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lll-posed Inverse Problems

Input — [Model(p)] — ‘Observation'’

v

From indirect observations infer model parameters.

v

Models are linear/nonlinear in differential /integral form.

v

Impact of noise on solution existence, uniqueness, stability.

v

Applied in geosciences, biomedical imaging, industrial NDT.

v

Bayesian inference: Find the posterior density of the unknown
conditioned on the observations. MC Simulation/Integration
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Integral equations of the first kind

» Classical ill-posed problem: Fredholm integral equation of the
first kind. (Books by P.C. Hansen, G.M. Wing & J. D. Zahrt,
C.W. Groetsch ,...)

» |n continuum,

b(t) = /0 ds A(s, )x(s) +

with integral operator compact.

> In discrete, approximated on a uniform 1d grid of resolution
n1 =0
b= Ax+e.

A € R dense, ill-conditioned, of smooth structure.
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Main phases of methodology
> Initial hd problem
x* = arg mXin{HAX - sz}
» Approximate unknown in Id subspace
x ~ ®r
» Use simulation to estimate G = ®’A’A® and ¢ = ®’A’b in
& =G r+simul. error + approx. error 4+ €

» Final Id regularization problem (MAP — Gaussian model
assumption)

r* = arg mrin{||ér — 3‘”%4 +|Ir — 7||2271}
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What to expect: Probing the solution error
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Figure: The approximation (e1), simulation (e2) and numerical (e3) errors
affecting the solution. 1 is the projection mapping from R" to S, and
r*(G, c) is the calculated and ?(G, ¢) the simulation-based |d solution.

6

19



The target of simulation

> Notice that the elements of the symmetric G and the vector ¢
are 3d sums

Grw = ¢ A Ay, = Z(Z Aij®;, k) (Z Aii®s, W)

i=1 j=1

k= @A = Zn:(zn: Ai,jq’j,k) b;

i=1 j=1
needing n3 and n? additions respectively. If n ~ O(10°) 777

> Proposed simulation-based algorithm has numerical
complexity independent of n!
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Simulation instead of Calculation

» Suppose G and ¢ are estimators of G and ¢ respectively,
simulated element-by-element independently,

> Let vg,, = Var(@kw) and v, = var(¢&) sample-based, then
Y (r) = diag(vg r?) + diag(vc)

> For large sample numbers, CLT implies the error Gre—¢
approaches zero mean Gaussian with covariance X(r) > 0.

» Case is suitable for Bayesian inference under Gaussian model
and data uncertainty.
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lll-posed integral egs. have smooth kernels

Implication: Matrix A has smooth structure.

\

Figure: The kernels of some classical Fredholm integral egs. of the first
kind: heat, gravity, 2nd derivative and the Fox-Goodwin equation,
discretized on a grid of dimension 1000.
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Sampling with Monte Carlo

> Instead of computing
Z(Z Aij®j, k) (Z Aij®s, W)
i=1 j=1
estimate

T
-~ A’taJtAlt _]td)Jtykq)_]t w
Gk,w:7z 1 ,k:].,...,s w =

t=1

and the variance statistic vg, , where (i, ji, jr) € N3 are

uniformly sampled indices from [1,..., n]3.

» Repeat as appropriate for ¢, k =1,...,s.
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Variance Reduction with Importance Sampling

> Instead design an optimal importance sampling distribution
customized for Gy, or c,

> The optimal £*: R” x R" x " — RNy is hd !
et (id,7) o (D) kA ) (@7 A1) il
G il AT (s 15 IO A

where A; is the j'th column of A and ||Aj|l1 = > 1 |Aijl-
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Variance Reduction with Importance Sampling

» How to sample a 3D distribution:
(.4, 1) = €UlLNEGLT) = €U NEGINEW) o< Gu k(i fisd)
Where 6(’7./) = Zf:l f(“.fa])v and f(l) = 2_7:1 5(’7./)

3

Evaluate G, (i, /) on a coarse grid in [1,...,n]3,

v

v

Approximate G,, x over Id polynomial bases,

» Compute approximate sums analytically,

v

Scale to make sampling distributions.
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IS distribution approximation in pictures.

Figure: Top row an approximation of £* in dimension 8, below at 20.
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MC Vs IS scheme comparison: estimators.

10 samples 100 samples 1000 samples
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Figure: Estimators of G = ®’A’A® with n = 108, s = 50, and ®
piecewise constant basis functions. Top row results with IS and below
MC. A is derived from the second derivative kernel.
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MC Vs IS scheme comparison: estimator variances

10 samples 100 samples 1000 samples
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Figure: Variances of the elements of G = ®’A’Ad with n = 10°, s = 50,
and ® piecewise constant basis functions. Top row results with IS and
below MC. A is derived from the second derivative kernel.
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One test example: Inverse heat conduction

Starting from the familiar elliptic pde, for u(y, t) the temperature
at point y at time t.

Ou d%u

— = a— > >
ot I} 3y’ y>0,t>0
u(y,0) =0, u(0,t)=x(t)

using the Green's function method

T
b(t) :/0 drA(T, t)x(1),

measured at point y,,, away from the source y = 0, where

Ym/ o _(}’m/a)2 H < <
A(r,t) = mexp( ) fost<r<T,

0 otherwise.
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One test example: Solution plot

nnnnn

Figure: Results with 50 and 100 piecewise constant basis function. Large
problem dimension is 10°. The optimal £* was approximated on a linear
basis. Results with 5 x 10* samples per simulated entry, and zero

additive noise!

‘‘‘‘‘
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One test example: Inverse heat conduction
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Figure: Simulation error metric: Trace of the covariance of G and é.
Results with different number of samples, matrix partitions and
polynomial approximation of £*. Tests with inverse heat problem at
n=10° and s = 50 piecewise constant . MC, £ in pwc basis, and {A in
pwl.
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Conclusion

» Simulation timings: 50-80 us per sample for pwc - pwq é
» Method robust for ‘applied’ ill-posed inverse problems

» Simulation scheme is suitable for multi-thread or parallel
processing

» Can be utilized in the context of model reduction

> More analysis, error bounds and results at
web.mit.edu/dimitrib/www /publ.html

» Thank you .- Questions?
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