AGENDA FOR KINGSTON SCRUBBER WET GYPSUM STACKING DISPOSAL

Wednesday November 19, 2003, 10:30 am

10:30 - 11:30 Introduction and Overview of Project

Dan Smith/Larry Bowers

Group

- Review of KIF Site
 - Review of Phase 1A Drawings
- Gypsum Quantities
- Objectives
- 11:30 12:15 Lunch (on your own)
- 12:15 1:00 Discussion of Design Considerations
 - Underdrain design considerations;
 - Use of gypsum as starter dike
 - Stack drainage

1:00 - 3:00	Configurations for Stack Construction,	Group
	Including Operational Considerations	
3:00 - 4:00	Selection of Optimal Design Configuration	Group
4:00 - 4:30	Wrap Up	Group

Thursday November 20, 2003

7:30 am	Meet at TVA (exact location to be determined) & leave for Kingston Fossil Plant
9 - 9:30 am	Assemble at Parking lot near ammonia unloading facility
9:30 - 10:30	Site visit
10:30 - 11:30	Meet at EPRI Conf Room; Review of project (assumptions) with plant representatives
11:30 - 12:15	Working Lunch
12:15 -2:30	Presentation to plant representatives of engineering recommendations for conceptual
	design (basis of Phase 1 costs)
2:30 - 3:00	Wrap up

Kingston Fossil Plant

Gypsum Stack Conceptual Design Background and Objectives

	Options
	Disposal
	Gypsum
_	y of
	- Suh
	lant
	Fossil P
	Kingston

		VOLUME (million cy)	PREF COSTS ⁶ (10005)	ISUES		ULANDARI LACE	
IA	 New facility located in greenfield site at the peninsula area 	3:1 Slope: 9.3 4:1 slope: 7.5	\$9,400 ²	 Karst geology not impediment to permit⁴. 	 Adds additional disposal capacity to plant. 	 Unknown extent of soft soil layer may reduce stack height and volume; foundation drain beneath liner may be required. 	
IB	 New facility located in greenfield site at the peninsula area – reduced footprint 	3:1 Slope: 7.0 4:1 slope: Not computed	\$7,400 ²	 Karst geology not impediment to permit⁴. 	 Adds additional disposal capacity to plant Smaller footprint may offset disadvantages associated with underlying soft soils. 	 Unknown extent of soft soil layer may reduce stack height and volume; foundation drain beneath liner may be required. Smaller footprint sacrifices about 30% volume compared with 1A 	····
2A	Gypsum stack segregated from ash stack; gypsum co- located with ash disposal in existing ash pond - conversion to dry ash	3:1 Slope: 12.1 4:1 slope: 9.8	\$25,000 ^{3,5}	••Already has permit for ash disposal.	 Site is favorable for wet stacking. Disposal volume is greater than either Option 1A or 1B. Smaller footprint does not sacrifice significant volume compared with 1A. 	 Does not add disposal capacity to plant. Additional costs required for dry stacking ash. 	
2B	Gypsum stack and ash stack combined; gypsum co-located with ash disposal in existing ash pond – conversion to dry ash	3:1 Slope: 18.7 4:1 slope: 15.2	\$23,000 ^{3,5}	 Already has permit for ash disposal. 	 Offers the largest potential for disposal volume. Site is favorable for wet stacking. 	 Does not add disposal capacity to plant. Additional costs required for dry stacking ash. 	
3A	Gypsum stack segregated from ash stack; gypsum co- located with ash disposal in existing ash pond – continue wet ash stacking	3:1 Slope: 12.1 4:1 slope: 9.8	\$25,000 ^{3,5}	 Already has permit for ash disposal. 	 Site is favorable for wet stacking. Disposal volume is greater than either Option 1A or 1B. 	 Does not add disposal capacity to plant. 	
3B	Gypsum stack and ash stack combined; gypsum co-located with ash disposal in existing ash pond – continue wet ash stacking	3:1 Slope: 18.7 4:1 slope: 15.2	\$23,000 ^{3,5}	••Already has permit for ash disposal.	 Offers the largest potential for disposal volume. Site is favorable for wet stacking. 	 Does not add disposal capacity to plant. 	
Footn(1. 3.	otes: Volume is measured in cu Costs for Options 1A and Costs for Options 2A,2B,	bic yards. Gypsum J 1B do not include a 3A.3B include costs	production estir foundation drai for a 4 foot thi	mates are measured in tor in beneath the facility line ck underdrain installed he	1s. A density of 1 ton/cy (approx 75 lb/cf) is assume areast the ownsum (installed at CUE). This reveese	d for the study.	

Volume is measured in cubic yards. Gypsum production estimates are measured in tons. A density of 1 ton/cy (approx 75 lb/cf) is assumed for the study. Costs for Options 1A and 1B do not include a foundation drain beneath the facility liner. Costs for Options 2A,2B, 3A,3B include costs for a 4 foot thick underdrain installed beneath the gypsum (installed at CUF). This represents a significant cost difference (about 20% of the total). Detailed design can address the appropriate size of the underdrain.

4 v v

Additional costs for addressing karst issues are unknown. Due to similarity between Options 2 and 3, costs developed for Option 2 are essentially the same for Option 3. Costs don't include drainage features built into the stack as it develops. Closure costs are also excluded.

Objectives

- disposal of wet and dry gypsum in concert Develop conceptual configurations for with ash disposal (Option 3B)
- Discuss pros & cons of each configuration
- Reach consensus on a concept that is both feasible and cost effective
- (advantages & disadvantages vs wet Discuss dry gypsum disposal for KIF disposal)

Objectives (Continued)

- Scope of work for study:
- Develop disposal concepts
- Develop cost basis for disposal
- disposal facility only, not evaluate process Use constraints set by TVA (i.e., develop systems (wet vs dry).

	OPTION 3B-COMBINED	GYPSUM/ASH CONCEPTS	Concept 1 – Complete segragation	– Advantages	 Fluctuations of gypsum don't affect operations 	 Constant rate of ash generation allows better 	planning	 Leachate streams can be segregated 	- Disadvantages	 Fixed footprint for ash disposal does not allow 	flexibility for additional ash disposal, if gypsum rate	is lower than projected
--	---------------------------	----------------------------	----------------------------------	--------------	--	---	----------	--	-----------------	---	---	-------------------------

GYPSUM/ASH CONCEPTS OPTION 3B-COMBINED

- Concept 2 Combined gypsum/ash disposal
- Advantages
- Maximizes use of area
- Perimeter dikes are wet cast gypsum and are built during operations
- Design can utilize outer dike (wet cast) and inner dike (can be constructed using dry ash).
- Possibility of reducing footprint of drainage system beneath stack (must be investigated further)

GYPSUM/ASH CONCEPTS OPTION 3B-COMBINED

- Concept 2 Combined gypsum/ash disposal
- Disadvantages
- Configuration is dependent on having enough gypsum to keep up with ash disposal
- Greater dike length

CO-DISPOSAL OF WET (KIF) & DRY (BRF) GYPSUM

- Issues
- Exterior dikes should be wet-cast
- Truck access
- Inner dike can be constructed with dry gypsum
- Dry gypsum can be dumped on inner dike road and pushed into pond

NEED FOR DRAINAGE AT BASE

- Underdrain for Concept 1 Required? Revisit.
- Concept 1 Drain materials should be Leachate streams can be segregated compatible with leachate streams.

NEED FOR DRAINAGE AT **BASE** (Continued)

- drainage system within the outer dike can outer dikes must be properly installed to Concept 2 – Strength (stability) derived possibly be minimized. Slope drains in from wet-cast outer shell. Footprint of provide adequate stability.
 - Clogging needs to be investigated for drainage at base of stack for both concepts.

NEED FOR DRAINAGE AT **BASE** (Continued)

- Seismic stability analysis required for solid waste permit (Both concepts)
- Inspections and performance monitoring is necessary to ensure success
- measurements are relatively simple to measurements for data collection to monitor performance. Performance Use of piezometers and outlet flow perform.

CONSENSUS

- base, in lieu of earthen dikes (saves 26% Wet-cast gypsum dikes are feasible at of capital costs)
- desirable. Wet-cast gypsum dikes perform For wet ash and gypsum disposal, mixing ash and gypsum during sluicing is not much better than mixed gypsum/ash.
- Ash and gypsum can be mixed as described for Concept 2.

CONSENSUS

- Mixing dry gypsum and dry fly ash is ok
- Once mixed, neither material is marketable
- Materials will consolidate differently (gypsum much faster than ash). This is a design consideration
- Addition of gypsum to pond disposal may or may not increase free water volume requirement. Needs to be investigated further.

CONSENSUS

- Addition of gypsum to pond disposal may requirement. Needs to be investigated or may not increase free water volume further.
- Ash pond location is viable, pending confirmation of stability parameters
- disposal and combined ash-gypsum need Clogging tests for both gypsum-only to be performed

WET VS DRY GYPSUM DISPOSAL

TOPIC	WET	DRY
Dewatering	None	Required (belt filter)
Transport	Hydraulic (low operating cost)	Conveyor or truck plus loading and spreading (higher cost)
Surface water runoff	Surge pond part of facility	Need surge pond
Dusting	Minimal, but depends on water content of gypsum	Need dedicated water truck
Earthquake	Significant design issue, due to higher phreatic surface	Less of concern
Free water volume	Stormwater/process water regulated by NPDES and solid waste permit	Stormwater regulated by solid waste permit
Density	Lower compared to dry gypsum disposal	Higher, when compacted in thin lifts (lower when dumped
Harvesting	Requires 2 ponds	Easily performed

TVA-00003699

TVA-00003701

TVA-00003702

