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Ill-posed Inverse Problems

Input → [Model(p)] → ‘Observation’

I From indirect observations infer model parameters.

I Models are linear/nonlinear in differential/integral form.

I Impact of noise on solution existence, uniqueness, stability.

I Applied in geosciences, biomedical imaging, industrial NDT.

I Bayesian inference: Find the posterior density of the unknown
conditioned on the observations. MC Simulation/Integration
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Integral equations of the first kind

I Classical ill-posed problem: Fredholm integral equation of the
first kind. (Books by P.C. Hansen, G.M. Wing & J. D. Zahrt,
C.W. Groetsch ,...)

I In continuum,

b(t) =

∫ 1

0
ds A(s, t)x(s) + ε,

with integral operator compact.

I In discrete, approximated on a uniform 1d grid of resolution
n−1 → 0

b = Ax + ε.

A ∈ <n×n dense, ill-conditioned, of smooth structure.
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Main phases of methodology

I Initial hd problem

x∗ = arg min
x

{
‖Ax − b‖2

}
I Approximate unknown in ld subspace

x ≈ Φr

I Use simulation to estimate G = Φ′A′AΦ and c = Φ′A′b in

ĉ = Ĝ r + simul. error + approx. error + ε

I Final ld regularization problem (MAP – Gaussian model
assumption)

r∗ = arg min
r

{
‖Ĝ r − ĉ‖2

Σ−1 + ‖r − r̄‖2
Σ−1

r

}
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What to expect: Probing the solution error

Figure: The approximation (e1), simulation (e2) and numerical (e3) errors
affecting the solution. Π is the projection mapping from <n to S , and
r∗(G , c) is the calculated and r̂(Ĝ , ĉ) the simulation-based ld solution.
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The target of simulation

I Notice that the elements of the symmetric G and the vector c
are 3d sums

Gk,w = φ′kA
′Aφw =

n∑
i=1

( n∑
j=1

Ai ,jΦj ,k

)( n∑
j̄=1

Ai ,̄jΦj̄ ,w

)
,

ck = φ′kA
′b =

n∑
i=1

( n∑
j=1

Ai ,jΦj ,k

)
bi

needing n3 and n2 additions respectively. If n ∼ O(109) ???

I Proposed simulation-based algorithm has numerical
complexity independent of n!
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Simulation instead of Calculation

I Suppose Ĝ and ĉ are estimators of G and c respectively,
simulated element-by-element independently,

I Let vGkw
= var(Ĝkw ) and vck = var(ĉk) sample-based, then

Σ(r) = diag(vG r2) + diag(vc)

I For large sample numbers, CLT implies the error Ĝ r∗ − ĉ
approaches zero mean Gaussian with covariance Σ(r) > 0.

I Case is suitable for Bayesian inference under Gaussian model
and data uncertainty.
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Ill-posed integral eqs. have smooth kernels

Implication: Matrix A has smooth structure.

 

 

200 400 600 800 1000

100

200

300

400

500

600

700

800

900

1000

0 2 4 6 8

x 10−4

 

 

200 400 600 800 1000

100

200

300

400

500

600

700

800

900

1000

2 4 6 8 10 12 14 16

x 10−3

 

 

200 400 600 800 1000

100

200

300

400

500

600

700

800

900

1000

−2 −1.5 −1 −0.5

x 10−4

 

 

200 400 600 800 1000

100

200

300

400

500

600

700

800

900

1000

2 4 6 8 10 12 14

x 10−4

Figure: The kernels of some classical Fredholm integral eqs. of the first
kind: heat, gravity, 2nd derivative and the Fox-Goodwin equation,
discretized on a grid of dimension 1000.
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Sampling with Monte Carlo

I Instead of computing

Gk,w =
n∑

i=1

( n∑
j=1

Ai ,jΦj ,k

)( n∑
j̄=1

Ai ,̄jΦj̄ ,w

)
,

estimate

Ĝk,w =
1

T

T∑
t=1

Ait ,jtAit ,̄jt
Φjt ,kΦj̄t ,w

n−1
, k = 1, . . . , s w = k , . . . , s

and the variance statistic vGkw
, where (it , jt , j̄t) ∈ N3 are

uniformly sampled indices from [1, . . . , n]3.

I Repeat as appropriate for ĉk , k = 1, . . . , s.
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Variance Reduction with Importance Sampling

I Instead design an optimal importance sampling distribution
customized for Gk,w , or ck ,

I The optimal ξ∗ : <n ×<n ×<n → <+ is hd !

ξ∗Gk,w
(i , j , j̄) ∝ (Φj ,k‖Aj‖1)(Φj̄ ,w‖Aj̄‖1)

Ai ,jAi ,̄j

‖Aj‖1‖Aj̄‖1

where Aj is the j ’th column of A and ‖Aj‖1 =
∑n

i=1 |Ai ,j |.
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Variance Reduction with Importance Sampling

I How to sample a 3D distribution:

ξ∗(i , j , j̄) = ξ(̄j |i , j)ξ(i , j) = ξ(̄j |i , j)ξ(j |i)ξ(i) ∝ Gw ,k(i , j , j̄)

where ξ(i , j) =
∑n

j̄=1 ξ(i , j , j̄), and ξ(i) =
∑n

j=1 ξ(i , j).

I Evaluate Gw ,k(i , j , j̄) on a coarse grid in [1, . . . , n]3,

I Approximate Gw ,k over ld polynomial bases,

I Compute approximate sums analytically,

I Scale to make sampling distributions.
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IS distribution approximation in pictures.
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Figure: Top row an approximation of ξ∗ in dimension 8, below at 20.
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MC Vs IS scheme comparison: estimators.

10 samples 100 samples 1000 samples

Figure: Estimators of G = Φ′A′AΦ with n = 106, s = 50, and Φ
piecewise constant basis functions. Top row results with IS and below
MC. A is derived from the second derivative kernel.
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MC Vs IS scheme comparison: estimator variances

10 samples 100 samples 1000 samples

Figure: Variances of the elements of G = Φ′A′AΦ with n = 106, s = 50,
and Φ piecewise constant basis functions. Top row results with IS and
below MC. A is derived from the second derivative kernel.
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One test example: Inverse heat conduction

Starting from the familiar elliptic pde, for u(y , t) the temperature
at point y at time t.

∂u

∂t
= α

∂2u

∂y
, y ≥ 0, t ≥ 0

u(y , 0) = 0, u(0, t) = x(t)

using the Green’s function method

b(t) =

∫ T

0
dτA(τ, t)x(τ),

measured at point ym away from the source y = 0, where

A(τ, t) =


ym/α√

4π(τ−t)3
exp
(
− (ym/α)2

4(τ−t)

)
if 0 ≤ t < τ ≤ T ,

0 otherwise.
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One test example: Solution plot
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Figure: Results with 50 and 100 piecewise constant basis function. Large
problem dimension is 109. The optimal ξ∗ was approximated on a linear
basis. Results with 5× 104 samples per simulated entry, and zero
additive noise!
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One test example: Inverse heat conduction

Figure: Simulation error metric: Trace of the covariance of Ĝ and ĉ .
Results with different number of samples, matrix partitions and
polynomial approximation of ξ∗. Tests with inverse heat problem at
n = 109 and s = 50 piecewise constant Φ. MC, ξ̂ in pwc basis, and ξ̂ in
pwl.
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Conclusion

I Simulation timings: 50-80 µs per sample for pwc - pwq ξ̂.

I Method robust for ‘applied’ ill-posed inverse problems

I Simulation scheme is suitable for multi-thread or parallel
processing

I Can be utilized in the context of model reduction

I More analysis, error bounds and results at
web.mit.edu/dimitrib/www/publ.html

I Thank you .- Questions?
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