State Policy Planning for a Clean Smart Grid

Lisa Schwartz

Presentation to EPA State Climate and Energy Technical Forum March 23, 2010

The Regulatory Assistance Project

We have a long way to go

Source: Stern Review, October 2006

Sources of US Energy-Related CO₂ Emissions: 2004

Power sector accounts for ~40% of emissions but may be called on for 75% of solution

Source: EPA 2006

Carbon pricing alone is not enough

To keep global warming increases <2°C by 2050, we need to de-carbonize the electric system and transportation system. State-jurisdictional policies will play a big role.

Smart grid's clean energy benefits are not automatic

- Smart grid is an interconnected system of technologies that can engage many, quickly, but it's only an *enabler*.
- Clean energy benefits require adoption of smart policies.
 - Many of the policies should be adopted even without smart grid investments.
- ➤ Without the right policies, smart grid will divert attention and funds from carbon reductions achievable today.
 - Ask which specific technologies, programs, policies and rules must be in place to get clean energy benefits.

Preparing for smart grid

- Engage consumers
- > Set guiding principles and objectives
- > Specify min. functional requirements
- > Require utility transition plans with updates
- Address information, data security, privacy, interoperability and cyber-security issues
- > Update existing rules and requirements as needed
- ➤ Don't let clean energy policies lag behind *today's* focus

Consider environmental goals in energy regulation

- ➤ Smart grid vision
 - Massive increases in electric efficiency, distributed demand and supply options, variable renewable energy sources, and energy storage plus a significantly smaller environmental footprint
- ➤ Getting there will require broadening the energy regulator's mandate to consider environmental goals
 - Are power sector regulations working at cross purposes with carbon reduction and other environmental goals?
 - What are the environmental benefits of smart grid investments compared to other investments?

Acquire all cost-effective energy efficiency

- ➤ By and large, energy efficiency is the cheapest resource.
- ➤ Ample supplies at cost-effective levels
- ➤ State investment in energy efficiency below what is easily achievable and cost-effective is at odds with the rationale behind many smart grid investments.
- ➤ States should adopt energy efficiency resource standards with aggressive targets for cumulative savings or require acquisition of all cost-effective energy efficiency.
 - With targeted programs and sufficient funding

Treat demand-side resources >/= supply-side alternatives

- Energy efficiency, demand response, and distributed generation and storage should be treated at least on a par with other resources
 - In integrated resource planning/portfolio management
 - In competitive bidding processes for energy and capacity

Align utility and consumer interests

- To optimize deployment of smart grid and clean energy resources
- The throughput problem Energy efficiency and on-site generation reduce sales, and dynamic pricing reduces usage during highest-priced hours
 - Revenue requirement (expenses+ return of and return oninvestment + taxes) in test year
 - − **Prices** = revenue requirement÷ *expected* unit sales
 - Utility profit = actual sales- actual expenses

Align utility and consumer interests (cont.)

- Decoupling is a ratemaking mechanism that breaks the link between energy sales and utility profits.
 - Prices are periodically adjusted (up or down) based on actual units sold to keep utility revenue at allowed level – no more, no less.
 - Decoupling removes the disincentive for energy efficiency but provides no incentive to go after it.
- Consider shareholder incentives when energy efficiency programs are ramping up to high levels or to motivate a utility to continue performing at a high level.
 - Utilities have little reason to invest in energy efficiency* –
 or support higher codes and standards without a dedicated
 incentive mechanism.

^{*}Except during prolonged periods of high market prices where the utility does not have an automatic power cost adjustment.

Ensure access to usage information

- ➤ Specify consumers' access to their energy usage data
 - Day after vs. near-real time
 - Historical usage
 - Also retail and wholesale prices

- ➤ Spell out rights and consumer protections for sharing data with 3rd parties that can offer customized products and services
- > Address data security and privacy issues

Integrate smart grid with rate design, demand-side programs

- > Smart grid allows customers to become more involved in how and when they use energy.
 - But they won't respond just because they get shiny new meters.
- Let customers choose a dynamic pricing option that varies according to market prices and system conditions.
 - Rates that reduce overall utility costs, encourage customers to reduce peak loads *long-term*, and support demand-side resources
- ➤ Make it easy for customers to shift load
 - Automated controls
- ➤ Help customers permanently reduce peak loads
 - e.g., air-conditioning efficiency programs

Reveal locational value of customer-side resources

As you'd expect, generally marginal costs exceed embedded costs for distribution lines and feeders – by a lot. It's a major source of risk for escalating rates. And it's an opportunity to use distributed resources to shave peak in specific locations.

Source: Wayne Shirley, RAP, 2001

Reveal locational value of customer-side resources (cont.)

- Except in markets with locational pricing, only the utility knows the value of customer-side resources at specific locations on its system.
- Consumers and 3rd parties have no incentive to develop customer-side solutions to defer or avoid expensive utility T&D upgrades.
- > Utilities should periodically file major planned upgrades
 - Cost per kW plus reductions needed to defer them, by date
- Commissions should develop guidelines for considering cost-effective, customer-side alternatives.
 - RFP process is one way
 - Credits to consumers and 3rd parties for economic deferrals

Advancing renewable energy, clean distributed resources and transportation electrification

No time to cover today

- Streamlined interconnection standards
- > Renewable portfolio standards
- Targeted procurement of small-scale renewable generation through feed-in tariffs or auctions
- > PURPA and net metering
- Cost-based standby rates with optional non-firm service
- ➤ Right-time charging/discharging of electric vehicles

For More Information

- David Moskovitz and Lisa Schwartz, "Smart Grid or Smart Policies: Which Comes First?" RAP *Issuesletter*, July 2009, at http://raponline.org/docs/RAP_IssuesletterSmartGridPolicy_2009_07.pdf
- Lisa Schwartz, RAP, "Tour of Smart Grid Projects and State Policies," Sept. 9, 2009, at http://raponline.org/docs/RAP_Schwartz_SmartGridProjectsandPoliciesORwks_2009_09_09.pdf
- Victor Niemeyer, Electric Power Research Institute, "The Change in Profit Climate: How Will Carbon-Emissions Policies Affect the Generation Fleet?" *Public Utilities Fortnightly*, May 2007
- Wayne Shirley, Jim Lazar and Frederick Weston, RAP, Revenue Decoupling Standards and Criteria: A Report to the Minnesota Public Utilities Commission, June 2008, at http://www.raponline.org/Pubs/MN-RAP_Decoupling_Rpt_6-2008.pdf
- Wayne Shirley and Lisa Schwartz, RAP, "Energy Efficiency Incentives for Utilities: A Review of Approaches So Far," Oct. 6, 2009, at http://raponline.org/docs/RAP_Schwartz_Shirley_UtilityEfficiencyincentives_2009_10_6.pdf
- Wayne Shirley, RAP, *Distribution System Cost Methodologies for Distributed Generation*, September 2001, at http://raponline.org/docs/RAP Shirley DistributionCostMethodologiesforDistributedGeneration 2001 09.pdf

Lisa Schwartz Senior Associate 541-967-3077

lschwartz@raponline.org

RAP is committed to fostering regulatory policies for the electric industry that encourage economic efficiency, protect environmental quality, assure system reliability, and allocate system benefits fairly to all customers.