Draft – For Internal Discussion Only

#### TVA Kingston Fossil Plant



|  | 803    | The second       |       |
|--|--------|------------------|-------|
|  | <br>-  |                  |       |
|  |        | NULLER<br>NULLER |       |
|  | <br>   |                  |       |
|  | 807220 |                  |       |
|  |        |                  | CER 1 |

| Need for Interior Drainage | <ul> <li>Blanket drain is recommended beneath initial soil</li> </ul> | <ul> <li>Iikely needed to address stability issues</li> <li>In subsequent lifts, outer gypsum dikes are expected to be permeable providing adequate drainage (note:</li> </ul> | as a safeguard, lateral drainage pipes will also be<br>integrated into gypsum dikes) | Central Urainage Corridor is recommended for the following reasons: | <ul> <li>Provides relier to hydrostatic pressure on clay layer<br/>(minimizing the risk of blowout and activation of karst)</li> </ul> | <ul> <li>Eliminates need for second stormwater pond by<br/>providing a conduit for Phase II decant</li> </ul> | <ul> <li>Will likely require a sump/lift station at outlet</li> </ul> | GeoSyntec Consultants |
|----------------------------|-----------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------|---------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------|-----------------------|
|                            |                                                                       |                                                                                                                                                                                |                                                                                      |                                                                     |                                                                                                                                        |                                                                                                               |                                                                       |                       |



TVA-00003598

### **Gypsum Properties**

- Based on Cumberland Fossil Plant Gypsum and Bull Run calculations
- I Three groups of Gypsum properties:
- Cast (γ = 120 pcf; φ' = 43°)
- Sedimented ( $\gamma = 116 \text{ pcf}; \phi' = 40^{\circ}$ )
- Dry placed ( $\gamma$  = 107 pcf;  $\phi$ ' = 35°)
- Sedimented Gypsum will be modeled as undrained at end of construction

| <ul> <li>Draft - For Internal Discussion On Natural/Alluvial Clay Soil</li> <li>30 to 50 ft of natural soil above bedrock</li> <li>Primarily silty clay (SPT N~10)</li> <li>5 to 15 ft of soft sandy to sandy/clayey silt residuum exists above the bedrock with SPT blowcount equivalent to WOH to 2 bpf</li> <li>Triaxial test data available?</li> <li>Water table at 741' MSL to 781' MSL; increase toward project north</li> </ul> | GEO SVITED CONSTITUANTS |
|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------|
|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------|

| N N N N N N N N N N N N N N N N N N N |
|---------------------------------------|
|---------------------------------------|

Draft – For Internal Discussion Only

## Critical Cross Sections

- Cross-sections cut at maximum grade (average max grade of 1V:3.3H) through maximum height of stack
  - Similar to Parsons critical cross-section A-A'
- including information from borings B-22, NB-45, NB-47, NB-59, NB-65, and NB-73 (etc.)
- Similar to Parsons cross-section B-B' through Borings B-12, B-13, NB-39 and NB-44 (etc.)



Draft – For Internal Discussion Only

Basis for Size (re-work of Parsons calculation)

- Parsons assumed 385,000 ton/yr production (based on 2.5# coal
- Using a design coal of 3.2#, assumed production becomes 492,800 ton/yr
- Assume operation as a wet pond for first 2 yrs; base capacity on full by-pass
  - Assume 67 lb/cf density for settled gypsum (0.90ton/cy)
    - 547,500 cy/yr of settled gypsum
- 1,095,100 cy for 2 years = 680 ac-ft
- Approximate interior footprint of Phase I is 45 ac
- Approximate depth required (not incl. freeboard or 5 ft deep settling zone) = 680 ac-ft / 45 ac = 15 ft

GEOSYNTEC CONSULTANTS,

TVA-00003604



TVA-00003605

#### [Note]

filling operations and transition to Rim Ditch {Developing a series of slides to illustrate operation}



GEOSYNTEC CONSULTANTS





Draft – For Internal Discussion Only

# Surface Water Pond Sizing (approx.)

Purpose

- Takes run-off from design storm event
- Takes decant from gypsum slurry operations

Stormwater (sizing)

- Estimated runoff:
- 100 yr, 24 hr storm gives 5.25 in over 91 acres
  - 6 acres at 7 in
- Needed capacity = 44 ac-ft.

Decant

- Assume 5# coal; gives 1190 gpm flow (from Parsons, seems reasonable if approximately a 30% slurry)
  - Requires approx. 5.25 ac-ft

Min Capacity

- 44 + 5.25 = 50 ac-ft
- For a berm El of 768' and base EL of 754' (14 ft)
- With 3 ft freeboard, gives available capacity of 6 ac x 11 ft = 66 ac-ft

