Skip to Main Content U.S. Department of Energy
Fundamental Science Directorate
Page 10 of 271

Atmospheric Sciences & Global Change Division
Research Highlights

February 2013

Extraterrestrial Effects on Climate? Not So Much.

The influence of cosmic rays on cloud droplet formation explored in a global climate model

Above the Clouds
The physical mechanisms by which cosmic rays could influence the climate remain elusive. Enlarge Image

Results: A research team from the State University of New York-Albany and Pacific Northwest National Laboratory used a global atmospheric model to estimate that charged ions produced by cosmic rays in the atmosphere increase new atmospheric particles formed by a factor of ten when compared with particles formed by a corresponding neutral, non-charged, mechanism. Though cosmic rays ionization is important in forming aerosol particles and altering the make-up of clouds, the team determined that the changes during the solar cycle are insufficient to produce a measurable change in the Earth's energy balance.

Why It Matters: It's not the stuff of Buck Rogers. Scientists want to know: do cosmic rays alter clouds and climate? Some studies show a connection between measured variations in cosmic radiation, such as solar flares coming from the sun's surface, and climate, but establishing a physical mechanism remains elusive. One proposed mechanism is a chain of events that form new particles which affect clouds. In this scenario, cosmic radiation influences the concentration of ions in the atmosphere, which provokes new particles forming from the ions. Then, as the particles collide and condense on other gasses in the atmosphere, the new particles grow until they are large enough to form cloud droplets. Finally, the cloud droplets' surface area is thus altered affecting the energy balance of the planet. Although all of these mechanisms are plausible, the scientists in this study tackled a key question: whether the variations during solar cycles are large enough to produce a measurable influence on climate. Their verdict: not so much.

Methods: For this study, researchers from SUNY-Albany and PNNL added an ion-mediated nucleation mechanism to a global climate model that already represented other mechanisms for new particle formation. In the model, they first compared the total nucleation rates, cloud droplet numbers and the Earth's energy balance calculated with and without the presence of ionization. Then, they simulated variations in those quantities using measured changes in cosmic rays during different phases of the eleven-year solar cycle. The average change in the global energy balance between the solar minimum and solar maximum was smaller than 0.06 Wm-2. This is more than ten times smaller than changes due to increases in carbon dioxide or aerosol particles resulting from human activity over the last one hundred years. 

What's Next? The estimate of the solar cycle ionization effect on the Earth's energy balance is uncertain because of random variations in the simulated clouds. To isolate the cosmic signal from the noise of random cloud variations, the group will repeat the simulations but nudge the simulated winds toward the same winds in all simulations. Further research is also needed to reduce uncertainties in the model representation of key aerosol particle and aerosol-cloud interaction processes.

Acknowledgments:

Sponsors: This research was funded by the National Aeronautics and Space Administration's Living with a Star program and by the U.S. Department of Energy's (DOE) Office of Science, Office of Biological and Environmental Research Earth System Modeling Program,  and by the National Science Foundation Atmospheric Chemistry Program and Decadal and Regional Climate Prediction using Earth System Models (EaSM) program.

Research Team: Fanqqun Yu, Gan Luo and Xiaoyan Ma at SUNY-Albany; and Xiaohong Liu, Richard Easter and Steven Ghan at PNNL.

Research Area: Climate & Earth Systems Science

Reference: Yu F, G Luo, X Liu, RC. Easter, X Ma, and SJ Ghan. 2012. "Indirect Radiative Forcing by Ion-mediated Nucleation of Aerosol." Atmospheric Chemistry and Physics 12, 11451-11463. DOI:10.5194/acp-12-11451-2012.


Page 10 of 271

Fundamental & Computational Sciences

Research Areas

Additional Information

Research Highlights Home

Share

Print this page (?)

YouTube Facebook Flickr TwitThis LinkedIn

Ions and particles and rays

Cosmic rays are particles that zoom toward the Earth from outside Earth's atmosphere. When these high-energy particles contact our atmosphere, what kind of effects do they have? Scientists in this study are looking for ways they may affect clouds and the particles that already exist to create clouds.

Contacts