

the **ENERGY** lab

PROJECT FACTS Existing Plants, Emissions & Capture

Metal Monolithic Amine-Grafted Zeolites for CO₂ Capture

Background

The mission of the U.S. Department of Energy's (DOE) Existing Plants, Emissions & Capture (EPEC) Research and Development (R&D) Program is to develop innovative environmental control technologies to enable full use of the nation's vast coal reserves, while allowing the current fleet of coal-fired power plants to comply with existing and emerging environmental regulations. The EPEC R&D Program portfolio of post- and oxy-combustion carbon dioxide (CO₂) emissions control technologies and CO₂ compression and reuse is focused on advancing technological options for the existing fleet of coal-fired power plants in the event of carbon constraints.

Current aqueous amine and membrane technologies are cost-effective for separation of CO₂ as applied in natural gas liquefaction processes and ammonia synthesis processes due to the high value of the resulting end products. Application of these current technologies for CO₂ capture from coal-fired power plants results in significant increases in the cost of electricity produced. The cost of CO₂ capture and storage can be reduced if an effective CO₂ capture sorbent is developed with:

- High CO₂ adsorption capacity.
- · Long-term regeneration capacity in power plant flue gas environment.
- Low energy requirement for regeneration compared to large amount of energy required for aqueous amine process.

Description

This project is investigating a CO_2 capture system that involves the novel integration of a metal monolith with amine-grafted zeolites. Key features of this system are the use of metal monoliths coated with a low cost amine-grafted zeolite which eliminates the use of corrosive liquid amine and decreases the energy required for sorbent regeneration. The metal monoliths consist of straight channels: one row of channels coated with amine-grated zeolite and one used for heat transfer media for either cooling for adsorption or heating for regeneration. The alternative arrangement of CO_2 adsorption and cooling media (i.e., water or air) channels will allow effective removal of adsorption heat.

NATIONAL ENERGY TECHNOLOGY LABORATORY

Albany, OR • Fairbanks, AK • Morgantown, WV • Pittsburgh, PA • Sugar Land, TX

Website: www.netl.doe.gov Customer Service: 1-800-553-7681

CONTACTS

Jared P. Ciferno

Technology Manager Existing Plants, Emissions & Capture National Energy Technology Laboratory 626 Cochrans Mill Road P.O. Box 10940 Pittsburgh, PA 15236-0940 412-386-5862 jared.ciferno@netl.doe.gov

I. Andrew Aurelio

Project Manager National Energy Technology Laboratory 3610 Collins Ferry Road P.O. Box 880 Morgantown, WV 26507-0880 304-285-0244 isaac.aurelio@netl.doe.gov

Steven Chuang

Principal Investigator University of Akron 200 E. Buchtel Common Akron, OH 44325-3906 330-972-6993 schuang@uakron.edu

PROJECT DURATION

Start Date 02/21/2007

End Date 03/31/2011

COST

Total Project Value \$957,833

DOE/Non-DOE Share \$764,995 / \$192,838

Primary Project Goal

The primary goal of this project is to develop a highly efficient and low-cost CO₂ capture system consisting of metal monoliths with parallel square channels of which the surface is coated with a nanostructured/hydrophobic zeolite-grafted amine.

Objectives

- Prepare and test the performance of various amine-grafted zeolite sorbents. Performance testing will evaluate CO₂ and SO₂ capacity along with long-term stability.
- Develop an optimized amine-grafted zeolite based on stability and capture capacity.
- Design, fabricate, and test a metal monolithic absorber coated with the optimal sorbent.
- Determine the performance capabilities of the final CO₂ capture system through the development of an engineering system model and economic analysis of a large scale system.

Accomplishments

- Three types of sorbent supports for the immobilized amines were tested.
- More than 15 samples of alkyl amine-grafted zeolite/oxide for CO₂ capture and 10 samples of aryl amine-grafted oxides for SO₂ capture were prepared and tested.

- More than 50 sorbents have been tested with thermal degradation under oven heating at 100 °C for more than 16 hours; more than 5 sorbents were tested with CO₂ adsorption at 55 °C and desorption at 90 °C cycling.
- A metal monolith CO₂ absorber was designed and fabricated.
- Testing concluded that the $\text{CO}_{_2}$ capture capacity of the sorbents exceeds the goal of 1500 $\mu\text{mol/g}.$
- Degradation testing achieved the goal of 500 regeneration cycles with less than 10% overall degradation.

Benefits

The low cost of raw materials for the synthesis of zeolitegrafted amine sorbents combined with the innovative application of metal monoliths as an adsorber structure may lead to a breakthrough technology for the effective capture of CO, from flue gas of coal-fired power plants.

Planned Activities

- Complete performance testing of the CO₂ capture system.
- Develop a material and energy balance model that will be used to perform an economic analysis for scale-up of this CO, capture system.

