USDA's National Water Quality Initiative

A Watershed Academy Webcast

Tuesday, July 10, 2012 1:00pm – 3:00pm Eastern

Lynda Hall, Chief, Nonpoint Source Control Branch, US EPA's Office of Wetlands, Oceans and Watersheds Tom Christensen, Regional Conservationist, Central Region, USDA Natural Resources Conservation Service Jimmy Bramblett, Chief of Staff for Regional Conservationists, USDA Natural Resources Conservation Service Steve Hopkins, Nonpoint Source Coordinator, Iowa Department of Natural Resources Jon Hubbert, Acting State Conservationist, USDA's Natural Resources Conservation Service in Iowa

Webcast Logistics

- To Ask a Question Type your question in the "Questions" tool box on the right side of your screen and click "Send."
- To report any technical issues (such as audio problems) – Type your issue in the "Questions" tool box on the right side of your screen and click "Send" and we will respond by posting an answer in the "Questions" box.

Topics for Today's Webcast

- Overview of Water Quality issues and the CWA 319 Program
- Introduction to the NWQI in FY12
- Iowa's Experience with the NWQI

USDA National Water Quality Initiative

Lynda Hall, Chief Nonpoint Source Control Branch EPA Office of Water

In this presentation

- Scope of nonpoint source (NPS) pollution nationally and contributions from agriculture
- How EPA's CWA Section 319 Program addresses NPS pollution
- USDA's NWQI an opportunity for better environmental outcomes through program collaboration

National Scope of Nitrogen & Phosphorus Pollution

- More than 15,000 nutrient-related impaired waters
 - ~ 101,000 miles of rivers and streams impaired by nutrients
 - ~ 3.5 million acres of lakes and reservoirs impaired by nutrients
- More than 8,000 nutrient-related TMDLs completed to date
- Approximately half of assessed streams have medium to high levels of nitrogen and phosphorus
- More than 40% of lakes have medium to high levels of nitrogen and phosphorus
- 78% of continental U.S. coastal waters exhibit eutrophication
- 168 Hypoxic Zones in U.S. Waters
- Current nutrient control efforts hard fought, but collectively inadequate at state and national level

National Summary: Source and Causes of Impairments

Goals of CWA 319 Program

- Nonpoint Source Program (§319)
 - Grants to states/tribes for technical and financial assistance, education, training, technology transfer, demonstration projects, and monitoring
 - Many projects focus on agriculture, especially nutrient and pathogen reductions, often coordinated with USDA conservation programs
- Improve and maintain water quality by addressing NPS pollution sources
 - One success measure: waters with improving quality or that now meet state water quality standards
 - 370 success stories to date
- How: staffing support at state and local levels, planning, technical assistance, on-the-ground BMPs, monitoring, building partnerships.

Section 319 Funding

- 319 Appropriation:
 - 2001-04: \$237 238M
 - 2005-10: \$199-207M
 - 2011: \$175M
 - 2012: \$165M
- States implement nonpoint source programs
 - Receive 319 funds via allocation formula
 - Pursuant to EPA guidelines
 - Add 40% non-federal match and often other state funds
- **Base funds**: state/local staff, project coordination, outreach, technical assistance, **partnership-building and leveraging.**
- Incremental funds: develop, implement, and monitor watershed projects

319 and USDA Conservation Programs...

- Are complementary and work well together
 - Shared goals
 - Rely on voluntary actions by landowners
 - Fueled by partnerships at the local level
- Have active and ongoing collaboration in about half of states – NWQI an opportunity to expand
- Provide great opportunity to enhance coordinated implementation of our programs to:
 - Better serve watershed partnerships
 - Produce better conservation and water quality outcomes
- Deliver powerful results when they work together
 - Nearly 30% of 319 "success stories" involved collaboration with USDA programs

Nonpoint Source Success Stories www.epa.gov/nps/success

- A measure of 319 program progress: number of NPS-impaired waterbodies with water quality partially or fully restored.
 - Current Tally: 370
- Projects often funded through CWA section 319 and/or other funds targeted at NPS pollution control

Common Attributes of NPS Success Stories

- Specific NPS problem areas and practices/BMPs identified and implemented
- Watershed planning or TMDLs inform implementation
- Section 319 funds support planning and/or implementation
- Multiple project partners providing resources, expertise
- Local buy-in
- Concerted effort over several years
- WQ monitoring data showing improvement

- An FY12 opportunity to better integrate State NPS/319 programs and conservation programs
- NRCS National Bulletin
 - Primary focus = water quality in high-priority impaired (or other) waters
 - Nutrient and sediment impairments
 - One to three watersheds per state seek input on candidate watersheds from state water quality agency
 - 5% of EQIP funds in selected watersheds
- An exciting opportunity going forward to expand the partnership and multiply water quality successes

Looking Ahead to FY13

- Joint USDA/EPA water quality initiative
- Similar in focus to FY12 with opportunity to refine
- USDA invests EQIP funds in targeted watersheds
- EPA/states provide monitoring support to gauge water quality results

Conservation Effects Assessment Project (CEAP)

Initiated in 2003 as a partnership effort.

- Original goals: Quantify and establish the scientific understanding of the effects of conservation practices at the watershed scale, and estimate conservation effects and benefits at regional and national scales.
- Vision for the future: Enhanced natural resources and healthier ecosystems through improved conservation effectiveness and better management of agricultural landscapes.

USDA ONRCS

United States Department of Agric Natural Resources Conservation S	Service			NRCS
What CEAP Told Us	About Ph	osphoru	S	
Phosphorus application for <u>all</u> crops in rotation	Upper Mississippi R. Basin	Chesapeake Bay	Great Lakes Region	Ohio- Tennessee R. Basin
Appropriate rate	57%	37%	45%	43%
Appropriate timing	50%	58%	69%	61%
Appropriate method	57%	49%	61%	47%
Appropriate rate <u>and</u> timing <u>and</u> method	29%	19%	29%	21%
No phosphorus applied	1%	17%	1.5%	<1%
				26

USDA ONRCS

What CEAP Told Us About Nitrogen

Nitrogen application for <u>all</u> crops in rotation	Upper Mississippi R. Basin	Chesapeake Bay	Great Lakes Region	Ohio- Tennessee R. Basin
Appropriate rate	34%	35%	40%	39%
Appropriate timing	45%	54%	69%	64%
Appropriate method	56%	35%	50%	46%
Appropriate rate <u>and</u> timing <u>and</u> method	14%	13%	18%	17%
No nitrogen applied	2%	3%	5%	3%
				27

United States Department of Agriculture Natural Resources Conservation Service

USDA ONRCS

Landscape Conservation Initiatives

Initiatives have national significance and focus on critical resource concerns at the landscape level.

- Build on existing locally-led efforts and are partnership driven
- Dedicated funding to accelerate implementation
- Science-based
- Assessment of performance and environmental outcomes

Key Features of NRCS' Approach to Implementation

- Enhanced technical assistance capacity to conduct outreach and to facilitate quality conservation planning prior to entering into contracts and agreements for implementation of systems.
- Dedicated funding in addition to base program levels, resulting in acceleration of conservation planning and implementation in priority watersheds.

Key Features of NRCS' Approach to Implementation

USDA ONRCS

- Greater effectiveness in obligation and disbursement of the dedicated funding through its use in priority watersheds, on priority resource concerns, and through a priority application ranking system for priority systems of conservation practices.
- 4) Combined use of conservation easement and working lands programs in priority watersheds to complement one another for greater natural resource protection.
- 5) A coordinated initial signup period across states to bring focus and generate greater producer interest in participating.

Mitted States Department of Agriculture Natural Resources Conservation Service
Cecy Features of NRCS' Approach to Implementation
Significant partner involvement in outreach and follow-up with producers and other private landowners.
Greater consistency across state boundaries within a priority watershed for conservation practice lists and payment schedules.
Shorter term contracts to accelerate implementation, reduce implementation variables, and minimize technical assistance needs in the out-years of contracts and agreements.
Consistent performance expectations and goals across states to ensure greater transparency and agency accountability.

NRCS

The President's FY 2013 Budget: Enhances Interagency Efforts to Improve Water Quality

"... The President's Budget builds upon the collaborative process already underway among Federal partners to demonstrate substantial improvements in water quality from conservation programs by coordinating efforts between U.S. Department of Agriculture (USDA) and EPA programs such as EPA's Nonpoint Source Grants and Water Pollution Control Grants and USDA's Farm Bill conservation programs. This coordination will allow for more effective, targeted investments at the Federal and State level during a time of constrained budgets, and will ensure continued improvements in water quality."

17 6	u) • (<u>u</u> •) •	•		nwqi_fin	al.xlsx [Read-Onl	y] - Microsoft	Excel					
9	Home Insert	Page Layout Formulas Data	Review V	iew Acrobat							۲	
	Page Page Break ayout Preview Workbook Vie	Custom Full Views Screen Message Bar	ormula Bar (eadings Zo	oom 100% Zo	om to ection	Arrange Free All Pane	Hide	Yiew Side I ∴ Synchrono de	us Scrolling	iave Switch kspace Windows *	Macros Macros	
	D30 -	fx 010300030903										
A	D	E	F	G	1	1	K	L	N	0	Q	F
Natio	onal Water Qu	uality Initiative (NWQI) Informatio	HUC12 Total Acres	Agricultural	Land (NLCD)	Water Qualit Low DO, Am			Soil O			
				Cropland, Hay, a	nd Pasture Land	EPA 303d Imp	aired Waters		CEAP Vulne	erable Soils		USG
State	HUC_12	HUC12_Name	NLCD based (U.S., Lower 48 States Only)	Acres Ag Land	Percent Ag Land	303d Imparied Waters Count	303d Imparied Waters w TMDL Count	High or Moderately High Potential: Leaching (Acres)	High or Moderately High Potential: Leaching (% of Ag Land)	High or Moderately High Potential: Runoff (Acres)	High or Moderately High Potential: Runoff (% of Ag Land)	Nitro (kg/kn
ME	010100010603	Shields Branch Big Black River	11,074	0	0%	1	0	0	0%	0	0%	
ME	010100030304	Dickey Brook	16,743	5,865	35%	1	1	5,447	93%	4,461	76%	
ME	010100030305	Daigle Brook	10,071	0	0%	2	2	2,222	91%	1,660	68%	
ME	010100030306	Cross Lake	12,953	0	0%	1	0	229	86%	128	48%	
ME	010100041002	West Branch Presque Isle Stream	15,623	0	0%	0	1	0	0%	0	0%	
ME	010100041005	Shields Brook-Upper Presque Isle Stream	18,925	0	0%	0	1	215	95%	105	46%	
1 ME	010100041008	Arnold Brook-Lower Presque Isle Stream	29,384	5,599	19%	1	1	5,279	94%	2,129	38%	
2 ME	010100041009	Pettingill Brook-Aroostook River	58,024	29,107	50%	0	1	27,549	95%	10,498	36%	
ME	010100041103	Madawaska Lake	22,227	0	0%	0	1	301	85%	243	69%	
4 ME	010100041110	Pattee Brook	18,238	7,479	41%	1	0	7,120	95%	2,922	39%	
5 ME	010100041112	Limestone Stream	30,043	11,313	38%	1	1	10,632	94%	3,249	29%	
5 ME	010100041113	Hockenhull Brook-Aroostook River	37,669	20,677	55%	1	0	19,731	95%	7,452	36%	
7 ME	010100050101	Christina Reservoir-Prestile Stream	22,050	11,205	51%	2	0	10,329	92%	4,979	44%	
8 ME	010100050102	Rideout Brook-Prestile Stream	21,925	6,053	28%	1	0	5,614	93%	2,885	48%	
ME	010100050403	Nickerson Lake-Meduxnekeag River	20,819	4,731	23%	0	1	4,249	90%	2,433	51%	
ME	010100050407	Smith Brook-Meduxnekeag River	27,369	8,961	33%	0	1	7,830	87%	6,487	72%	
ME	010100050408	Mill Brook-Meduxnekeag River	6,290	2,270	36%	0	1	2,037	90%	1,167	51%	
2 ME	010200040205	Meadow Brook-Piscataquis River	31,162	3,155	10%	1	0	1,814	57%	1,336	42%	
8 ME	010200050201	Seboribus Rapids-Penobscot River	26,308	1,321	5%	1	0	660	50%	947	72%	
4 ME	010200050205	Matanawcook Stream	20,933	416	2%	1	0	347	83%	224	54%	
5 ME	010200050208	Pollack Brook-Penobscot River	29,668	764	3%	2	0	435	57%	611	80%	
5 ME	010200050408	Penobscot River at Orson Island	28,395	153	1%	1	0	42	28%	59	38%	
7 ME	010200050703	Upper Kenduskeag Stream	25,494	3,498	14%	1	0	1,982	57%	2,386	68%	
B ME	010200050804	Hermon Pond-Middle Souadabscook Stri	25,744	1,913	7%	2	0	949	50%	1,383	72%	
4 1	nwqi3					1					43	
	undra Con						100				5% (a) U	

NWQI: Characteristics of Watersheds

- 162 watersheds submitted
 - Rejected 5 watersheds (either not a watershed or no sediment/nutrient problem)

- 157 watersheds approved in all 50 states plus Caribbean Area
 - Average: three watersheds per state
 - o Ranges from one to seven (Texas)
 - o 137 watersheds are 303d listed

WQlag: Sub-components

United States Department of Agriculture Natural Resources Conservation Service

- Field Physical/Sensitivity Factors (slope, K-factor, OM content, rainfall/vegetation interaction)
- Nutrient Management Factors
- Tillage Management Factors
- Pest Management Factors
- Irrigation Factors

USDA United States Dec	entment of Agriculture roots Conservation Service		1	-	TOI		
		A.	7	M			
Wate	r Quality Inde	ex X	-		X.		
About Help Contac							
	Runoff Wa	ter Quality In					
FACTORS	DESCRIPTION	R	ANKING F	EIGHTING	WEIGHT		
Field Physical Sensiti							
Slope (%) Get S			200		10.000		
HS group (Sele			0.00	0,00	0.00		
K-factor (Sele OM content (Select)			0.00	0.00	0.00		
	/ Vegetation Interaction	•	0.00	0.00	0.00		
tunneny top oct the			0100	0.00	0.00		
Nutrient Managemen	t Factors					-	
Application rate (Select	ne)	•	0.00	0.00	0.00		
N-source and timing (Select	ne)	•	0.00	0.00	0.00		
P-source and timing (Select	ne)	•	0.00	0.00	0.00		
Soil condition / (Select	ne)	•	0.00	0.00	0.00		
	20200		_	0.00	0.00		
Tillage Management Description / (Select		•	0.00	0.00	0.00		
STIR				0.00	0.00	~	
Pest Management Fa	ctors		-			_	
Description (Select	ne)	•	0.00	0.00	0.00		
				0.00	0.00	_	
Irrigation Manageme							
Description No irrigi	10012233	٠					
Runoff Water Quality	Index (WQIag)				8.00		

Monitoring and Evaluation

 To assess the environmental outcomes of MRBI and facilitate producer use of adaptive management, the Initiative uses a three-tiered monitoring and evaluation approach:

USDA ONRCS

- 1. Edge-of-field
- 2. In-stream
- 3. Watershed level (Pour point)
- NRCS can cost-share with producers on edge-of-field monitoring but needs partners to assist producers with managing monitoring stations and covering the producers' share of the cost.
- NRCS also relies on partners to perform the in-stream and watershed-level monitoring and evaluation. There is a need for greater commitments from partners with expertise and experience to assist with monitoring and evaluation.

Mississippi River Basin Healthy Watersheds Initiative: Targeted Small Watershed Strategy (12-digit HUC)

- Conduct and publish a gap analysis of existing sites and resources.
- Identify monitoring needs, priorities, and funding needed to develop a comprehensive water quality monitoring collaborative.
- Integrate findings with geospatial data on nutrient sources, land use, and conservation practices into local, regional, and basin-wide water quality models to track progress on nutrient reduction actions.
- Develop robust communication and reporting system that links monitoring, modeling, and science results to inform management decisions and form basis for HTF annual report.⁶⁰

Opportunities to Improve Water Quality Efforts

- Increased commitment to a systems approach to conservation, with soil health as the foundation.
- Improved and expanded technical assistance to foster systems approach.
- Greater focus on the economics and sustainability of conservation systems.
- Greater commitment to adaptive management and the tools/technical assistance to support it.
- Approaches to foster and sustain conservation innovation with regards to both technologies and approaches.

USDA ONRCS

USDA ONRCS

United States Department of Agriculture Natural Resources Conservation Service

Opportunities to Improve Water Quality Efforts

- Further refinement of targeting efforts—greater focus on high treatment need/vulnerable acres.
- Greater collaborative commitment to monitoring, modeling, and assessment of environmental outcomes on a long-term basis.
- Development and implementation of recognition and certainty "programs" by states or added incentives to support voluntary approaches.
- Continued development of environmental service economic opportunities.

Questions?

Steve Hopkins Stephen.Hopkins@dnr.iowa.gov Nonpoint Source Coordinator, Iowa DNR

Jon Hubbert Jon.Hubbert@ia.usda.gov Acting State Conservationist, USDA NRCS in Iowa

89

Speaker Contact Information

Lynda Hall Hall.Lynda@epa.gov Chief, Nonpoint Source Control Branch, US EPA's Office of Wetlands, Oceans and Watersheds

Tom Christensen Thomas.Christensen@wdc.usda.gov Regional Conservationist, Central Region, USDA NRCS

Jimmy Bramblett Jimmy.Bramblett@wdc.usda.gov Chief of Staff for Regional Conservationists, USDA NRCS

Steve Hopkins Stephen.Hopkins@dnr.iowa.gov Nonpoint Source Coordinator, Iowa DNR

Jon Hubbert Jon.Hubbert@ia.usda.gov Acting State Conservationist, USDA NRCS in Iowa

<text><text><text><text><image>

Participation Certificate

If you would like to obtain participation certificates for multiple attendees, click the link below:

http://water.epa.gov/learn/training/wacademy /upload/wawebcast_certificate_071012.pdf You can type each of the attendees names in and print the certificates.