

# the **ENERGY** lab

# PROJECT FACTS Existing Plants, Emissions & Capture

# Bench-Scale Silicone Process for Low-Cost CO<sub>2</sub> Capture

### Background

The mission of the U.S. Department of Energy/National Energy Technology Laboratory (DOE/NETL) Existing Plants, Emissions, & Capture (EPEC) Research & Development (R&D) Program is to develop innovative environmental control technologies to enable full use of the nation's vast coal reserves, while at the same time allowing the current fleet of coal-fired power plants to comply with existing and emerging environmental regulations. The EPEC R&D Program portfolio of post- and oxy-combustion carbon dioxide (CO<sub>2</sub>) emissions control technologies and CO<sub>2</sub> compression is focused on advancing technological options for the existing fleet of coal-fired power plants in the event of carbon constraints.

Pulverized coal (PC) plants burn coal in air to produce steam and comprise 99 percent of all coal-fired power plants in the United States.  $CO_2$  is exhausted in the flue gas at atmospheric pressure and a concentration of 10 to 15 percent by volume. Postcombustion separation and capture of  $CO_2$  is a challenging application due to the low pressure and dilute concentration of  $CO_2$  in the waste stream, trace impurities in the flue gas that affect removal processes, and the parasitic energy cost associated with the capture and compression of  $CO_2$ . Solvent-based  $CO_2$  capture involves chemical or physical sorption of  $CO_2$  from flue gas into a liquid carrier. Although solvent-based systems are used commercially to remove  $CO_2$  from industrial gases, they have not been applied to the removal of large volumes of gas, as in coal-fired power plant flue gas, due to significant cost and efficiency penalties. One promising development for solvent systems is the use of non-aqueous solvents, which can effectively reduce the energy requirements for regeneration and reuse of the solvent.

### **Project Description**

GE Global Research, along with their partners GE Energy and SiVance LLC, will continue the development and testing of a novel aminosilicone-based solvent using a continuous bench-scale system to capture  $CO_2$  from simulated coal-fired flue gas. In a previous DOE-funded project (DE-NT0005310), the novel solvent was developed and tested in a laboratory-scale continuous  $CO_2$  capture system. The testing and associated detailed cost modeling and analysis demonstrated that the novel solvent has superior performance for  $CO_2$  capture as compared to a baseline monoethanolamine (MEA) process.

As this solvent system effectively demonstrated cost-effective CO<sub>2</sub> capture from flue gas at the laboratory scale, development and testing of a bench-scale system represents a readily achievable next step on the path to commercialization.

## NATIONAL ENERGY TECHNOLOGY LABORATORY

Albany, OR • Fairbanks, AK • Morgantown, WV • Pittsburgh, PA • Sugar Land, TX

Website: www.netl.doe.gov Customer Service: 1-800-553-7681

# CONTACTS

#### Shailesh D. Vora

Technology Manager Existing Plants, Emissions & Capture National Energy Technology Laboratory 626 Cochrans Mill Road P.O. Box 10940 Pittsburgh, PA 15236-0940 412-386-7515 shailesh.vora@netl.doe.gov

#### David Lang

Project Manager National Energy Technology Laboratory 626 Cochrans Mill Road P.O. Box 10940 Pittsburgh, PA 15236-0940 412-386-4881 david.lang@netl.doe.gov

#### **Benjamin Wood**

Principal Investigator GE Global Research One Research Circle Niskayuna, NY 12309 518-387-5988 woodb@research.ge.com

### PARTNERS

GE Energy SiVance, LLC

### **PERFORMANCE PERIOD**

**Start Date En** 10/01/2011 12/

End Date 12/31/2013

# COST

**Total Project Value** \$3,747,879

**DOE/Non-DOE Share** \$2,998,303 / \$749,576

### AWARD NUMBER

DE-FE0007502



Previously measured experimental data from the laboratoryscale CO<sub>2</sub> capture system will be used to design the continuous bench-scale system. Basic engineering data, such as kinetics and mass transfer information, will be obtained at the bench scale to determine process scalability and likely process economics. A manufacturing plan for the aminosilicone solvent and price model will be used for optimization of the solvent system. GE Global Research will design, build, and operate the bench-scale system and gather the engineering and property data required to assess the technical and economic feasibility of the process. GE Energy will be responsible for developing a model of the bench-scale process and the cost of electricity (COE), performing the technical and economic feasibility studies, and developing the scale-up strategy. SiVance will evaluate the manufacturability of the aminosilicone capture solvent, analyze the cost to manufacture the solvent, provide material for bench-scale and property testing, and perform a technology Environmental, Health, & Safety (EH&S) risk assessment.



Laboratory-scale continuous CO, capture system.

### **Project Goal**

The overall project goal is to operate, at bench scale, a postcombustion  $CO_2$  capture process using a novel aminosiliconebased solvent system capable of achieving 90 percent  $CO_2$ capture efficiency with less than a 35 percent increase in the COE.

### **Objectives**

The project objectives are to generate (1) a technical and economic feasibility study that analyzes the impact of the proposed process on the COE, (2) a COE model that more accurately predicts the capture efficiency and capture costs by incorporating experimental data and material cost information obtained in this program, (3) a technology EH&S assessment aimed at identifying any EH&S concerns associated with the aminosilicone capture system, and (4) a scale-up strategy identifying suitable process configurations for commercialscale operations, preliminary absorber/desorber and heat transfer equipment designs and architectures, desorber steam requirements, and estimated pressure drops expected in the absorption-cycle components.

### **Planned Activities**

This 27-month project is divided into two phases.

#### Phase 1:

- Perform preliminary technical and economic feasibility study
- Design and build bench-scale absorption/desorption system
- · Determine manufacturability of solvent
- Develop cost-effective plan for large-scale manufacture

#### Phase 2:

- · Synthesize material for bench-scale testing
- Perform bench-scale testing to determine scale-up effects and performance of aminosilicone-based solvent system
- Determine suitable materials of construction
- Develop model of bench-scale system performance and update COE calculations
- · Perform final technical and economic feasibility study
- Develop scale-up strategy
- Perform technology EH&S risk assessment

#### **Accomplishments**

• Project awarded in September 2011

### Benefits

The development of a scalable bench-scale process using a novel aminosilicone-based solvent for post-combustion CO<sub>2</sub> capture that shows the potential to achieve the DOE goal of 90 percent capture efficiency with a COE increase of less than 35 percent can enable a practical technology path to later development at larger scales and ultimately to commercialization.

