
SNS: A Simple Model for Understanding Optimal
Hard Real-Time Multiprocessor Scheduling

Greg Levin, Caitlin Sadowski, Ian Pye, Scott Brandt
Computer Science Department

University of California, Santa Cruz
{glevin, supertri, ipye, sbrandt}@soe.ucsc.edu

Abstract

We consider the problem of optimal real-time schedul-
ing of periodic tasks for multiprocessors. A number of
recent papers have used the notion of fluid scheduling to
guarantee optimality and improve performance. In this pa-
per, we examine exactly how fluid scheduling techniques
overcome inherent problems faced by greedy scheduling
algorithms such as EDF. Based on these foundations, we
describe a simple and clear optimal scheduling algorithm
which serves as a least common ancestor to other recent al-
gorithms. We provide a survey of the various fluid schedul-
ing algorithms in this novel context.

1. Introduction
Multiprocessors are becoming commonplace as more

and more computers, even desktops, have multiple cores.
Many of the implications of a multiprocessor system are
still not well understood, and multiprocessor scheduling is
one of them. Multiprocessor scheduling is particularly dif-
ficult in the presence of real-time constraints. Most pre-
vious real-time multiprocessor scheduling algorithms (e.g.,
[5,14]) use partitioned scheduling: tasks are statically allo-
cated to processors, then local schedulers on each proces-
sor are responsible for ordering the tasks assigned to that
processor. Partitioned approaches are easy to implement,
as they reduce multiprocessor scheduling to uniprocessor
scheduling. However, they are not optimal, in the sense that
they can fail to schedule theoretically feasible task sets1.

In 1996, Baruah [4] introduced the pfair algorithm, the
first optimal multiprocessor scheduler for periodic tasks.
By migrating tasks between processors, pfair can success-
fully schedule any task set whose utilization does not ex-
ceed processor capacity. More recently, a number of papers

1In fact, examples may be constructed where partitioned schedulers
fail to successfully schedule tasks sets that only require (50 + ε)% of
processor capacity [3].

have exploited the notion of fluid scheduling to achieve op-
timality while greatly reducing the number of required con-
text switches and process migrations [3] [6]. Subsequent
papers have expanded on these basic models. All these al-
gorithms, while superficially different, have achieved opti-
mality by expanding on a single core idea. A better under-
standing of this common framework and why it succeeds
will aid in the ability to understand, compare, and contrast
these algorithms; to consolidate their insights; and point
towards new avenues of study.

The contributions of this papers are as follows:

• We examine the difficulties of optimal hard real-time
multiprocessor scheduling, and discuss the feasibility
of a truly optimal scheduler

• We give a simple set of sufficient conditions for opti-
mal scheduling and show how the implied scheduling
model is actually the foundation of recent scheduling
algorithms.

• We provide “Stack-and-Slice” (SNS), the simplest op-
timal scheduler to date2, with reasonably good migra-
tion bounds and almost no computational overhead.

• We survey and explain recent scheduling algorithms
relative to our new framework.

In Section 2 we formalize the problem under considera-
tion. In Section 3, we will consider greedy scheduling algo-
rithms, introduce the notion of dual schedules, and examine
why greedy algorithms tend to fail in a multiprocessor en-
vironment. In Section 4, we will see how approximating
fluid schedules can overcome these difficulties, and prove
simple sufficient conditions for optimality. We use these
conditions to introduce our SNS algorithm. In Section 5,
we examine recent algorithms in more detail, and compare
their strengths and weaknesses. In Section 6, we suggest
several avenues of future study.

2SNS is similar to EKG [3]

Figure 1. Three tasks, each with a rate of 2/3, can run
successfully on two processors with migration.

2. Background

We assume a multiprocessor system with M identical
CPUs. Given a collection of periodic tasks (processes), the
basic scheduling problem is to determine which task to run
on each processor at any given instant, with the restriction
that no task can run on multiple CPUs at the same time.
Each task needs a certain amount of CPU time to complete
its workload within each period. A feasible schedule is one
where all such time constraints are met.

Not all feasible schedules are equally good; scheduling
algorithms must also try to minimize the number of con-
text switches (preemptions) and process migrations. Both
these operations incur overheads. Although highly system-
dependent, task migrations generally take longer than con-
text switches, sometimes prohibitively longer, so that par-
titioned schemes are preferred in practice. Ironically, all
algorithms we consider make the simplifying assumption
that both context switches and migrations are “free,” even
though they strive to minimize these operations. To bet-
ter explore the same theoretical framework as these algo-
rithms, we will adopt the same convention, although results
may not be achievable on a real system.

Given this assumption of no overhead, were feasibility
our only goal, it would not matter which processor was
hosting a given task, only which tasks were running at a
given time. This assumption can lead to clearer schedul-
ing descriptions (e.g., Figures 1, 3, 4, 5 in this paper). In
fact, some recent algorithms give no explicit prescription
for how to assign tasks to processors [6], [11].

We will assume a fixed workload of N periodic tasks,
denoted T1, . . . , TN . Task Ti has period pi, and workload
(or required “on” time) ci within each period. We refer to a
task’s single period workload as a job. A task’s release time
(the time when it becomes schedulable) coincides with the
deadline of the previous period. A task’s rate, or utilization,
is its workload divided by its period: ui = ci/pi; that is,
what fraction of its life must be spent running. We wish to
schedule our tasks so that each task completes its required
workload during each of its periods. The total rate of a
set of tasks is the sum of the individual rates for each task.
Tasks may be represented succinctly as the pair (ci, pi).

Figure 2. Fluid versus Practical Schedules

For now we will assume no scheduling overhead, so that
we should have enough CPU time to complete all jobs (i.e.,
a feasible schedule exists) provided:

(i) Total task workload doesn’t exceed total CPU capacity
(
∑

i ui ≤ M).
(ii) No task’s workload exceeds its period (ui ≤ 1 ∀i).
(iii) Process migration is allowed.

We say that a set of tasks is feasible if these conditions
are met, and a scheduling algorithm is optimal if it can suc-
cessfully schedule any feasible task set. A simple example
depicted in Figure 1 demonstrates a set of 3 tasks that can
be successfully scheduled on two processors only when one
of them divides its time between both CPUs. We will con-
sider the case where processes are free to migrate between
CPUs whenever necessary.3

Given unlimited context switching and migration, it is
not hard to see that the first two constraints are sufficient in
our theoretical model. In fact, this is just an extension of
the uniprocessor case presented by Liu and Layland [15].
Imagine that we can reschedule our jobs after each length
ε unit of time. As ε → 0, we can turn each task Ti on
or off sufficiently often so that it appears as if it is con-
stantly running on only a fraction ui of a processor. In the
limit, each job executes at exactly its necessary rate and,
when all rates sum to no more than M , all jobs will finish
on time. Cho et. al. [6] refer to this as a fluid scheduling
model. Figure 2 shows the difference between a fluid and
an actual scheduling of a task. We can easily determine
whether a set of periodic tasks may be feasibly scheduled;
much more challenging is actually finding a feasible sched-
ule that minimizes context switches and migrations. This
has been the goal of recent papers on this subject and is our
primary interest.

3Without migration, optimal scheduling reduces to the NP-Hard bin
packing problem [9].

3. What’s Wrong with Greedy Schedulers?
3.1. Greedy Scheduling Algorithms

An attractive (and common [5]) first approach to
scheduling is to try to find a simple greedy solution. Greedy
algorithms are straightforward to explain, prove and im-
plement. They often attempt to encapsulate the criticality
(likeliness of a missed deadline) of a job into a single num-
ber and then greedily schedule those jobs based on that.

Several successful greedy algorithms have been found
for uniprocessor scheduling. Two of the earliest are from
a seminal paper by Liu et. al. [15]. The first is Rate
Monotonic (RM) scheduling, which statically sorts jobs
by their rates, and guarantees feasible schedules for up to
∼ 70% processor utilization. 100% utilization in guar-
anteed by their second algorithm, Earliest-Deadline-First
(EDF). Here, whenever jobs are completed or introduced,
the job with the earliest deadline is selected to run. While
EDF is optimal on a uniprocessor, it is suboptimal in a mul-
tiprocessor environment [8]. A task set where EDF fails to
find a feasible schedule is depicted in Figure 1.

Another well studied scheduling algorithm which is op-
timal on one processor is preemptive Least-Laxity-First
(LLF), initially introduced as the least slack algorithm [16].
LLF always runs the job with least laxity: time remaining
until the next deadline minus time required for the remain-
ing workload (i.e., allowable idle time). Since LLF requires
laxity to be recomputed at every clock tick, it has a large
overhead, and causes numerous context switches when two
jobs have the same laxity. MLLF [17] reduces scheduling
events and context switches, but is still more complicated
than EDF and provides no obvious advantage. Although
neither LLF nor MLLF are optimal in a multiprocessor set-
ting ([14] and Figure 3), MLLF can find a feasible schedule
in some cases where EDF cannot (again, see Figure 1).

The LLF scheduler is based partially on the observation
that a schedule has become infeasible if any job ever has
negative laxity in its current period (a job has more work
than time remaining). Clearly, any job whose laxity has
reached zero must be immediately activated and run con-
tinuously until its deadline in order to complete its work
on time. This leads us to our second consideration when
designing a greedy algorithm. The “greedy” part tells us
which tasks to schedule, but we must also specify when we
will do the scheduling. That is, at what times should we
re-sort and apply our greedy preference? We have a list of
three standard scheduling events:

A. RELEASE: A task has reached the end/beginning
of its period
B. WORK COMPLETE: A task has finished its work
for its current period, and must be turned off
C. ZERO LAXITY: A task has no remaining laxity for
its current period, and must be turned on

Figure 3. LLF Fails for Multiprocessors
Two processors, and three jobs that require 100% utiliza-
tion. Numbers above each schedule indicate a task’s laxity
at a scheduling event, with numbers absent from completed
jobs. An idle processor at time 3 eventually leads to failure.

Any simple greedy algorithm will specify a greedy sort
key and which scheduling events it will observe. For exam-
ple, when ZERO LAXITY events are added to EDF, we get a
hybrid scheduler known as EDZL [7]. While this provides
an improvement over standard EDF for multiprocessors, it
is still not optimal.

3.2. Schedule Duality
To improve upon greedy schedulers, it is necessary to

understand why they fail. To aid with this, we introduce
the notion of a “dual schedule.” Consider the feasible task
set

{ T1 = (3, 4), T2 = (3, 4), T3 = (5, 10) }

shown in Figure 3; LLF cannot successfully schedule this
job set on two processors. T1 and T2 each have laxity of 1,
while T3 has laxity of 5, so LLF would initially schedule
jobs T1 and T2. If these are run to completion, the laxity of
T3 will have only gone down to 2 (> 1), so it would never
be chosen over T1 or T2 before they are finished, regard-
less of any preemptive scheduling events. When T1 and T2

finish at t = 3, T3 is the only unfinished task remaining.
One processor stays idle until T1 and T2 are re-released
at t = 4. This idle time ensures the scheduling’s eventual
failure4, even though the failure is not evident until all three
tasks reach zero laxity at time 18. The following theorem
generalizes this observation.

Theorem 1 When the total rate of a task set is equal to the
number of processors and all tasks have the same initial
release time of t = 0, then no feasible schedule can allow
any processor to remain idle for any length of time.

Proof. Given tasks T1, . . . , TN on M processors where the
rates sum to M . In a feasible schedule, task Ti, at the end of
k periods, must have done work equal to kci = k(piui) =
(kpi)ui = tkui, where tk is the ending time of the kth pe-
riod. Let ta be the first positive time at which all tasks reach
a deadline simultaneously (i.e., the least common multiple

4Between t = 4 and t = 20, (2 × 4 × 3) + (4 + 5) = 33 units of
work must be done, though the two processors can only accomplish 32.

of their periods). Then the total work done by all tasks at
time ta must be

∑
i taui = ta

∑
i ui = taM . This much

work can be accomplished by time ta only if all processors
are running continuously until this time. Any idle time im-
plies less than taM total work is done, and the scheduling
fails. �

We can now see where LLF failed on our previous ex-
ample. While T1 and T2 were being prioritized due to their
high required workloads, their required idle time (1 unit
idle time out of the 4 unit period) was not being consid-
ered. Consequently, when they finished, they both had idle
time to use up before the next RELEASE. However, an op-
timal scheduling could only consume idle time from one
task at a time, since two tasks need to be on at all times to
satisfy Theorem 1. By distributing their idle times so as not
to coincide (Figure 4), this task set can be easily scheduled.
This observation may be formalized by the notion of a dual
schedule. Given the problem of scheduling tasks

{ T1 = (c1, p1), . . . , TN = (cN , pN) }

on M processors, the dual scheduling problem consists of

{ T ′
1 = (p1 − c1, p1), . . . , T ′

N = (pN − cN , pN) }

on N − M processors. Given any scheduling (feasi-
ble or otherwise) of T1, . . . , TN , the dual scheduling of
T ′

1, . . . , T
′
N is the schedule that has T ′

i turned on precisely
when Ti is turned off (and vice versa).

Any job has a certain amount of work that it must com-
plete by some deadline. Reciprocally, it must also achieve
a certain amount of idle time by that deadline. When the
total utilization of all jobs is M , scheduling the idle time is
just as important as (in fact, is equivalent to) scheduling the
work time. The dual problem makes this explicit: laxity in
the primal (original) problem is work remaining in the dual,
and vice versa. A WORK COMPLETE event in the primal
is a ZERO LAXITY event in the dual. Since we must have
M processors constantly running in the primal, there must
always be N −M idle tasks, and so our dual problem has
N −M processors. The task set

{ T1 = (3, 4), T2 = (3, 4), T3 = (5, 10) }

on two processors, and its dual task set

{ T1 = (1, 4), T2 = (1, 4), T3 = (5, 10) }

on one processor, are shown in Figure 4. Note that the dual
of a dual is just the primal (as is the case with any good
notion of “duality”). Also note that the feasible scheduling
shown is achieved by applying LLF to the dual problem.

An interesting special case of duality yields:

Corollary 2 Any scheduling problem with M processors
and M+1 tasks (where the total rate of the tasks is M) may
be scheduled by applying EDF to the uniprocessor dual.

Figure 4. A Schedule and Its Dual
This shows the previous task set, scheduled using LLF on
the dual. The dual (idle) task running is shown in gray be-
low each time axis, with dual laxity (i.e., work remaining)
at each scheduling event shown above.

Proof. This follows directly from the above discussion and
the fact that EDF is optimal for uniprocessor scheduling. �

From the primal’s view, the above translates into the fol-
lowing scheduling policy:

1. Schedule all tasks except the one with the earliest
deadline

2. The only preemptive scheduling events needed are
ZERO LAXITY and RELEASE times

It seems strange from the primal’s point of view, but we
will never need to explicitly schedule WORK COMPLETE
events, any more than we need to schedule ZERO LAXITY
events for EDF on a uniprocessor; if the task set is feasibly
schedulable, these will attend to themselves.

One course of inquiry suggested by duality is a search
for dual-symmetric schedulers: scheduling algorithms that
produce equivalent results when applied to either the pri-
mal or dual of a scheduling problem. EDF and LLF are
not dual-symmetric. As shown in the preceding discussion,
EDF turns on the tasks with the earliest deadlines, whereas
EDF applied to the dual would turn off these earliest dead-
line tasks. Similarly, LLF turns on tasks with the least lax-
ity, while LLF on the dual turns off tasks with the least
work remaining; while these can lead to the same sched-
ules in some cases, they are fundamentally different order-
ings of tasks.

An example of a dual-symmetric scheduler would exam-
ine the difference between remaining work and laxity, and
apply a greedy scheduling by sorting according to this dif-
ference (either in absolute terms or as a ratio). Tasks with
larger work would be preferentially turned on, and tasks
with higher laxity would be preferentially turned off, until
no more “on” or “off” slots were available. Note that this
algorithm treats work remaining and laxity in a symmetric
fashion, and so is dual-symmetric, as is SNS, developed in
the next section.

While such dual-symmetric schedulers address one spe-
cific scheduling problem, they fail to address another:

Figure 5. Greedy Counter-example
Task set which confounds most greedy schedulers using
common events. (a) shows an incorrect greedy scheduling,
while (b) shows a feasible proportional scheduling.

global knowledge. Consider the following task set with two
processors:

{ T1 = (9, 10), T2 = (9, 10), T3 = (8, 40) }

It seems inevitable that any greedy scheduling policy would
choose to schedule tasks T1 and T2; which have ear-
lier deadlines, smaller laxities, and high work/laxity ra-
tios, over task T3; which has huge laxity, low rate, and
a long deadline. Of the three types of scheduling events
we’ve considered so far– RELEASE, WORK COMPLETE,
and ZERO LAXITY– if we start by turning T1 and T2 on,
the first event is the WORK COMPLETE event at time 9. At
this point, we know our schedule is infeasible because we
are left with an idle processor for one time unit (see Figure
5a).

Our conclusion is that the {A, B, C} set of scheduling
events is inadequate. A critical juncture occurs at time 8
when either T1 or T2 must be turned off. After that, the
collective idle time required by T1 and T2 prior to their
deadline exceeds the idle capacity of the system. This can
be seen only by considering T1 and T2 as a set; no crite-
rion applied to individual tasks can reveal this fact. Must all
possible subsets be examined for the scheduler to “see” this
event, leading to an NP-Hard search space? Or can it be re-
vealed by some simpler global property on all tasks? While
finding a minimum necessary and sufficient set of schedul-
ing events remains an open problem, recent advances have
revealed a sufficient superset of events (Section 4).

4. Optimality Via Proportional Fairness
To date, the only known solutions to the “global knowl-

edge” problem are variations on the notion of proportional
fairness. By overconstraining the problem, proportional
fairness forces tasks to march in step with their fluid rate
curves more precisely than is theoretically necessary. Sup-
pose we modify our previous example to

{ T1 = (9, 10), T2 = (9, 10), T3 = (2, 10) } .

All we have done is to impose the additional requirement
that task T3 complete a proportional share of its work every
time the other tasks hit their deadlines. Suddenly we have a
ZERO LAXITY event at time 8. T3 will then be switched on;
T1 and T2 will each run for one of the remaining two time
units on the other processor, and a feasible schedule results
(see Figure 5b). In this example, where the third period
was a multiple of the first two, it is easy to reformulate
the problem in this way. When we have numerous jobs
with periods which could be relatively prime, the question
of when to force jobs to hit their proportional rate quotas
becomes more complicated.

The first solution to this problem was the pfair schedul-
ing scheme [4]. pfair creates a scheduling event and recom-
putes the set of running tasks at every multiple of a discrete
time quantum. The notion of proportional fairness used is
very strict, requiring the actual work completed by a task to
be within 1 unit of its fluid rate curve at each time quantum.
The result of this policy is a large number of scheduling cal-
culations and context switches, with correspondingly high
overhead. Intuitively, it seems unnecessary to adhere so
closely to the fluid schedule: performance could be im-
proved by a more judicious choice of scheduling events.

4.1. Simple Conditions for Sufficiently Fluid
Schedules

Several other papers [3] [6] have observed that fluid
schedules need not be followed so rigorously. Any given
job really only needs to match its fluid rate curve at its own
deadline. However, it is difficult to plan for the added com-
plexity imposed by the presence of multiple jobs simulta-
neously running on different processors. A sufficient (al-
though not necessary) compromise is to require all tasks to
lie on their fluid rate curves at the deadline of each task. In
this model, time is partitioned into windows, demarcated
by all the deadlines of all tasks in the system. Within each
window, all jobs still have their usual rate, but now all jobs
share the same deadlines. While this new requirement over-
constrains the system, it also greatly simplifies the schedul-
ing process.

Suppose that the length of the time window between
some two deadlines is tf . In this restricted view, we will
consider time to start at t = 0 and end at t = tf . Task Ti

must do work equal to ui × tf during this time window;
in the view of Figure 2, its work remaining curve must go
from ui × tf to 0. As all rates sum to no more than M , we
have no more than M × tf total work to do during this in-
terval. We simply have to decide when to turn jobs on and
off so that their work remaining curves meet their goals.

The shortening of local deadlines will create new
scheduling events (e.g., the new ZERO LAXITY event at
t = 8 in Figure 5b). The WORK COMPLETE and ZERO
LAXITY events that occur based on the local deadline at
the end of a time window will be referred to as secondary
scheduling events. These events have the usual scheduling
implications: zero laxity jobs must be turned on and com-
pleted jobs must be turned off. As we shall see, this new
set of scheduling events is sufficient for optimal scheduling
(i.e., is a superset of the minimal necessary and sufficient
set of events previously mentioned).

For the remainder of the discussion of our model, we
will make the simplifying assumption of full utilization.
Since our primary focus is optimal scheduling algorithms,
we will assume that the sum of the utilizations of all tasks
is M . If this were not the case, then one or more dummy
(idle) tasks with an arbitrary period could always be added
to make up the difference. These would represent idle pro-
cessor time. Assuming full utilization simplifies the fol-
lowing discussions and loses no generality.5

By partitioning time into windows so that all tasks have
the same (local) deadline, we have created very simple
necessary and sufficient conditions for ensuring a feasible
scheduling.

Theorem 3 If a set of jobs (with total utilization M) can be
feasibly scheduled within a time window, then any schedul-
ing policy will find such a feasible schedule if and only if it
observes the following 3 rules for local workloads:

1. Always run any job with zero laxity
2. Never run any job which is completed
3. At any moment, M distinct jobs must be running �

That these conditions are necessary is clear: if laxity for
a job becomes negative, it cannot be completed on time;
running a completed job is locally equivalent to an idle pro-
cessor, and an idle processor means that less than a total of
M × tf work will be done in the window, implying failure.
We now show that these conditions are also sufficient.

Lemma 4 A scheduling of jobs which follows Rules (1)-(3)
will fail to complete all tasks on time if and only if, at some
time before tf , there are (at least) M + 1 jobs with zero
laxity.

5In practice, there are many productive ways to take advantage of the
free processor time resulting from sub-100% utilization (Section 5).

Proof. M +1 jobs with zero laxity cannot all be finished on
time on M processors. On the other hand, the set of zero
laxity jobs can only grow as time increases, and any job
which has not hit zero laxity by time tf will be completed
before then. If there are at most M jobs with zero laxity as
time reaches tf , the other N −M jobs will be completed.
Rule (1) ensures that up to M zero laxity jobs may be run
simultaneously and to completion. Therefore, an (M +1)st

zero laxity job is necessary for failure. �

The point at which that (M+1)st job reaches zero laxity
is referred to as a critical moment.6 In the absence of criti-
cal moments, the M processors do the required amount of
total work, and all tasks will be completed on time. We
now introduce some convenient notation, deviating a bit
from [6]. Anything subscripted with i, j will indicate job i
at the jth secondary event (which we’ll assign time tj). ci,j

is the local work remaining to job i at time tj . ui,j = ci,j

tf−tj

is the local remaining utilization of job i, namely, the av-
erage rate at which it must consumed to successfully com-
plete. Finally, we define Sj =

∑N
i=1 ui,j to be the total

local utilization at time j, (the rate at which the whole sys-
tem must run).

Lemma 5 (Cho et. al.) If Sj ≤ M at time tj , then event j
is not a critical moment.

Proof. If event j is a critical moment, then each of the
M + 1 zero laxity jobs (for simplicity, let’s call them
T1, . . . , TM+1) has ui,j = 1. Then Sj =

∑N
i=1 ui,j ≥∑M+1

i=1 ui,j = M + 1 > M . �

In order to show that a scheduling following Rules (1)-
(3) is feasible, it suffices to show that Sj ≤ M at each
secondary event j.

Proof of Theorem 3. If we let Wj be the total work re-
maining at time tj , then

Wj =
N∑

i=1

ci,j =
N∑

i=1

ui,j(tf − tj) = (tf − tj)St .

According to Lemma 5, we can only run into trouble if Sj

exceeds M at some event. However, at any time tj within
the scheduling window, if all M processors have been fully
utilized between times 0 and tj , then Wj has been get-
ting reduced at a constant rate of M -per-time unit. That
is, Wj = W0 − tj ·M . Since W0 ≤ tf ·M by our general
feasibility condition, we have that

St =
W0 − tj ·M

tf − tj
≤ tf ·M − tj ·M

tf − tj
= M .

6The notion of a critical moment and the subsequent Lemma 5 are due
to Cho et. al. [6].

So long as we fully utilize all processors when available,
St can never exceed M , and, by Lemma 5, we can never
end up with more than M tasks with zero laxity. �

The rules given in Theorem 3 are about as simple a set
of criteria as one could hope for. In essence, “If a job needs
to be started now in order to finish on time, then start it now.
If a job is finished, then stop it now. Don’t let processors
sit idle.” These three rules would be an obvious minimum
requirement for any scheduler that hoped to achieve feasi-
bility on a task set with 100% utilization. Yet, when we
require proportional workloads be completed at all system
deadlines, they are also sufficient. As they are so simple,
they leave plenty of room to design scheduling algorithms
that attempt to reduce the number of context switches and
task migrations.

4.2. Stack-and-Slice (SNS) Scheduling
Perhaps the simplest possible scheduling based on our

three rules is a “Stack-and-Slice” (SNS) approach, which is
best described visually7. First, make a “block” of length ui

for each Ti, and stack these blocks up along a number line
(in any order), starting at zero. Their total length will be M
(still operating under the assumption of 100% utilization).
Slice this stack of blocks into length one chunks at 1, 2, . . . ,
and M − 1, and assign each chunk to its own processor.
Each length 1 chunk of tasks represents the scheduling of
tasks on the respective processor; tasks which are sliced in
half will migrate between their two processors. See Figure
6 for an illustration with 7 tasks and 3 processors. To find
the actual timing points of context switches (at local job
completion events), simply multiply each length 1 segment
by the length of the current scheduling window.

It is clear from the description and the figure that Rules
1-3 of Theorem 3 are satisfied by this scheme: tasks
are turned off when (locally) complete, the only tasks to
achieve zero laxity are scheduled just in time, and each
processor is always running a distinct task. Tasks which
migrate are run at the beginning of the window on one pro-
cessor, and at the end on the other. So long as such a task
has utilization no more than 1 (which is required for any
feasible schedule), its running times on the two proces-
sors will be disjoint. This gives the straightforward SNS
scheduling algorithm: compute the context switch times
indicated in the diagram (partial sums of task utilizations),
reduce modulo 1 for each processor, and multiply times by
the length of the current window. Except for this last mul-
tiplication, this can all be done once as a pre-processing
step, so long as the task set is static. Note that there is
no computational overhead at secondary events: here, a
“scheduling event” (which in many algorithms requires it-
erating through all jobs, performing various calculations,

7SNS is a simplification of the EKG [3] scheduler

Figure 6. Stack-and-Slice Scheduling
(a) Seven tasks with utilizations shown above. These are
lined up in arbitrary order, then sliced at length 1 intervals.
(b) Each processor runs its task set over a length 10 time
window. Jobs sliced in (a) are seen migrating in (b).

or even sorting them) is merely following a pre-determined
instruction to replace one task with another on one proces-
sor; no “decisions” are made.

Notice that, in general, there will be M − 1 tasks which
are required to migrate. Further, if we repeat a predeter-
mined stack-and-slice ordering for each time window, each
of these M − 1 tasks will migrate twice per window: once
in the middle, and again at the end, when it moves back
to its starting processor. We can cut this number of migra-
tions in half simply by reversing the ordering of tasks on
each processor in odd-numbered windows. Looking at the
example in Figure 6, task 3 runs for the first 0.3 of the win-
dow on processor 2, then for the last 0.2 on processor 1. If
we reverse the ordering within each processor for the next
window, then task 3 will start on processor 1 (for 0.2) and
then finish on processor 2 (for 0.3). As a result, tasks will
only migrate in the middle of time windows, and never at
the ends; we can limit the number of migrations to M − 1
per window.

Theorem 6 The stack-and-slice scheduling scheme with
mirroring in odd windows will produce at most N − 1 con-
text switches and M − 1 migrations per window.

Proof. The M − 1 migrations were discussed above. In
the worst case, each job except the very first will cause a
context switch when it is turned on. With mirroring, each
processor will be running the same job at the end of one
period and the beginning of the next, so no context switches
occur at the end/beginning of scheduling windows. This
results is N − 1 context switches per window. �

5. Survey of Recent Sufficiently Fluid Algo-
rithms

We now explain and analyze a number of recent papers
in the context of our new framework. We start with the
first two recent papers to utilize the notion of proportional
deadlines to achieve optimality [3] [6], which appeared in
the latter half of 2006. Several papers since then have bor-
rowed approaches from one or the other, and tackle various
sub-optimal variations of our scheduling problem. We will
look at the two original papers in some detail, and then sur-
vey others that have followed.

5.1. Improvements with EKG
The EKG algorithm presents a modified Stack-and-

Slice scheme. First, we observe that the N −M + 1 non-
migrating tasks actually form a partitioned task set; that is,
each one is permanently assigned to a single processor. The
time between the migrating tasks at the beginning and end
of a window consists of a single processor running jobs as-
signed exclusively to it. Instead of observing proportioned
deadlines for these tasks, we may simply schedule them
with EDF. In Figure 6, for example, we might view Pro-
cessor 1 as a uniprocessor system with 80% capacity, and
two tasks with utilizations of 0.3 and 0.5. In scheduling
these two tasks, we essentially ignore all other tasks in the
system, and run the simple, uniprocessor-optimal EDF al-
gorithm. In this way, all tasks except the migrators may
be “decoupled” from the proportional deadline scheme, al-
lowing them to complete with fewer context switches. This
method is known as task splitting or semi-partitioning.

The M − 1 migrating tasks, however, are still tightly
coupled. The task split between Processors 1 and 2 must
be scheduled in sync with the one on 2 and 3, which must
be synced with the task split on 3 and 4, etc. However,
the time windows need only be defined by the deadlines
of the migrating tasks, and larger time windows translates
to fewer total migrations. The EKG algorithm also allows
for a partial decoupling of these migrating tasks, at the cost
of optimality. The algorithm divides and decouples proces-
sors into groups of k, each of which operates independently
of other groups. The extra space at the end of a group is
not filled in with a partial task, but because each group is
independent of the others, its scheduling windows are only
based on its own k − 1 migrating tasks. With fewer and
larger windows, fewer context switches are required in gen-
eral. When k = M , we have optimality; when k = 2, we
can guarantee only 66% utilization, but with significantly
fewer context switches and migrations.

5.2. The T-L Plane Visualization
The Time and Local Execution Time Plane (“T-L

Plane”) model of Cho et. al. [6] provides a convenient

Figure 7. Work Remaining Curves in a T-L Plane
Seven tasks on three processors. At each secondary ZERO

LAXITY or WORK COMPLETE event, the three jobs with
least laxity are executed.

means of visualizing deadline windows. The T-L Plane is
represented as an isosceles right triangle, with time on the
horizontal axis, and work remaining on the vertical axis.
As time moves forward, a task’s work remaining curve will
not follow its fluid rate curve, but instead will be in one of
two modes:

• If it is running, it will have a slope of −1, since both
axes are on the same scale

• If it is idle, it will have a slope of 0

A task’s work remaining curve will alternate between
these two modes as it is turned on and off. (Figure 2 gives
a simple picture of the progression of one job through this
plane, drawn next to its fluid rate curve.) By time tf , all
curves must have height 0 (i.e., completed their work for
this time window.) These are reset to heights proportional
to their rates for the beginning of the next window. A ZERO
LAXITY event is an inactive job (horizontal curve) hitting
the hypotenuse; a WORK COMPLETE event is an active job
(slope = -1) hitting the horizontal axis. A sample T-L Plane
with executing jobs can be seen in Figure 7.

At t0 and at each secondary event, the LLREF scheduler
sorts the jobs by work remaining, and activates the M high-
est jobs. While this policy ensures successful completion
of all tasks (it can easily be seen to guarantee the condi-
tions of Theorem 3), it has a high computational overhead
compared to EKG, and causes more context switches than
are needed to satisfy Theorem 3. Also, this policy gives
no prescription for the assignment of jobs to processors; it
does not address the issue of task migration.

5.3. A Note on Performance

While SNS is designed primarily to be simple, it is
instructive to compare its performance to the other algo-
rithms. We compared SNS and LLREF on 1000 random
task sets on 2-20 CPUs and found that SNS consistently
generates about 1/3 as many context switches and migra-
tions as LLREF8. Because EKG is similar to SNS but with
optimizations to further limit task migrations, it can be ex-
pected to produce even fewer migrations, but at the cost of
somewhat greater computational overhead.

5.4. Subsequent Work

A number of subsequent algorithms have expanded on
ideas introduced with EKG and LLREF. They do not rep-
resent improvements in optimal scheduling, per se. In-
stead, they reduce context switches and migrations for sub-
100% utilization task sets, and address variants of our ba-
sic scheduling problem. There are two main classifications:
those that follow EKG and use task-splitting, and those that
use variants on LLREF’s T-L Plane model.

Andersson and Bletsas [1] propose an EKG variant for
dealing with sporadic task sets (that is, where job arrival
times are irregular and unknown in advance). Time win-
dows are bounded by small, fixed width intervals rather
than task deadlines. Like EKG, a tunable parameter (cor-
responding to window widths) is available, and can bring
schedulable utilization arbitrarily close to 100% at the cost
of more context switches and migrations. A sequel to this
paper introduces the EDF-SS(DTMIN/δ) algorithm [2],
which extends the problem to tasks with arbitrary deadlines
(which may fall before, on, or after irregular arrival times).
It also uses fixed-width time windows, but attempts to split
tasks with the smallest minimum deadlines.

The Ehd2-SIP algorithm [12] is also similar to EKG, but
sacrifices optimality for improved general performance. It
starts with a general stack-and-slice task-to-processor as-
signment, but with tasks stacked in increasing period order.
Then, rather than utilizing any notion of fluid scheduling,
it uses EDF to schedule tasks on each processor, subject
to the following exception: the “right-hand” half of a split
task always has highest priority on its processor, unless it’s
“left-hand” other half is already running on the adjacent
processor. This scheme only allows for 50% processor uti-
lization in the worst case, but generally has high schedul-
ing success until total utilization reaches the 80-90% range.
These success rates are higher than strict partitioning EDF
algorithms, although Ehd2-SIP suffers from more preemp-
tions; conversely, EKG tends to have a higher success rate
at the cost of more preemptions. The sequel to Ehd2-SIP
is EDDP [13], which uses EKG’s scheme of only partially

8In actuality, as LLREF does not assign jobs to processors, we had to
devise a greedy method for this in an attempt to minimize migrations.

filling processor capacity. It also schedules each processor
with EDF, but removes priority for the right half of a split
task, and artificially adjusts deadlines to improve schedula-
bility. Its worst case utilization improves to 65%, but per-
formance is otherwise similar.

The E-TNPA algorithm [11] extends the T-L Plane/
LLREF algorithm with two major improvements. First,
when the total utilization is under 100%, it runs an excess
time apportionment algorithm at the beginning of each win-
dow, and distributes unused CPU time among tasks in the
form of increased workloads within the window. Once this
is done for a new window, it runs as if it were a normal
T-L Plane, but with different rates. In this way, E-TNPA is
work-conserving, that is, it never idles a processor when
any task has unfinished work in its current period. The
second improvement is the realization that the sorting of
tasks by laxity at each scheduling event within the win-
dow is unnecessary. Instead, the paper merely claims that
tasks can instead be ordered based on the needs of the appli-
cation/environment. This still requires scheduling invoca-
tions at every ZERO LAXITY and WORK COMPLETE sec-
ondary event. The authors provided a modified approach
to their work-conserving scheduler with TRPA [10]. In-
stead of apportioning free time at the beginning of a win-
dow, they now allow tasks to run arbitrarily (subject to the
zero laxity rule) until such time as remaining required work
in the window to meet all fluid schedule goals equals the re-
maining processor capacity in the window. Both E-TPNA
and TRPA mimic the T-L Plane/LLREF system when given
100% utilization task sets, and like LLREF, they only pre-
scribe which tasks should be running at a given time. With
no scheme for assigning tasks to processors, it is difficult
to gauge the potential overhead of migrations.

6. Future Work

It is our hope that the insights we have provided into
optimal hard real-time scheduling will encourage new di-
rections in future research. The simplicity of conditions
for sufficiently fluid schedules, and the SNS algorithm
based on those conditions, leave room for exploration and
improvement. In the SNS algorithm, no prescription is
given for ordering the stacked events before they are sliced.
While finding some “best” ordering may be NP-Hard, some
simple ordering heuristics may lead to practical improve-
ments. For example, in sub-100% utilization cases, EKG
assigns each sufficiently large tasks to its own dedicated
processor. It also isolates groups of processors, so that
tasks on one group need only observe deadlines within their
group. Other decoupling schemes may be possible to re-
duce the adherence of all tasks to all system deadlines.

On the theoretical front, there is still a considerable gap
between the necessity of these conditions applied to general

jobs, and their sufficiency when applied to all tasks over-
constrained by all system deadlines. We would like to see
sufficient conditions for optimality which depended on a
less strict set of deadline constraints.

There are also new directions for improvements in sub-
optimal algorithms available by utilizing our notion of dual
schedules. As shown by the example of Figure 4, the in-
clusion of zero-laxity events from the dual can improve the
success of a standard LLF scheduler. Perhaps other subop-
timal algorithms could benefit from this additional insight.
Also, there is a tempting symmetry in the notion of dual-
symmetric schedulers; we are currently working expanding
this idea and testing several resultant algorithms.

There is much that could be done on relaxed versions of
our basic scheduling problem. As several surveyed papers
show, when utilization is sub-100%, there are numerous av-
enues for heuristic improvements. Another generalization
of the model includes dynamic task sets. Adding or remov-
ing tasks from the SNS scheduler should be relatively easy,
but careful ordering of tasks on the “stack” could make the
process more efficient. Another generalization is the asym-
metric processor environment, where different CPUs have
different clock speeds. SNS easily accommodates this by
simply adjusting the integer “slice” points to represent each
processor’s relative speed. Numerous other variations on
the scheduling problem exist and are being explored.

We believe the most important open problem is imple-
mentation. Our “optimal” algorithms cannot achieve their
theoretical best performance in practice, because they don’t
reserve time for context switches and migrations. Current
scheduling algorithms still favor the strict partitioned ap-
proach due to these overheads. It is unclear whether the
schedulability improvements realized by optimal schedules
can compensate for their additional cost.

7. Conclusion

There have been a number of recent advances in
scheduling algorithms for periodic task sets in hard real-
time, multiprocessor environments. What was missing was
a recognition of their shared traits and insights, and an un-
derlying theory to explain their success. This paper pro-
vides such a theory. We started by examining the inher-
ent problems of older, greedy approaches to multiprocessor
scheduling, and introduced the model of scheduling duality
to clarify these problems. We then presented and proved
a simple set of sufficient conditions for a scheduling al-
gorithm to achieve optimality by periodically matching its
theoretic fluid rate targets. We also presented the very sim-
ple SNS scheduler based on these conditions. Finally, we
described a number of recent algorithms in terms of this
simplified framework, in order to better understand why
they work and what they have in common. We hope that

our model aids in understanding past work, and contributes
to the direction of future research.

References
[1] B. Andersson and K. Bletsas. Sporadic Multiprocessor

Scheduling with Few Preemptions. Euromicro Conference
on Real-Time Systems (ECRTS), pages 243–252, 2008.

[2] B. Andersson, K. Bletsas, and S. Baruah. Scheduling
Arbitrary-Deadline Sporadic Task Systems on Multiproces-
sors. International Real-Time Systems Symposium (RTSS),
pages 385–394, 2008.

[3] B. Andersson and E. Tovar. Multiprocessor Scheduling with
Few Preemptions. IEEE Embedded and Real-Time Com-
puting Systems and Applications (RTCSA), pages 322–334,
2006.

[4] S. Baruah. Proportionate Progress: A Notion of Fairness in
Resource Allocation. Algorithmica, 15(6):600–625, 1996.

[5] J. Carpenter, S. Funk, P. Holman, A. Srinivasan, J. Ander-
son, and S. Baruah. A categorization of real-time multipro-
cessor scheduling problems and algorithms. Handbook on
Scheduling Algorithms, Methods, and Models, 2004.

[6] H. Cho, B. Ravindran, and E. Jensen. An Optimal Real-
Time Scheduling Algorithm for Multiprocessors. Interna-
tional Real-Time Systems Symposium (RTSS), pages 101–
110, 2006.

[7] S.-K. Cho, S. Lee, A. Han, and K.-J. Lin. Efficient Real-
Time Scheduling Algorithms for Multiprocessor Systems.
IEICE Transactions on Communications, E85-B(12):2859–
2867, 2002.

[8] S. Dhall and C. Liu. On a Real-Time Scheduling Problem.
Operations Research, 26(1):127–140, 1978.

[9] O. Dong-Ik and T. Bakker. Utilization Bounds for N-
Processor Rate MonotoneScheduling with Static Processor
Assignment. Real-Time Systems, 15(2):183–192, 1998.

[10] K. Funaoka, S. Kato, and N. Yamasaki. New Abstraction for
Optimal Real-Time Scheduling on Multiprocessors. IEEE
Embedded and Real-Time Computing Systems and Applica-
tions (RTCSA), pages 357–364, 2008.

[11] K. Funaoka, S. Kato, and N. Yamasaki. Work-Conserving
Optimal Real-Time Scheduling on Multiprocessors. Eu-
romicro Conference on Real-Time Systems (ECRTS), pages
13–22, 2008.

[12] S. Kato and N. Yamasaki. Real-Time Scheduling with Task
Splitting on Multiprocessors. IEEE Embedded and Real-
Time Computing Systems and Applications (RTCSA), pages
441–450, 2007.

[13] S. Kato and N. Yamasaki. Portioned EDF-based Schedul-
ing on Multiprocessors. ACM International Conference on
Embedded Software (EMSOFT), pages 139–148, 2008.

[14] J. Leung. A new algorithm for scheduling periodic, real-
time tasks. Algorithmica, 4(1):209–219, 1989.

[15] C. Liu and J. Layland. Scheduling Algorithms for Multi-
programming in a Hard-Real-Time Environment. Journal
of the ACM (JACM), 20(1):46–61, 1973.

[16] A. K. Mok. Fundamental design problems of distributed
systems for the hard-real-time environment. Technical re-
port, Cambridge, MA, USA, 1983.

[17] S. Oh and S. Yang. A Modified Least-Laxity-First Schedul-
ing Algorithm for Real-Time Tasks. IEEE Embedded and
Real-Time Computing Systems and Applications (RTCSA),
pages 31–36, 1998.

