Physical Database Tuning with Interaction-Aware Index Selection

Karl Schnaitter

UC Santa Cruz School of Engineering Advisor: Neoklis Polyzotis *October 20, 2009*

Physical Database Tuning

SELECT b **FROM** R **WHERE** a = 10

Index Selection

- Indexes can reduce query execution time by orders of magnitude
 - Unfortunately, the best indexes are hard to choose
- The *index selection problem*:
 - Given a query workload
 - Choose indexes that improve workload performance
 - May have a limit on disk space

This Talk

- Will discuss two topics in index selection
 - 1. Understanding index "interactions"
 - Work published in the VLDB 2009 conference
 K. Schnaitter, N. Polyzotis, L. Getoor, "Index Interactions in Physical Design Tuning: Modeling, Analysis, and Applications"
 - More details will be in the poster session
 - 2. On-line index management
 - A variant on the index selection problem
 - We will see how index interactions play a role

This Talk

- Will discuss two topics in index selection
 - 1. Understanding index "interactions"
 - Work published in the VLDB 2009 conference

K. Schnaitter, N. Polyzotis, L. Getoor, "Index Interactions in Physical Design Tuning: Modeling, Analysis, and Applications"

- More details will be in the poster session
- 2. On-line index management
 - A variant on the index selection problem
 - We will see how index interactions play a role

University of California, Santa Cruz

<u>Sa</u>

- Let **S** be a set of indexes relevant to a query \mathbf{Q}
- $cost(X) = cost of \mathbf{Q}$ if only $X \subseteq \mathbf{S}$ is available
- $benefit(Y,X) = cost(X) cost(Y \cup X)$

- Let **S** be a set of indexes relevant to a query \mathbf{Q}
- $cost(X) = cost of \mathbf{Q}$ if only $X \subseteq \mathbf{S}$ is available
- $benefit(Y,X) = cost(X) cost(Y \cup X)$

- Let **S** be a set of indexes relevant to a query \mathbf{Q}
- $cost(X) = cost of \mathbf{Q}$ if only $X \subseteq \mathbf{S}$ is available
- $benefit(Y,X) = cost(X) cost(Y \cup X)$

University of California, Santa Cruz

University of California, Santa Cruz

- Formally, we say *a interacts with b* if: $\exists X \subseteq \mathbf{S}$ such that $benefit(\{a\}, X) \neq benefit(\{a\}, X \cup \{b\})$
- This is a symmetric binary relation on indexes
 - Yields an undirected graph

The benefit of any $X \subseteq C_i$ does not depend on $\mathbf{S} - C_i$

Discovering Index Interactions

- We would like to know which edges exist
 - I.e., which pairs of indexes interact?
 - This is very hard in general
- Our algorithm
 - We impose some abstract assumptions on the use of indexes in query plans
 - These assumptions allow an efficient algorithm to find index interactions
 - See our poster for more information

This Talk

- Will discuss two topics in index selection
 - 1. Understanding index "interactions"
 - Work published in the VLDB 2009 conference
 K. Schnaitter, N. Polyzotis, L. Getoor, "Index Interactions in Physical Design Tuning: Modeling, Analysis, and Applications"
 - More details will be in the poster session
 - 2. On-line index management
 - A variant on the index selection problem
 - We will see how index interactions play a role

On-line Index Selection

- Recall the *index selection* problem:
 - Given a query workload
 - Choose indexes that improve workload performance
- This approach fails when the query workload is unknown or changing significantly over time
- Alternative approach: *on-line index selection*
 - Given continuous stream of queries
 - Choose indexes automatically to improve throughput

On-line Index Selection

On-line Index Selection

University of California, Santa Cruz

Summary

- Index selection is a challenging problem for database administrators
- On-line index selection is a promising approach
 No advance knowledge of workload required
 - Can adapt to an evolving workload
- Knowledge of index interactions allows on-line tuning to be more intelligent at a large scale

Thank You

University of California, Santa Cruz