

Nitrate in Drinking Water: Overview of the Issue

Jill Jonas Director, Bureau of Drinking Water & Groundwater Wisconsin Department of Natural Resources President, Association of State Drinking Water Administrators

Nitrate in Drinking Water: Overview of the Issue

- What We Know
- What's Being Done
- Call to Action

Non-agricultural sources of nitrogen in groundwater

- Leakage from wastewater disposal network
- High density development using conventional on-site wastewater systems
- Turf grass fertilization
- Contaminated lands
- Select industrial sites
- Land clearing
- Waterway-aquifer interaction
- Improper stormwater management

ASDWA Findings

- Extensive data on nitrates in finished water; correlations to sources sometimes available
- Nitrate data for private wells exists in some locations
- Nitrate data for source water not routinely collected but available in many places
- Algal toxin data not routinely collected but some comprehensive studies done in some locations
- Some correlation data for pesticides, viruses and other pathogens
- Relatively little direct correlation data for nutrient-driven DBP precursors and DBPs
- Cost data to address impacts extensive in many places (especially for DWSRF program)

Does it add up? Treatment or prevention

- Most profitable WI farmers use less commercial N - don't follow corn with corn; use legume & manure credits to reduce fertilizer; substitute free information for purchased inputs
- Many studies show individual on-farm analysis using available information can reduce N application ranging from 20 – 50% (and N loss to waters ranging from 10 – 30%)

Does it add up? Treatment or prevention

 Nitrogen-reducing on-site wastewater systems are available with costs comparable to conventional systems

 Efficient scheduling & use of fertilizer and irrigation on highly maintained turf grasses

60 Ways to Leave Your Groundwater...Cleaner Support and Progress for Implementing a Groundwater Protection Plan

Audrey Eldridge Oregon Department of Environmental Quality Denise Kalakay

Lane Council of Governments

Kevin Fenn Oregon Department of Agriculture

<section-header>

Sampling Programs using Domestic Wells

2000-2001 Nitrate Testing Looked for good coverage of the area, and targeted shallow wells

2002 Study

Looked to confirm earlier results and determine if any other parameter of concern was present

The SWV GWMA boundaries were also designed to

- Be recognizable to the general public, so they would know if they are "in"
- Capture most of the high nitrate values seen in the 2000-2002 studies

<section-header> Where Are We Now? GWMA declared in 2004 A committee was appointed An Action Plan was finalized Dec 2006 Outreach and implementation continues

Measuring Overall Groundwater Quality - Long Term Programs

- Long Term Network a mix of 40 domestic and monitoring wells
- Synoptic Sampling Events ~3-4 years
- PWS and RET data

Overall 2010 Trend Comparisons					
Well	Increase	Decrease	Steady		
Domestic Wells (DW)	1-2	7	5-6		
Monitoring Wells (GW)	7	7	9		

<text><text><list-item><list-item><list-item><list-item><list-item>

Uptake ratios take into account conditions and management practices

Field Classification	Percent of Crop Lands	Poor Utilization (low) Uptake Ratio	Good Utilization (high) Uptake Ratio
Alfalfa	.29%	15%	60%
Beans/peas	.19%	10%	60%
Berries & vineyards	1.29%	30%	70%
Christmas trees	.34%	50%	80%
Clover	1.13%	15%	60%
Corn	.13%	30%	65%
Double cropping	.10%	30%	70%
Grains	4.26%	10%	80%
Grass seed rotation	56.60%	40%	85%
Hayfield	6.59%	40%	85%
Irrigated annual rotation	12.55%	50%	50%
Irrigated perennial	3.18%	60%	90%
Mint	2.52%	40%	65%
Orchard	.96%	60%	90%
Pasture	3.93%	40%	85%
Sugar beet seed	.69%	50%	70%
Turfgrass	.90%	40%	85%

Questions & Discussion

Audrey Eldridge Oregon Department of Environmental Quality

Nutrients in the Nation's Streams and Groundwater, 1992– 2004

Circular 1350

http://water.usgs.gov/nawqa/ nutrients/pubs/circ1350/

Neil M. Dubrovsky, PhD U.S. Geological Survey

Questions & Discussion

Neil M. Dubrovsky, PhD U.S. Geological Survey

Speaker Contact Information

Jill Jonas

Director, Bureau of Drinking Water and Ground Water Wisconsin Department of Natural Resources 608-266-0821

Audrey Eldridge

Groundwater Management Area Coordinator Oregon Department of Environmental Quality 541-776-6029 eldridge.audrey@deq.state.or.us

Neil Dubrovsky, PhD Nutrients and Trace Elements National Synthesis Project Chief National Water Quality Assessment U.S. Geological Survey - Sacramento, CA 916-278-3078 nmdubrov@usas.gov

