIGN DATA FILE: C:\HELP\TVA-ALT.D10 OUTPUT DATA FILE: C:\HELP\TVA-ALT.OUT

TIME: 12:33 DATE: 5/ 5/2006

**

TITLE: TVA Kingston Fossil Plant Landfill - Alternative final cover

NOTE: INITIAL MOISTURE CONTENT OF THE LAYERS AND SNOW WATER WERE COMPUTED AS NEARLY STEADY-STATE VALUES BY THE PROGRAM.

LAYER 1 _____

TYPE 1 - VERTICAL PERCOLATION LAYER MATERIAL TEXTURE NUMBER 12 THICKNESS INCHES = 12.00 POROSITY 0.4710 VOL/VOL = FIELD CAPACITY 0.3420 VOL/VOL = WILTING POINT 0.2100 VOL/VOL = INITIAL SOIL WATER CONTENT = 0.3008 VOL/VOL EFFECTIVE SAT. HYD. COND. = 0.419999997000E-04 CM/SEC NOTE: SATURATED HYDRAULIC CONDUCTIVITY IS MULTIPLIED BY 5.00 FOR ROOT CHANNELS IN TOP HALF OF EVAPORATIVE ZONE.

Alternative Final Cover demo.doc

**

**

···· . · · ...

Alternative Final Cover demo.doc

LAYER 3 _____

TYPE 4 - FLEXIBLE MEMBRANE LINER MATERIAL TEXTURE NUMBER 35

THICKNESS	` =	0.04 INCHES
POROSITY	=	0.0000 VOL/VOL
FIELD CAPACITY	=	0.0000 VOL/VOL
WILTING POINT	=	0.0000 VOL/VOL
INITIAL SOIL WATER CONTENT	=	0.0000 VOL/VOL
EFFECTIVE SAT. HYD. COND.	=	0.199999996000E-12 CM/SEC
FML PINHOLE DENSITY	=	0.00 HOLES/ACRE
FML INSTALLATION DEFECTS	=	1.00 HOLES/ACRE
FML PLACEMENT QUALITY	=	3 – GOOD

LAYER 4 _____

TYPE 3 - BARRIER SOIL LINER MATERIAL TEXTURE NUMBER 26

THICKNESS	=	12.00 INCHES	
POROSITY	=	0.4450 VOL/VOL	
FIELD CAPACITY		0.3930 VOL/VOL	
WILTING POINT	=	0.2770 VOL/VOL	
INITIAL SOIL WATER CONTENT	r =	0.4450 VOL/VOL	
EFFECTIVE SAT. HYD. COND.	=	0.19000003000E-05 CM/SEC	2

GENERAL DESIGN AND EVAPORATIVE ZONE DATA _____

NOTE: SCS RUNOFF CURVE NUMBER WAS COMPUTED FROM DEFAULT SOIL DATA BASE USING SOIL TEXTURE #12 WITH A FAIR STAND OF GRASS, A SURFACE SLOPE OF 33.8 AND A SLOPE LENGTH OF 90. FEET.

Written by: Sowmya Bulusu

Client: TVA

Project: TVA Kingston Fossil Plant Landfill Project/Proposal No.: GR3731

LAYER 2 _____

Date: 04/11/06 Reviewed by: Basak Gulec

TYPE 2 - LATERAL DRAINAGE LAYER MATERIAL TEXTURE NUMBER 200

MAIERIAL IEA	UKL	NUMBER 200		
THICKNESS		0.20	INCHES	
POROSITY	=	0.8500	VOL/VOL	
FIELD CAPACITY	=	0.0100	VOL/VOL	
WILTING POINT	=	0.0050	VOL/VOL	
INITIAL SOIL WATER CONTENT	=	0.0100	VOL/VOL	
EFFECTIVE SAT. HYD. COND.	=	4.1700008	3000	CM/SEC
SLOPE	=	33.30	PERCENT	
DRAINAGE LENGTH	=	90.0	FEET	

20 PAGE OF 24

Date: 04/27/06

_____ Task No.: _____

	NOTE :	SOLAR	DATA	WAS	SYNTHETICALLY	GENERATED	USING
Alternativ	e Final Cover	demo.doc					

NOTE: TEMPERATURE DATA WAS SYNTHETICALLY GENERATED USING COEFFICIENTS FOR KNOXVILLE TENNESSEE

	NORMAL MEAN	MONTHLY TEMPE	RATURE (DEGRI	LES FAHRENHE	LT)
JAN/JUL	FEB/AUG	MAR/SEP	APR/OCT	MAY/NOV	JUN/DEC
35.40	40.30	49.80	59.10	67.10	73.50
77.20	76.50	70.30	60.20	50.30	38.40

NORMAL MEAN MONTHLY TEMOTOATHOE (DECREES EAUDENHEIT)

JAN/JUL	FEB/AUG	MAR/SEP	APR/OCT	MAY/NOV	JUN/DEC	
5.28	4.94	5.67	4.32	4.56	4.00	
4.72	3.50	3.78	2.88	4.55	5.48	

NOTE: PRECIPITATION DATA WAS SYNTHETICALLY GENERATED USING

NORMAL MEAN MONTHLY PRECIPITATION (INCHES)

COEFFICIENTS FOR KNOXVILLE TENNESSEE

EVAPOTRANSPIRATION AND WEATHER DATA

NOTE: EVAPOTRANSPIRATION DATA WAS OBTAINED FROM KNOXVILLE TENNESSEE

STATION LATITUDE	=	35.49	DEGREES
MAXIMUM LEAF AREA INDEX	=	4.50	
START OF GROWING SEASON (JULIAN DATE)	=	85	
END OF GROWING SEASON (JULIAN DATE)	=	307	
EVAPORATIVE ZONE DEPTH	=	12.0	INCHES
AVERAGE ANNUAL WIND SPEED	=	7.10	MPH
AVERAGE 1ST QUARTER RELATIVE HUMIDITY		68.00	00
AVERAGE 2ND QUARTER RELATIVE HUMIDITY	=	69.00	9
AVERAGE 3RD QUARTER RELATIVE HUMIDITY	=	76.00	Q 4 4
AVERAGE 4TH QUARTER RELATIVE HUMIDITY	=	72.00	0

SCS RUNOFF CURVE NUMBER	=	89.30	
FRACTION OF AREA ALLOWING RUNOFF	=	100.0	PERCENT
AREA PROJECTED ON HORIZONTAL PLANE	=	1.000	ACRES
EVAPORATIVE ZONE DEPTH	=	12.0	INCHES
INITIAL WATER IN EVAPORATIVE ZONE	=	3.609	INCHES
UPPER LIMIT OF EVAPORATIVE STORAGE	=	5.652	INCHES
LOWER LIMIT OF EVAPORATIVE STORAGE	=	2.520	INCHES
INITIAL SNOW WATER	=	0.000	INCHES
INITIAL WATER IN LAYER MATERIALS	=	8.951	INCHES
TOTAL INITIAL WATER	=	8.951	INCHES
TOTAL SUBSURFACE INFLOW	=	0.00	INCHES/YEAR

Date: 04/11/06 Reviewed by: Basak Gulec

Written by: <u>Sowmya Bulusu</u>

Client: TVA

Date: 04/27/06

Project: TVA Kingston Fossil Plant Landfill Project/Proposal No.: GR3731 Task No.: 06

Vritten by: <u>Sowmya Bul</u>	15 u	D	ate: 04/11/06	Reviewed by:	Basak Gulec		Date: <u>04/27</u>
lient: TVA	Project:_TVA King	ston Fossil P	lant Landfill	Project/Prope	osal No.: <u>GR</u> 3	3731	Task No.:06
		IENTS FO TATION I	DR KNOX LATITUDE	XVILLE = 35.49	TE DEGREES	CNNESSEE	
************************ AVERA	**************** GE MONTHLY		•				
		JAN/JUL	FEB/AUG	MAR/SEP	APR/OCT	MAY/NOV	JUN/DEC
PRECIPITATION	1						
TOTALS	-	4.90 4.90	5.10 3.64	5.40 4.24	4.25 2.86	4.94 4.49	3.89 5.63
STD. DEVIAT	IONS	2.19 2.25	2.35 1.51	2.54 2.29	2.05 1.75	2.10 2.33	1.80 3.09
RUNOFF							
TOTALS		1.117 0.495	1.550 0.222	0.766 0.599	0.364 0.285	0.497 0.713	0.326
STD. DEVIAT	IONS	1.294 0.562	1.655 0.304	0.925 0.717	0.564 0.461	0.647 0.770	0.413 1.390
EVAPOTRANSPIR	ATION						
TOTALS		1.018 3.933	1.423 3.474	2.945 2.653	3.598 1.438	4.200 1.131	3.642 0.893
STD. DEVIAT	IONS	0.265 1.398	0.351 1.092	0.281 0.951	0.833 0.377	1.191 0.152	1.301 0.183
LATERAL DRAIN	AGE COLLECT	ED FROM	LAYER 2				
TOTALS		2.6383 0.2278	2.6616 0.1278	2.1160 0.5230	0.7999 0.7721	0.4166 2.1893	0.1633 3.1477
STD. DEVIAT	IONS	1.5492 0.4102	1.3948 0.3223	1.5094 0.8198	0.9652 0.8974	0.6595	0.3879 1.7064
PERCOLATION/L	EAKAGE THRO	UGH LAYE	R 4				
TOTALS		0.0000 0.0000	0.0000	$0.0000 \\ 0.0000$	0.0000 0.0000	0.0000	0.0000
STD. DEVIATI	IONS	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000

PAGE	23	OF	24

Vritten by: <u>Sowm</u>					_Reviewed by: Bas			
lient: <u>TVA</u>	Project: TVA Kingst	on Fossil Pla	nt Landfil		_ Project/Proposal	No.: GR373	31	Task No.:0
	AVERAGES OF	MONTHL	Y AVER	AGE	D DAILY HEA	DS (INCH	ES)	
DAILY AV	ERAGE HEAD ON TOP	POF LAY	er 3					
AVERAG	ES	0.0015					0.0002 0.0013	0.0001 0.0018
STD. DI		0.0009 0.0002	0.00 0.00					0.0002
******	**************************************	*****	*****	***	*****	* * * * * * * * *	****	* * * * * * * * *
			INC			CU. FEE		PERCENT
PRECIPITAT	ION	 54	 .24					100.00
RUNOFF			.103			29414		
EVAPOTRANS	PIRATION	30.	. 348	(2.7853)			
LATERAL DR FROM LAY	AINAGE COLLECTED ER 2	15.	.78332		4.15610)			9.09898
PERCOLATIO LAYER 4	N/LEAKAGE THROUGH	H 0.	00000	(0.00000)	0	.008	0.00000
AVERAGE HEA OF LAYER		0.	001 (0.000)			
CHANGE IN W	NATER STORAGE	0.	006	(1.3447)	22	.24	0.011
	**************************************	*****	*****	***	*****	* * * * * * * * *		
					(INCHES	;) (CU. FT.)	 }
PRECIP	TATION				5.13		8621.900)
RUNOFF					3.817	1	3856.245	51
DRAINA	GE COLLECTED FROM	1 LAYER	2		0.9707	7	3523.877	69
PERCOL	ATION/LEAKAGE THE		VED /	r	0.0000	0.0	0,000	~ ~
			MEK 4	t	0.0000	00	0.000	33

Written by: Sowmya Bulusu	Date: 04/11/06 Re	eviewed by: Basak Gulec	Date: 04/27/06
Client: TVA Project: TVA Kingston Foss	<u>il Plant Landfill</u> P	roject/Proposal No.: <u>GR3731</u>	Task No.: 06
MAXIMUM HEAD ON TOP OF LA	YER 3	0.040	
LOCATION OF MAXIMUM HEAD (DISTANCE FROM DRAI		0.0 FEET	
SNOW WATER		7.25 2630	00.9785
MAXIMUM VEG. SOIL WATER (VOL/VOL)	0.4567	
MINIMUM VEG. SOIL WATER (VOL/VOL)	0.2100	
	urnal of Envi	University of Kansas ronmental Engineering ch 1993, pp. 262-270.	
Vol. 11	urnal of Envi: 9, No. 2, Marc ************************************	ronmental Engineering ch 1993, pp. 262-270.	
Vol. 11	urnal of Envi: 9, No. 2, Marc ************************************	ronmental Engineering ch 1993, pp. 262-270. ************************************	
Vol. 11 ***********************************	urnal of Envi: 9, No. 2, Marc **************** ***************** STORAGE AT EN[ronmental Engineering ch 1993, pp. 262-270.	
Vol. 11 ***********************************	urnal of Envi: 9, No. 2, Marc ************************************	ronmental Engineering ch 1993, pp. 262-270.	
Vol. 11 ***********************************	urnal of Envi: 9, No. 2, Marc ************************************	ronmental Engineering ch 1993, pp. 262-270.	
Vol. 11 ***********************************	urnal of Envi: 9, No. 2, Marc ************************************	ronmental Engineering ch 1993, pp. 262-270.	