

Technical Memorandum

Date:	14 July 2010
To:	Jack Howard, Engineering Manager, Jacobs Engineering
From:	Jesus Sanchez, Geosyntec Consultants Joseph Sura, Geosyntec Consultants Ganesh Krishnan, P.E., CPESC, Geosyntec Consultants Neil Davies, P.E., Geosyntec Consultants
Subject:	Integrity Evaluation of Dike 2 for Extreme Rainfall Events Tennessee Valley Authority (TVA), Kingston Fossil Plant

PURPOSE & BACKGROUND

The purpose of this memorandum is to present the results of the Integrity Evaluation of Dike 2 for Extreme Rainfall Events which was conducted by Geosyntec Consultants (Geosyntec). Dike 2 is located at Tennessee Valley Authority's (TVA) Kingston Fossil Plant. Dike 2 was constructed to detain surface water runoff from the extent of the failed dredge cell areas (ash area) west of the location of the dike. For the purposes of this evaluation, Extreme Rainfall Events are defined as the calculated runoff conditions arising from the 100-, 500-, and 1,000-year 24-hour design storm events.

OVERALL APPROACH & ASSUMPTIONS

The evaluation was conducted in two steps. The first step involved a hydrologic analysis. The purpose of the hydrologic analysis was to calculate the peak impounded water level behind Dike 2 arising from the above-described extreme rainfall events. The second step involved a geotechnical integrity evaluation. The purpose of the geotechnical integrity evaluation was to calculate the factor of safety against static and seismic slope stability failure of Dike 2.

In conducting the above evaluation, it was assumed that the impoundment behind Dike 2 was filled with ash to the top of the overflow risers. It was also assumed that the tail water condition

GA100447/GK4693_FinalTechMemo_DikeIntegrityEval_07142010.docx

for discharge to the Emory River was at the summer pool elevation (i.e., Elevation 741 feet-MSL).

ANALYSES

Hydrologic Analysis

The purpose of the hydrologic analysis was to calculate the peak impounded water level behind Dike 2 arising from the previously-described extreme rainfall events. The analysis was conducted using accepted hydrologic modeling procedures, and utilized methodology prescribed in Soil Conservation Service (SCS) Technical Release 55 (SCS, 1986). The analysis was conducted by developing a computer model of the contributing watersheds using the software package HydroCADTM (HydroCAD, 2009).

Prior to conducting the analysis, Geosyntec conducted a site visit on 30 June 2010. The hydrologic analysis considered the scenario where the surface water runoff from the ash areas (approximately 170 acres) and the surrounding watershed (approximately 2,560 acres) would exceed the capacity of surface water conveyance features upstream of Dike 2. Therefore, detailed modeling of flow through conveyance features upstream of Dike 2 was not performed in the hydrologic analysis. Instead a fictitious modeling scenario was considered, where the flooded area below the top of Dike 2 is considered to be the effective volume of water that is impounded by the dike.

Using the above approach, the water elevations behind Dike 2 for the 100-, 500-, and 1,000-year 24-hour design storm events were calculated. Detailed analyses are provided in Appendix A of this memorandum.

Geotechnical Integrity Evaluation

The purpose of the geotechnical integrity evaluation was to calculate the factor of safety against static and seismic slope stability failure of Dike 2. The analysis considered a single cross-section through the emergency spillway. The material properties and subsurface conditions were based on previous work and calculations performed on the Dike 2 area (Geosyntec, 2009). The static and seismic slope stability analyses were conducted using computer program SLIDE (Rocscience, 2010). The stability analyses considered four different scenarios of water levels behind Dike 2 as indicated below.

• 744.5 feet-MSL – Lower than the crest of the emergency spillway.

- 746.0 feet MSL Crest of the emergency spillway.
- 748.0 feet MSL Approximately half available flow depth in the emergency spillway.
- 750.0 feet MSL Top of the embankment of Dike 2.

Detailed analyses are provided in Appendix B of this memorandum.

RESULTS & CONCULSIONS

Table 1 below summarizes the results of the hydrologic analysis for the various extreme rainfall events which were considered. As shown on Table 1 the calculated water level is below the crest of the emergency spillway for the 100-year and the 500-year design storm events. The analysis indicates that during the 1,000-year event, approximately 0.6 feet of flow depth may be expected in the emergency spillway.

Return Period (years)	Rainfall Depth (inches)	Calculated Water Level (feet-MSL)	Comment
100	6.77	744.3	Calculated water level is below the emergency spillway elevation.
500	8.31	745.8	Calculated water level is below the emergency spillway elevation.
1,000	9.00	746.6	Calculated water level is 0.6 feet above the crest of the emergency spillway.

Table 1. Summary of Hydrologic Analysis

Table 2 below summarizes the results of the geotechnical integrity evaluation for four water elevation scenarios which were considered. The calculated minimum factor of safety value for static slope stability was 1.6 for the four water elevation scenarios, which is greater than the target factor of safety of 1.5. For the seismic slope stability analyses, the calculated permanent seismic deformation was 1.6 inches, which does not exceed the 6 to 12 inches of maximum allowable deformation (Seed and Bonaparte, 1992).

Water Elevation in Geotechnical Analysis (feet-MSL)	Calculated Static Factor of Safety (FS)	Calculated Permanent Seismic Deformation (inches)	Comment
744.5	1.61	1.6	Water level 744.5 feet-MSL is greater than the calculated water level from the 100-year, 24-hour design storm event.
746	1.61	1.6	Water level 746 feet-MSL is greater than the calculated water level from the 500- year, 24-hour design storm event.
748	1.61	1.6	Water level 748 feet-MSL is greater than the calculated water level from the 1,000- year, 24-hour design storm event.
750	1.61	1.6	Water level 750 feet-MSL is greater than the calculated water level from the 1,000- year, 24-hour design storm event.

Table 2. Summary of Geotechnical Integrity Evaluation

As noted in Table 2 above, the results of the geotechnical integrity analysis for static and seismic conditions are acceptable for water elevations exceeding the 1,000-year design storm event. However, for the 1,000-year storm event, flow can be expected in the emergency spillway, and it is likely that localized erosion may occur in the downward face of the dike, and that minor repairs may be required after the storm event.

REFERENCES

AECOM, "Root Cause Analysis of TVA Kingston Dredge Pond Failure from December 22, 2008", Volume 4, June 12, 2009.

Frankel, A.D., Petersen, M.D., Mueller, C.S., Haller, K.M., Wheeler, R.L., Leyendecker, E.V., Wesson, R.L., Harmsen, S.C., Cramer, C.H., Perkins, D.M., and Rukstales, K.S., "Documentation for the 2002 Update of the National Seismic Hazard Maps", United States Geologic Survey, 2002.

Geosyntec Consultants, Slope Stability Analyses for Dike 2, July 2009.

HydroCAD, "*HydroCAD*TM Storm water Modeling System, Version 9.1", HydroCAD Software Solutions LLC., Chocorua, New Hampshire, 2009.

Hynes, M. and Franklin, A., "*Rationalizing the Seismic Coefficient Method*", Department of the Army, Waterways Experiment Station, Corps of Engineers, Vicksburg, Mississippi, Miscellaneous Paper GL-84-14, July 1984.

Robinson, K. M., Rice, C. E., and Kadavy, K. C., "*Design of Rock Chutes*", American Society of Agricultural Engineers, Volume 41, No. 3, 1998, pp. 621-626.

Rocscience, "*SLIDE* — 2-D Limit Equilibrium Slope Stability for Soil and Rock Slopes", User's Guide, Rocscience Software Inc., Toronto, Ontario, Canada, 2006.

Seed, R. B., and Bonaparte, R., "Seismic Analysis and Design of Lined Waste Fills: Current Practice," *Proceedings, Stability and Performance of Slopes and Embankments-II, Vol. 2*, ASCE Geotechnical Special Publication No. 31, Berkeley, California, 1992, pp. 1521-1545.

Soil Conservation Service (SCS), *Hydrology for Small Watersheds, Technical Release 55 (TR-55)*, United States Department of Agriculture, Soil Conservation Service, Washington, D.C., 1986.

Spencer, E., "*The Thrust Line Criterion in Embankment Stability Analysis*", Géotechnique, Vol. 23, No. 1, pp. 85-100, 1973.

TVA, Tennessee Valley Authority, Kingston Fossil Plant, Interim Drainage Plan, Drawings 10W290 and Calculations (Worley Parsons), 24 April, 2009.

USEPA, RCRA Subtitle D (258) Seismic Design Guidance for Municipal Solid Waste Landfill Facilities. Document Number EPA600-R-95-051, 1995.

* * * * *

APPENDIX – A

HYDROLOGIC ANALYSIS

Geosyntec [°]	>
------------------------	---

consultants

COMPUTATION COVER SHEET

Client: <u>TVA</u> Project: In	ntegrity Evaluation of Dike 2 Project #: GK	4693 Task #: 03
TITLE OF COMPUTATIONS	HYDROLGIC ANALYSIS	6
COMPUTATIONS BY:	Signature Printed Name Jesus Sanchez and Title Senior Staff Engineer	07/14/10 DATE
ASSUMPTIONS AND PROCEDUI CHECKED BY: (Peer Reviewer)	RES Signature Ganesh Krishnan, PE and Title Associate	7-14-2010 DATE
COMPUTATIONS CHECKED BY	Signature Option Printed Name Winsley Peter and Title Engineer	7-14-2010 DATE
COMPUTATIONS BACKCHECKED BY: (Originator)	Signature Jesus Sanchez and Title Senior Staff Engineer	DATE
APPROVED BY: (PM or Designate)	SignatureJaum UnishnawPrinted NameGanesh Krishnan, PEand TitleAssociate	<u>7-14-2010</u> Date
APPROVAL NOTES:		
REVISIONS (Number and initial all	l revisions)	
NO. SHEET D	DATE BY CHECKED BY	APPROVAL
		7

					Geosyntec [⊳]			
			consultants				ts	
					Page	1	of	17
Written by:	Jesus Sanchez	Date:	7/13/2010	Reviewed by:	Ganesh Krishnan	Date:	7/14	/2010
Client: TVA	Project:	Integri	ty Evaluation	of Dike 2	Project/ Proposal No.:	GK4693	Task No.:	02

HYDROLOGIC ANALYSIS

PURPOSE OF ANALYSES

The purpose of this package is to calculate the peak impounded water level behind Dike 2 resulting from 100-, 500-, and 1000-year, 24-hour design storm events. Dike 2 is located at the Tennessee Valley Authority (TVA) Kingston Fossil Plant (Site). Surface water runoff from a majority portion of the extent of the failed dredge cell areas (ash areas) and the former contributing watersheds of these respective areas (off-site areas) is discharged to the Emory River via conveyance features located at Dike 2. The analyses presented herein are intended to provide an estimate of the peak water level in the impounded area behind Dike 2 that will be used to set up scenarios for evaluating the slope stability of the dike, which is presented in Appendix B Geotechnical Integrity Evaluation.

KEY CONSIDERATIONS AND LIMITATIONS

This package addresses the conveyance of surface water runoff by the approximate drainage area that is discharged through the conveyance features located at Dike 2. This packaged does not address the surface water conditions outside limits of this drainage area and it assumed that the water level on the downward side of the dike is fixed at the summer pool elevation (i.e., 741 fee-MSL). For the analysis conducted herein it is assumed that the surface water runoff quantity from the ash and off-site areas exceeds the capacity of the conveyance features upstream of Dike 2. This assumption results in the adaptation of a fictitious modeling scenario where the effective volume of water that is impounded by Dike 2 is the flooded areas below the top of Dike 2 (pond areas).

ANALYSIS METHODOLOGY

The analyses were conducted using accepted hydraulic and hydrologic modeling procedures, and utilized methodology prescribed in Soil Conservation Service (SCS) Technical Release 55 (SCS, 1986). The analysis was conducted by developing a computer model of the contributing ash and off-site area watersheds suing the software package HydroCADTM (HydroCAD, 2009). Computer program analyses are supplemented with other design calculation methods wherever applicable.

Geosyntec[▷]

					consultants			
					Page	2	of	17
Written by:	Jesus Sanchez	Date:	7/13/2010	Reviewed by:	Ganesh Krishnan	Date:	7/14/	/2010
Client: TVA	Project:	Integri	ty Evaluation	of Dike 2	Project/ Proposal No.:	GK4693	Task No.:	02

MAJOR ASSUMPTIONS

• Subcatchment Delineations

- Site Plan Attachment 1 shows the extent of the approximated drainage area of both the ash and off-site areas that discharge through Dike 2.
- Drainage Areas and Flowpaths Attachment 2 shows the delineation of the offsite and ash areas. In addition, the flow paths of the subcatchments are shown.
- Ash Area Components Attachment 3 shows, in finer detail, the delineation of the ash areas. In addition, the extent of the fictitious pond areas, the flow paths of the ash areas, and the location of conveyance features within the flooded area below the top of Dike 2 are shown.
- **Subcatchment Properties** Attachment 4 shows the drainage area, curve number, and travel path length, slope, and velocity factor for each subcatchment. In addition, computations are shown for the curve numbers for each subcatchment.
- **Conduit Properties** Attachment 5 contains the information used to characterize the conveyance of surface water within the Site and to the Emory River.
- **Stage-Storage Relationships** Attachment 6 show the area and corresponding volume at each elevation that is used in the development of stage-storage relationships for each of the ponds (flooded areas below the top of Dike 2). Tables listing the stage-storage values are also provided in this attachment.
- **Rainfall Distribution** Attachment 7 (SCS, 1986) shows the Site to be located in the region designated as a SCS Type II Rainfall Distribution.
- **Rainfall Depth** Rainfall depths for the 100-, 500-, and 1000-year, 24-hour design storm events were obtained through Point Precipitation Frequency Estimates from NOAA Atlas 14 (http://hdsc.nws.noaa.gov/) and are summarized below.

Return Period	Rainfall Depth
(years)	(inches)
100	6.77
500	8.31
1000	9.00

Geosyntec ^c	>
------------------------	---

consultants Page 3 of 17

					Page	3	of	17
Written by:	Jesus Sanchez	Date:	7/13/2010	Reviewed by:	Ganesh Krishnan	Date:	7/14/	2010
Client: TVA	Project:	Integri	ty Evaluation	of Dike 2	Project/ Proposal No.:	GK4693	Task No.:	02

HYDROLOGIC MODELING

- Nodal Network Diagram Attachment 8 shows the nodal network diagram showing the connectivity of the surface water subcatchments, conduits, and ponds listed below.
 - o NA_1 to NA _4: Off-site area northern subcatchments
 - SA_1 to SA_2: Off-site area southern subcatchments
 - ASHBODY-1 to ASHBODY_3: Ash area subcatchments
 - PN and PC Areas: Catchment area of ponds
 - PN and PC: Pond volumes for north and central flooded areas
- **Computer Modeling** A hydraulic and hydrologic analysis was performed using the above described assumptions using the HydroCAD computer model. The results of the modeling are presented in Attachment 9.

RESULTS

The peak impounded water level behind Dike 2 (elevation in Pond Central) arising from the 100-, 500-, and 1000-year, 24-hour design storm events are summarized below.

Return Period (years)	Rainfall Depth (inches)	Calculated Water Level (feet-MSL)	Comment
100	6.77	744.3	Calculated water level is below the emergency spillway elevation.
500	8.31	745.8	Calculated water level is below the emergency spillway elevation.
1,000	9.00	746.6	Calculated water level is 0.6 feet above the crest of the emergency spillway.

Geosyntec[▷]

					consultants			
					Page	4	of	17
Written by:	Jesus Sanchez	Date:	7/13/2010	Reviewed by:	Ganesh Krishnan	Date:	7/14/	/2010
Client: TVA	Project:	Integri	ty Evaluation	of Dike 2	Project/ Proposal No.:	GK4693	Task No.:	02

REFERENCES

HydroCAD, "HydroCADTM Storm water Modeling System, Version 7.1", HydroCAD Software Solutions LLC., Chocorua, New Hampshire, 2005.

SCS, "Computer Program for Project Formulation—Hydrology, Technical Release 20 (TR-20)", United States Department of Agriculture, Soil Conservation Service, Washington, D.C., 1986.

SCS, "Hydrology for Small Watersheds, Technical Release 55 (TR-55)", United States Department of Agriculture, Soil Conservation Service, Washington, D.C., 1986.

					Geosyntec [⊳]			
					consultants			
					Page	5	of	17
Written by:	Jesus Sanchez	Date:	7/13/2010	Reviewed by:	Ganesh Krishnan	Date:	7/14/	/2010
Client: TVA	Project:	Integri	ty Evaluation	of Dike 2	Project/ Proposal No.:	GK4693	Task No.:	02

Attachment 1 – Site Plan

					Geosyntec ⁶			
					consultants			
					Page	6	of	17
Written by:	Jesus Sanchez	Date:	7/13/2010	Reviewed by:	Ganesh Krishnan	Date:	7/14/	2010
Client: TVA	Project:	Integri	ty Evaluation	of Dike 2	Project/ Proposal No.:	GK4693	Task No.:	02

Attachment 2 – Drainage Areas and Flowpaths

					Geosyntec ^v			
					consultants			
					Page	7	of	17
Written by:	Jesus Sanchez	Date:	7/13/2010	Reviewed by:	Ganesh Krishnan	Date:	7/14	/2010
Client: TVA	Project:	Integri	ty Evaluation	of Dike 2	Project/ Proposal No.:	GK4693	Task No.:	02

Attachment 3 – Ash Area Components

L:\CADD\T\TENNESSEE VALLEY AUTHORITY\TVA KIINGSTON GK4693.02\FIGURES\4693-F001

					Geosyntec [⊳]			
					consultants			
					Page	8	of	17
Written by:	Jesus Sanchez	Date:	7/13/2010	Reviewed by:	Ganesh Krishnan	Date:	7/14	/2010
Client: TVA	Project:	Integri	ty Evaluation	of Dike 2	Project/ Proposal No.:	GK4693	Task No.:	02

Attachment 4 – Subcatchment Properties

Written by: Winsley Peter
Date: 07/13/2010
Client: TVA
Project: Integrity Evaluation of Dike 2

Subcatchment Properties Summary Table

				Overland Flow					
Subcatchment ID	Area	Curve Number	Length	Upstream Elevation	Downstream Elevation	Slope	Velocty Factor (K)	Velocity	Time of Concentration
	(acres)		(ft)	(ft)	(ft)	(ft/ft)	-	(ft/s)	(minutes)
SA_1	882.0	66.00	12641	1054	870	0.0146	5	0.60	349
SA_2	624.0	58.00	8746	1033	764	0.0308	5	0.88	166
NA_1	176.0	58.00	3358	900	813	0.0259	5	0.80	70
NA_2	646.0	61.00	6729	764	740	0.0036	7	0.42	268
NA_3	84.0	59.00	1252	871	754	0.0935	7	2.14	10
NA_4	148.0	61.00	4599	926	743	0.0398	7	1.40	55
ASHBODY-1	24.4	91.00	1058	756	748	0.0076	10	0.87	20.3
ASHBODY-2	127.5	91.00	2755	818	750	0.0247	10	1.57	29.2
ASHBODY-3	13.6	91.00	647	788	744	0.0680	10	2.61	4.1

Total Area=

2725.50

Notes:

1) Velcoity Factor [5.0 -woodlands, 7.0 - short grass pasture, 10 - Ash(nearly bare)]

2) Slope = (Upstream Elevation - Downstream Elevation)/ Length

3) Velocity = Kv * S^ 0.5

4) Time of Concentration = L/V

engineers | scientists | innovators

Subcatchment Properties Composite Curve Number Computation

58

CN =

SA_1	882.00			
Percentage	Area	Soil Group	CN	CN x A
7.5%	66.2	С	72	4763
0.2%	1.8	С	91	161
2.9%	25.6	В	58	1484
1.1%	9.7	В	58	563
3.0%	26.5	В	58	1535
2.6%	22.9	В	58	1330
10.9%	96.1	В	58	5576
28.4%	250.5	В	58	14528
5.2%	45.9	В	58	2660
1.3%	11.5	D	79	906
2.4%	21.2	В	58	1228
28.1%	247.8	D	79	19580
1.9%	16.8	С	72	1207
4.6%	40.6	С	72	2921
			SUM =	58440
			CN =	66

SA_2	624.00			
Percentage	Area	Soil Group	CN	CN x A
18.8%	117.3	В	58	6804
1.9%	11.9	В	58	688
1.3%	8.1	В	58	470
6.8%	42.4	В	58	2461
6.6%	41.2	В	58	2389
64.2%	400.6	В	58	23235
0.5%	3.1	D	58	181
			SUM =	36228
			CN =	58

		7		
NA_1	176.00			
Percentage	Area	Soil Group	CN	CN x A
14.2%	25.0	В	58	1450
5.2%	9.2	В	58	531
7.9%	13.9	В	58	806
2.4%	4.2	В	58	245
69.8%	122.8	В	58	7125
0.5%	0.9	В	58	51
			SUM =	10208

NA_2	646.00			
Percentage	Area	Soil Group	CN	CN x A
4.5%	29.1	В	58	1686
3.7%	23.9	В	58	1386
1.8%	11.6	В	58	674
8.5%	54.9	В	58	3185
7.2%	46.5	В	58	2698
2.9%	18.7	В	58	1087
1.8%	11.6	В	58	674
3.8%	24.5	В	58	1424
25.9%	167.3	В	58	9704
0.1%	0.6	С	72	47
5.8%	37.5	В	58	2173
1.0%	6.5	В	58	375
14.5%	93.7	D	79	7400
6.3%	40.7	В	58	2360
0.8%	5.2	С	72	372
0.5%	3.2		100	323
2.1%	13.6	В	58	787
5.7%	36.8	В	58	2136
2.8%	18.1	В	58	1049
0.2%	1.3	С	72	93
			SUM =	39633
			CN =	61

NA_3	84.00			
Percentage	Area	Soil Group	CN	CN x A
19.2%	16.1	В	58	935
7.8%	6.6	В	58	380
5.1%	4.3	В	58	248
13.0%	10.9	В	58	633
34.0%	28.6	В	58	1656
3.3%	2.8	В	58	161
1.8%	1.5	D	79	119
0.5%	0.4		100	42
12.3%	10.3	В	58	599
2.9%	2.4	В	58	141
			SUM =	4917
			CN =	59

NA_4	148.00			
Percentage	Area	Soil Group	CN	CN x A
1.5%	2.2	В	58	129
11.1%	16.4	В	58	953
7.1%	10.5	В	58	609
46.5%	68.8	В	58	3992
5.9%	8.7	В	58	506
4.7%	7.0	В	58	403
12.5%	18.5	D	79	1462
0.2%	0.3	В	58	17
7.4%	11.0	D	79	865
0.9%	1.3	D	79	105
			SUM =	9042
			CN =	61

Notes:

1) Soil Group distribution in each subcatchment is detailed in Attachment 4.

2) Off-site subcatchments assumed to have Woods-grass combination (good condition) land use type from investigation of aerial orthographic photographs.

3) A CN of 100 is applied to water surfaces per recommendations in HydroCAD 9.1.

engineers i scientists i innovators

Reviewed: Jesus Sanchez Date: 07/13/2010 Client: TVA Project: Integrity Evaluation of Dike 2

Hydrologic Soil Group—Roane County, Tennessee (NBA-1)

Web Soil Survey National Cooperative Soil Survey

M	AP LEGEND	MAP INFORMATION
Area of I	nterest (AOI)	Map Scale: 1:8,720 if printed on A size (8.5" × 11") sheet.
	Area of Interest (AOI)	The soil surveys that comprise your AOI were mapped at 1:24,
Soils	Soil Map Units	Please rely on the bar scale on each map sheet for accurate n measurements.
Soil Ra	tings A A/D	Source of Map: Natural Resources Conservation Service Web Soil Survey URL: http://websoilsurvey.nrcs.usda.gov Coordinate System: UTM Zone 16N NAD83
	В	This product is generated from the USDA-NRCS certified data a the version date(s) listed below.
	B/D C	Soil Survey Area: Roane County, Tennessee Survey Area Data: Version 7, Sep 23, 2009
	C/D	Date(s) aerial images were photographed: 12/5/2006
	D Not rated or not available	The orthophoto or other base map on which the soil lines were compiled and digitized probably differs from the background
Water Fe	atures	imagery displayed on these maps. As a result, some minor shi of map unit boundaries may be evident.
	Oceans	
\sim	Streams and Canals	
Transpor	tation	
+ + +	Rails	
~	Interstate Highways	
\sim	US Routes	
~~	Major Roads	

Hydrologic Soil Group

	Hydrologic Soil Group— Summary	y by Map Unit — Roane	e County, Tenness	ee
Map unit symbol	Map unit name	Rating	Acres in AOI	Percent of AOI
DeC	Dewey silt loam, 5 to 12 percent slopes	В	28.4	14.2%
DeE	Dewey silt loam, 20 to 45 percent slopes	В	10.3	5.2%
FuC	Fullerton-Pailo complex, 5 to 12 percent slopes	В	15.8	7.9%
FuD	Fullerton-Pailo complex, 12 to 20 percent slopes	В	4.7	2.4%
FuE	Fullerton-Pailo complex, 20 to 35 percent slopes	В	139.1	69.8%
Ме	Melvin silt loam, frequently flooded	D	0.0	0.0%
MnC	Minvale gravelly silt loam, 5 to 12 percent slopes	В	1.0	0.5%
Totals for Area of Int	erest		199.4	100.0%

Description

Hydrologic soil groups are based on estimates of runoff potential. Soils are assigned to one of four groups according to the rate of water infiltration when the soils are not protected by vegetation, are thoroughly wet, and receive precipitation from long-duration storms.

The soils in the United States are assigned to four groups (A, B, C, and D) and three dual classes (A/D, B/D, and C/D). The groups are defined as follows:

Group A. Soils having a high infiltration rate (low runoff potential) when thoroughly wet. These consist mainly of deep, well drained to excessively drained sands or gravelly sands. These soils have a high rate of water transmission.

Group B. Soils having a moderate infiltration rate when thoroughly wet. These consist chiefly of moderately deep or deep, moderately well drained or well drained soils that have moderately fine texture to moderately coarse texture. These soils have a moderate rate of water transmission.

Group C. Soils having a slow infiltration rate when thoroughly wet. These consist chiefly of soils having a layer that impedes the downward movement of water or soils of moderately fine texture or fine texture. These soils have a slow rate of water transmission.

Group D. Soils having a very slow infiltration rate (high runoff potential) when thoroughly wet. These consist chiefly of clays that have a high shrink-swell potential, soils that have a high water table, soils that have a claypan or clay layer at or near the surface, and soils that are shallow over nearly impervious material. These soils have a very slow rate of water transmission.

If a soil is assigned to a dual hydrologic group (A/D, B/D, or C/D), the first letter is for drained areas and the second is for undrained areas. Only the soils that in their natural condition are in group D are assigned to dual classes.

Rating Options

Aggregation Method: Dominant Condition Component Percent Cutoff: None Specified Tie-break Rule: Lower

Hydrologic Soil Group—Roane County, Tennessee (NBA-2)

Natural Resources Conservation Service

Web Soil Survey National Cooperative Soil Survey 7/9/2010 Page 1 of 4

Area of Interest (AOI) Map Scale: 1:16,900 if printed on A size (8.5" × 11") sheet. Soils Soil Map Units Soil Ratings Soil Map Units Area of Interest (AOI) Please rely on the bar scale on each map sheet for accurate measurements. Soil Ratings Arbot Arbot Please rely on the bar scale on each map sheet for accurate measurements. Soil Ratings Arbot Arbot B B B B B C C C/D B B C/D C/D C/D D Not rated or not available Water Features Oceans C Streams and Canals Transportation Streams and Canals Transportation Kajor Roads Son Rating Rational Ratin Ratina Rational Rational Rational Rational Ratin Ra	Area of Interest (AOI) Map Scale: 1:16,900 if printed on A size (8.5" × 11") sheet. Solis Soli Map Units Soli Ratings Area of Interest (AOI) Area of Interest (AOI) Soli Map Units Soli Ratings Area of Interest (AOI) Area of Interest (AOI) Soli Map Units Soli Ratings Area of Interest (AOI) Area of Interest (AOI) Soli Map Units Solid Ratings Area of Interest (AOI) Area of Interest (AOI) Solid Map Units Solid Ratings Area of Interest (AOI) Area of Interest (AOI) Solid Map Units Solid Ratings Area of Interest (AOI) B Solid Survey URL: http://websolisurvey.ncs.usda.gov Co Solid Survey URL: http://websolisurvey.ncs.usda.gov Co Solid Survey VRL: Notes Version 7. Sep 23, 2009 Date(s) listed below. Solid Survey Area Interest Version 7. Sep 23, 2009 Date(s) aerial images were photographed: 12/5/2006 The orthophoto or other base map on which the soil lines were compiled and digitized probably differs from the background imagery displayed on these maps. As a result, some minor shi of map unit boundaries may be evident. Soli Survey Facea Major Roads <t< th=""><th>Area of Interest (AOI) Area of Interest (AOI) Soils Soil Map Units B Area of Interest (AOI) B C B/D C/D D Not rated or not available Water Features Sceans Starms and Canals Tansportation Mains Mains <th>Area of Interest (AOI) Area of Interest (AOI) Soils Soil Map Units Soil Ratings A A AD B BD CO CO CO D Not rated or not available Vater Features Cocans Streams and Canais Tansportation Main Ratings US Routes Major Roads Major Roads Local Roads</th><th>MA</th><th>AP LEGEND</th><th>MAP INFORMATION</th></th></t<>	Area of Interest (AOI) Area of Interest (AOI) Soils Soil Map Units B Area of Interest (AOI) B C B/D C/D D Not rated or not available Water Features Sceans Starms and Canals Tansportation Mains Mains <th>Area of Interest (AOI) Area of Interest (AOI) Soils Soil Map Units Soil Ratings A A AD B BD CO CO CO D Not rated or not available Vater Features Cocans Streams and Canais Tansportation Main Ratings US Routes Major Roads Major Roads Local Roads</th> <th>MA</th> <th>AP LEGEND</th> <th>MAP INFORMATION</th>	Area of Interest (AOI) Area of Interest (AOI) Soils Soil Map Units Soil Ratings A A AD B BD CO CO CO D Not rated or not available Vater Features Cocans Streams and Canais Tansportation Main Ratings US Routes Major Roads Major Roads Local Roads	MA	AP LEGEND	MAP INFORMATION
Area of Interest (AOI) The soil surveys that comprise your AOI were mapped at 1:24, Soils Soil Map Units Soil Ratings Please rely on the bar scale on each map sheet for accurate in measurements. Arboing A Arboing B Broing B Broing C Cr C Cr C Cr C D Not rated or not available Water Features Streams and Canals Creans Creans Crans Streams and Canals Crans US Routes Major Roads Major Roads Crans Local Roads	Area of Interest (AOI) Soils Soil Map Units Soil Ratings AD AD BD C D CD CD CD D This product is generated from the USDA-NRCS certified data at the version date(s) listed below. Soil Survey Area: Roane County, Tennessee Survey Area Data: Version 7, Sep 23, 2009 Date(s) aerial images were photographed: 12/5/2006 The orthophoto or other base maps. As a result, some minor shi of map unit boundaries may be evident. Streams and Canals Transportation Rails Major Roads Major Roads Local Roads	 Area of Interest (AOI) Soils Soil Map Units Soil Ratings Aro Aro Aro Br Br BrO Cr Cr CrO CrO Not rated or not available Vater Features Sceans States and Canals Transportation Raiis Arais Arais	Area of Interest (AOI) Soils Soil Map Units Soil Ratings Area of Interest (AOI) Soil Map Units Soil Ratings Area of Interest (AOI) Please rely on the bar scale on each map sheet for accurate m measurements. Source of Map: Natural Resources Conservation Service Web Soil Survey URL: http://websoilsurvey.nrcs.usda.gov Coordinate System: UTM Zone 16N NAD83 This product is generated from the USDA-NRCS certified data a the version date(s) listed below. Soil Survey Area: Roane County, Tennessee Survey Area Data: Version 7, Sep 23, 2009 Date(s) aerial images were photographed: 12/5/2006 The orthophoto or other base map on which the soil lines were compiled and digitzed probably differs from the background imagery displayed on these maps. As a result, some minor shift of map unit boundaries may be evident. Streams and Canals Tansportation Major Roads Vacal Roads	Area of In	iterest (AOI)	Map Scale: 1:16,900 if printed on A size (8.5" × 11") sheet.
Soils Please rely on the bar scale on each map sheet for accurate measurements. Soil Ratiry Soil Ratiry A Source of Map: Natural Resources Conservation Service Web Soil Survey URL: http://websoilsurvey.nrcs.usd.gov Coordinate System: UTM Zone 16N NAD83 A/D This product is generated from the USDA-NRCS certified data at the version date(s) listed below. B/D Soil Survey Area: Roane County, Tennessee Survey Area Data: Version 7, Sep 23, 2009 C/D Date(s) aerial images were photographed: 12/5/2006 Not rated or not available The orthophoto or other base map on which the soil lines were compiled and digitized probably differs from the background imagery displayed on these maps. As a result, some minor sho of map unit boundaries may be evident. Image: Oceans Image: Net restate Highways VIS Routes US Routes Major Roads Major Roads Major Roads Local Roads	Soils Soil Map Units Please rely on the bar scale on each map sheet for accurate measurements. Soil Ratings Source of Map: Natural Resources Conservation Service Web Soil Survey URL: http://websoilsurvey.nrcs.usd.gov A/D Coordinate System: UTM Zone 16N NAD83 B/D B/D C/D Cordinate System: Version 7, Sep 23, 2009 C/D Date(s) aerial images were photographed: 12/5/2006 D Not rated or not available Water Features Oceans Oceans Streams and Canals Transportation Interstate Highways VI S Routes Major Roads Major Roads Local Roads	Soil Soil Map Units Please rely on the bar scale on each map sheet for accurate measurements. Soil Ratims Soil Map Units Soil Ratims Source of Map: Natural Resources Conservation Service Web Soil Survey URL: http://websoilsurvey.nrcs.usd.gov Coordinate System: UTM Zone 16N NAD83 B B B/D Coordinate System: UTM Zone 16N NAD83 C Coordinate System: UTM Zone 16N NAD83 C Coordinate System: UTM Zone 16N NAD83 D Coordinate System: UTM Zone 16N NAD83 C Coordinate System: UTM Zone 16N NAD83 D Coordinate System: UTM Zone 16N NAD83 C Coordinate System: UTM Zone 16N NAD83 D Coordinate System: UTM Zone 16N NAD83 Not rated or not available Coil Survey Area: Roane County, Tennessee Survey Area Zourey Area: Roane County, Tennessee Survey Area Zourey Area: Noter to the soil lines were compiled and digitized probably differs from the background imagery displayed on these maps. As a result, some minor shi of map unit boundaries may be evident. Voters Streams and Canals Transportations US Routes Major Roads Local Roads	Soil Map Units Please rely on the bar scale on each map sheet for accurate m measurements. Soil Ratings Soil Map Units And Soil Map: Natural Resources Conservation Service Web Soil Survey URL: http://websoilsurvey.ncs.usd.gov Cordinate System: UTM Zone 16N NAD83 B B B B C Cordinate System: UTM Zone 16N NAD83 C Cordinate System: UTM Zone 16N NAD83 D Cordinate System: UTM Zone 16N NAD83 Mater features Cordinate System: UTM Zone 16N NAD83 Water features Cordinate System: UTM Zone 16N NAD83 Mater features Cordinate System: UTM Zone 16N NAD83 Mater features Soil Survey Area: Roane County, Tennessee Survey Area Date: Version 7, Sep 23, 2009 D Cordinate System: UTM Zone 16N NAD83		Area of Interest (AOI)	The soil surveys that comprise your AOI were mapped at 1:24,00
Soil Ratings Source of Map: Natural Resources Conservation Service Web Soil Survey URL: http://websoilsurvey.nrcs.usda.gov Coordinate System: UTM Zone 16N NAD83 A/D This product is generated from the USDA-NRCS certified data is the version date(s) listed below. B/D Soil Survey Area: Roane County, Tennessee Survey Area Data: Version 7, Sep 23, 2009 C/D Date(s) aerial images were photographed: 12/5/2006 D The orthophoto or other base map on which the soil lines were compiled and digitized probably differs from the background imagery displayed on these maps. As a result, some minor shi of map unit boundaries may be evident. Vater Features Oceans Interstate Highways Interstate Highways VIS Routes US Routes Major Roads Major Roads Interstate Highways Local Roads	Soil Ratings Source of Map: Natural Resources Conservation Service A A A/D B B B B/D Coardinate System: UTM Zone 16N NADB3 C Cordinate System: UTM Zone 16N NADB3 C Soil Ratings C Coardinate System: UTM Zone 16N NADB3 D Soil Survey Area: Roane County, Tennessee C/D D Not rated or not available Date(s) aerial images were photographed: 12/5/2006 Nater Features Oceans Oceans Streams and Canals Transportation Rails Interstate Highways US Routes Major Roads US Routes	Soil Ratings Source of Map: Natural Resources Conservation Service Web Soil Survey URL: http://websoilsurvey.nrcs.usda.gov Coordinate System: UTM Zone 16N NAD83 A/D B B/D B/D C C C/D C/D Not rated or not available Soil Survey Area: Roane County, Tennessee Survey Area Data: Version 7, Sep 23, 2009 Nater Foatures Cocanis Streams and Canals The orthophoto or other base map on which the soil lines were compiled and digitized probably differs from the background imagery displayed on these maps. As a result, some minor shi of map unit boundaries may be evident. Transportstor Streams and Canals Transportstor US Routes Major Roads US Routes Local Roads Local Roads	Soil Ratings Source of Map: Natural Resources Conservation Service A A AD Interstate Highways Crans Cocans Cocans Source of Map: Natural Resources Conservation Service Web Soil Survey URL: http://websoilsurvey.nrcs.usda.gov Coordinate System: UTM Zone 16N NAD83 B B B This product is generated from the USDA-NRCS certified data a C C CD CD D Date(s) aerial images were photographed: 12/5/2006 The orthophoto or other base map on which the soil lines were compiled and digitized probably differs from the background imagery displayed on these maps. As a result, some minor shill of map unit boundaries may be evident. Maior Roads US Routes Major Roads Local Roads	Soils	Soil Map Units	Please rely on the bar scale on each map sheet for accurate ma measurements.
B B/D C C/D D C/D D Not rated or not available Water Features Oceans Streams and Canals Transportation Rails Interstate Highways U S Routes Major Roads Local Roads	Image: Notice B B/D C C/D D Not rated or not available Water Features Oceans Streams and Canals Transportation Image: Rails Interstate Highways US Routes Major Roads Local Roads	Image: Note Image: B B B/D B/D C C C/D D Not rated or not available Water Features Oceans Streams and Canals Transportation Rails Interstate Highways US Routes Major Roads Local Roads	Note B B/D C C/D D Not rated or not available Water Features Oceans Streams and Canals Transportation Transportation Rails Major Roads Local Roads	Soil Ra	tings A	Source of Map: Natural Resources Conservation Service Web Soil Survey URL: http://websoilsurvey.nrcs.usda.gov Coordinate System: UTM Zone 16N NAD83
B/D Soil Survey Area: Roane County, Tennessee C Soil Survey Area: Roane County, Tennessee C/D Date(s) aerial images were photographed: 12/5/2006 D Not rated or not available The orthophoto or other base map on which the soil lines were compiled and digitized probably differs from the background imagery displayed on these maps. As a result, some minor shi of map unit boundaries may be evident. Vater Features Oceans Vater Features Oceans Streams and Canais Transportation Pransportation US Routes Vator Roads Major Roads Local Roads Local Roads	B/D C C/D D Not rated or not available Vater Features Oceans Streams and Canals Transportation Rails Interstate Highways US Routes Major Roads Local Roads	B/D C C/D D Not rated or not available Vater Features Oceans Streams and Canals Transportation Rails Interstate Highways US Routes Major Roads Local Roads Soil Survey Area: Roane County, Tennessee Survey Area Data: Version 7, Sep 23, 2009 Date(s) aerial images were photographed: 12/5/2006 The orthophoto or other base map on which the soil lines were compiled and digitized probably differs from the background imagery displayed on these maps. As a result, some minor shi of map unit boundaries may be evident.	B/D C C/D D Not rated or not available Vater Features Oceans Streams and Canals Transportation Interstate Highways US Routes Major Roads Local Roads		B	This product is generated from the USDA-NRCS certified data as the version date(s) listed below.
C/D Date(s) aerial images were photographed: 12/5/2006 1 D Not rated or not available The orthophoto or other base map on which the soil lines were compiled and digitized probably differs from the background imagery displayed on these maps. As a result, some minor shi of map unit boundaries may be evident. Vater Features Oceans Coceans Streams and Canals Transportation Nerstate Highways VIS Routes US Routes Major Roads Local Roads	C/D Date(s) aerial images were photographed: 12/5/2006 D Not rated or not available The orthophoto or other base map on which the soil lines were compiled and digitized probably differs from the background imagery displayed on these maps. As a result, some minor shi of map unit boundaries may be evident. Water Features Oceans Oceans Streams and Canals Transportation Rails ✓ Interstate Highways ✓ US Routes ✓ Major Roads ✓ Local Roads	□□□□□Not rated or not availableWater Features□□○ Ceans□○ Ceans <td> C/D D Date(s) aerial images were photographed: 12/5/2006 The orthophoto or other base map on which the soil lines were compiled and digitized probably differs from the background imagery displayed on these maps. As a result, some minor shift of map unit boundaries may be evident. Ceans Streams and Canals Transportation Rails Interstate Highways Interstate Highways Stocal Roads Local Roads </td> <td></td> <td>B/D C</td> <td>Soil Survey Area: Roane County, Tennessee Survey Area Data: Version 7, Sep 23, 2009</td>	 C/D D Date(s) aerial images were photographed: 12/5/2006 The orthophoto or other base map on which the soil lines were compiled and digitized probably differs from the background imagery displayed on these maps. As a result, some minor shift of map unit boundaries may be evident. Ceans Streams and Canals Transportation Rails Interstate Highways Interstate Highways Stocal Roads Local Roads 		B/D C	Soil Survey Area: Roane County, Tennessee Survey Area Data: Version 7, Sep 23, 2009
□ □ Not rated or not available Water Features ○ Oceans ✓ Streams and Canals Transportation Mails ✓ Interstate Highways ✓ US Routes ✓ Major Roads ✓ Local Roads	 □ Not rated or not available Water Features Oceans ✓ Oceans ✓ Streams and Canals Transportation Interstate Highways ✓ Interstate Highways ✓ US Routes ✓ Major Roads ✓ Local Roads 	 □ □ Not rated or not available Water Features Oceans Streams and Canals Transportation Interstate Highways ✓ US Routes ✓ Major Roads ✓ Local Roads 	 D Not rated or not available Water Features Oceans Streams and Canals Transportation Interstate Highways US Routes Major Roads Local Roads 		C/D	Date(s) aerial images were photographed: 12/5/2006
Water Features of map unit boundaries maps. As a result, some minor shi of map unit boundaries may be evident. Oceans Streams and Canals Transportation Interstate Highways VIS Routes US Routes Major Roads Local Roads	Water Features Oceans Streams and Canals Transportation Here Rails Interstate Highways US Routes Major Roads Local Roads	Water Features Oceans Streams and Canals Transportation ### Rails Interstate Highways US Routes Major Roads Iccal Roads	Water Features Oceans Streams and Canals Transportation Interstate Highways US Routes Major Roads Local Roads		D Not rated or not available	The orthophoto or other base map on which the soil lines were compiled and digitized probably differs from the background
Oceans Streams and Canals Transportation Interstate Highways VIS Routes Major Roads Local Roads	 Oceans Streams and Canals Transportation Rails VIS Routes VIS Routes VIS Routes Local Roads	 Oceans Streams and Canals Transportation Rails Interstate Highways US Routes Major Roads Icoal Roads	 Oceans Streams and Canals Transportation Rails US Routes Major Roads Local Roads	Water Fea	atures	imagery displayed on these maps. As a result, some minor shift of map unit boundaries may be evident.
Streams and Canals Transportation Interstate Highways VS Routes Major Roads Local Roads	Streams and Canals Transportation Rails Interstate Highways US Routes Major Roads Image: Note Roads Image: Note Roads	Streams and CanalsTransportationImage: RailsInterstate HighwaysImage: RoadsImage: RoadsImage: RoadsImage: Roads	Image: Streams and Canals		Oceans	
Transportation Image: Provide a colspan="2">A colspan="2" Colspan="2" A colspan	Image: Transport Image: Rails	Image: Transportation Rails Image: Rails Interstate Highways Image: Source US Routes Image: Rails Major Roads Image: Rails Local Roads	Image: Transport Rails Image: Rails Interstate Highways Image: Rails US Routes Image: Rails Major Roads Image: Rails Local Roads	\sim	Streams and Canals	
Rails Interstate Highways US Routes Major Roads Local Roads	HH Rails Interstate Highways US Routes Major Roads Local Roads	HH Rails Interstate Highways US Routes Major Roads Local Roads	HH Rails Interstate Highways US Routes Major Roads Local Roads	Transport	tation	
 Interstate Highways US Routes Major Roads Local Roads 	 Interstate Highways US Routes Major Roads Local Roads 	 Interstate Highways US Routes Major Roads Local Roads 	 Interstate Highways US Routes Major Roads Local Roads 	+ + +	Rails	
US Routes Major Roads Local Roads	US Routes Major Roads Local Roads	US Routes Major Roads Local Roads	US Routes Major Roads Local Roads	~	Interstate Highways	
Major Roads	Major Roads	Major Roads	Major Roads	\sim	US Routes	
Note Local Roads	Local Roads	Local Roads	Local Roads	$\sim\sim$	Major Roads	
				\sim	Local Roads	

Hydrologic Soil Group

	Hydrologic Soil Group— Summary by Map Unit — Roane County, Tennessee						
Map unit symbol	Map unit name	Rating	Acres in AOI	Percent of AOI			
AeC	Allen loam, 5 to 12 percent slopes	В	31.8	4.5%			
AeD	Allen loam, 12 to 20 percent slopes	В	26.3	3.7%			
DeB	Dewey silt loam, 2 to 5 percent slopes	В	12.9	1.8%			
DeC	Dewey silt loam, 5 to 12 percent slopes	В	59.8	8.5%			
DeD	Dewey silt loam, 12 to 20 percent slopes	В	50.7	7.2%			
EtB	Etowah loam, 2 to 5 percent slopes	В	20.2	2.9%			
FuC	Fullerton-Pailo complex, 5 to 12 percent slopes	В	12.8	1.8%			
FuD	Fullerton-Pailo complex, 12 to 20 percent slopes	В	26.6	3.8%			
FuE	Fullerton-Pailo complex, 20 to 35 percent slopes	В	182.2	25.9%			
На	Hamblen silt loam, occasionally flooded	С	0.8	0.1%			
JnF	Jefferson cobbly loam, 20 to 50 percent slopes	В	40.6	5.8%			
LbD	Lily loam, 12 to 20 percent slopes	В	7.0	1.0%			
Ме	Melvin silt loam, frequently flooded	D	101.6	14.5%			
MnC	Minvale gravelly silt loam, 5 to 12 percent slopes	В	44.2	6.3%			
SwB	Swafford loam, 2 to 5 percent slopes	С	5.9	0.8%			
W	Water		3.4	0.5%			
WaB	Waynesboro loam, 2 to 5 percent slopes	В	14.8	2.1%			
WaC	Waynesboro loam, 5 to 12 percent slopes	В	39.9	5.7%			
WaD	Waynesboro loam, 12 to 20 percent slopes	В	19.9	2.8%			
WhB	Whitwell loam, 1 to 4 percent slopes, occasionally flooded	С	1.3	0.2%			
Totals for Area of Ir	iterest		702.8	100.0%			

USDA

Description

Hydrologic soil groups are based on estimates of runoff potential. Soils are assigned to one of four groups according to the rate of water infiltration when the soils are not protected by vegetation, are thoroughly wet, and receive precipitation from long-duration storms.

The soils in the United States are assigned to four groups (A, B, C, and D) and three dual classes (A/D, B/D, and C/D). The groups are defined as follows:

Group A. Soils having a high infiltration rate (low runoff potential) when thoroughly wet. These consist mainly of deep, well drained to excessively drained sands or gravelly sands. These soils have a high rate of water transmission.

Group B. Soils having a moderate infiltration rate when thoroughly wet. These consist chiefly of moderately deep or deep, moderately well drained or well drained soils that have moderately fine texture to moderately coarse texture. These soils have a moderate rate of water transmission.

Group C. Soils having a slow infiltration rate when thoroughly wet. These consist chiefly of soils having a layer that impedes the downward movement of water or soils of moderately fine texture or fine texture. These soils have a slow rate of water transmission.

Group D. Soils having a very slow infiltration rate (high runoff potential) when thoroughly wet. These consist chiefly of clays that have a high shrink-swell potential, soils that have a high water table, soils that have a claypan or clay layer at or near the surface, and soils that are shallow over nearly impervious material. These soils have a very slow rate of water transmission.

If a soil is assigned to a dual hydrologic group (A/D, B/D, or C/D), the first letter is for drained areas and the second is for undrained areas. Only the soils that in their natural condition are in group D are assigned to dual classes.

Rating Options

Aggregation Method: Dominant Condition Component Percent Cutoff: None Specified Tie-break Rule: Lower

Hydrologic Soil Group—Roane County, Tennessee (NBA-3)

7/9/2010 Page 1 of 4

Area of Interest (AOI) Map Scale: 1:7,510 if printed on A size (8.5" × 11") sheet. Soils The soil surveys that comprise your AOI were mapped at 1:24 Soil Map Units Please rely on the bar scale on each map sheet for accurate measurements. Soil Ratings Source of Map: Natural Resources Conservation Service Web Soil Survey URL: http://websoilsurvey.nrcs.usda.gov Coordinate System: UTM Zone 16N NAD63 Area of not available This product is generated from the USDA-NRCS certified data the version date(s) listed below. Soil Survey AR: Coordinate System: UTM Zone 16N NAD63 BrD Soil Survey AR: Roane County, Tennessee Survey Area: Roane County, Tennessee Survey Area Data: Version 7, Sep 23, 2009 D Date(s) aerial images were photographed: 12/5/2006 The orthophoto or other base map on which the soil lines were complied and digitized probably differs from the background imagery displayed on these maps. As a result, some minor sh of map unit boundaries may be evident. Map Rais Visterster Highways Varierster Highways Vistor Roads Map Roads Map Roads Map Roads Kairest Kighways	Area of Interest (AOI) Area of Interest (AOI) Soils Soil Map Units Soil Ratings A AD B BD CD CD CD CD D Not rated or not available Water Festures Cocans Strams and Canals Tansportation Mais	Area of Interest (AOI) Area of Interest (AOI) Soils Soil Map Units Bab Bab Bab C Bab Cib Cib <tr< th=""><th>Area of Interest (AOI) Area of Interest (AOI) Soils Soil Map Units Soil Ratings AD BD BD CO Cocaris Statemis and Conals Cocaris Cocaris Major Roads Cocal Roads</th><th>IVI./</th><th>AP LEGEND</th><th>MAP INFORMATION</th></tr<>	Area of Interest (AOI) Area of Interest (AOI) Soils Soil Map Units Soil Ratings AD BD BD CO Cocaris Statemis and Conals Cocaris Cocaris Major Roads Cocal Roads	IVI. /	AP LEGEND	MAP INFORMATION
Area of Interest (AOI) The soil surveys that comprise your AOI were mapped at 1:24 Soils Soil Map Units Soil Ratirys A A A AD Soil Survey URL: http://websoilsurvey.nrcs.usda.gov AD This product is generated from the USDA-NRCS certified data the version date(s) listed below. B/D Soil Survey Area: Roane County, Tennessee C C D D Vater Features Oceans Oceans Streams and Canals Transportation Major Roads Major Roads Local Roads	Area of Interest (AOI) Soils Soil Map Units Soil Ratirest Soil Ratirest Area Area Area Soil Ratirest Soil Ratirest Soil Ratirest Soil Ratirest Area Area Area Soil Ratirest Soil Ratirest Soil Ratirest Soil Ratirest Soil Area <th>Area of Interest (AOI) Soils Soil Map Units Soil Ratings Area of Interest (AOI) Soil Ratings Area of Interest (AOI)</th> <th> Area of Interest (AOI) Soils Soil Map Units Soil Ratings AD B BD CD CD CD CD CD CD CD DD Not rated or not available Water Features Strans and Canals Transportation Strans and Canals Canals Canals</th> <th>Area of Int</th> <th>terest (AOI)</th> <th>Map Scale: 1:7,510 if printed on A size (8.5" × 11") sheet.</th>	Area of Interest (AOI) Soils Soil Map Units Soil Ratings Area of Interest (AOI) Soil Ratings Area of Interest (AOI)	 Area of Interest (AOI) Soils Soil Map Units Soil Ratings AD B BD CD CD CD CD CD CD CD DD Not rated or not available Water Features Strans and Canals Transportation Strans and Canals Canals Canals	Area of Int	terest (AOI)	Map Scale: 1:7,510 if printed on A size (8.5" × 11") sheet.
Soils Soil Map Units Please rely on the bar scale on each map sheet for accurate measurements. Soil Ratimy A A Source of Map: Natural Resources Conservation Service Web Soil Survey URL: http://websoilsurvey.nrcs.usd.gov Coordinate System: UTM Zone 16N NAD83 B B B B B C CD Soil Survey Area: Roane County, Tennessee Survey Area Data: Version 7, Sep 23, 2009 CD Date(s) aerial images were photographed: 12/5/2006 D Date(s) aerial images were photographed: 12/5/2006 The orthophoto or other base map on which the soil lines were compiled and digitized probably differs from the background imagery displayed on these maps. As a result, some minor shot map unit boundaries may be evident. Mater Features Oceans Image: Vision and Canais Sing Roads Image: Vision and Canais Vision and Canais Image: Vision and Canais Vision and Canais Image: Vision and Canais Vision and Canais Image: Vision Boate Highways Vision Roads Image: Vision Roads Vision Roads Image: Vision Roads Vision Roads Image: Vision Roads Vision Roads	Soils Soil Map Units Please rely on the bar scale on each map sheet for accurate measurements. Soil Ratings A A Source of Map: Natural Resources Conservation Service Web Soil Survey URL: http://websoilsurvey.nrcs.usd.gov Coordinate System: UTM Zone 16N NAD83 B A/D B B/D C Coordinate System: UTM Zone 16N NAD83 D B/D C Coordinate System: UTM Zone 16N NAD83 D B/D C Coordinate System: UTM Zone 16N NAD83 D Coordinate System: UTM Zone 16N NAD83 D Soil Survey Area: Roane County, Tennessee Survey Area Data: Version 7, Sep 23, 2009 D C/D D Date(s) aerial images were photographed: 12/S/2006 The orthophoto or other base map on which the soil lines were compiled and digitzed probably differs from the background imagery displayed on these maps. As a result, some minor sh of map unit boundaries may be evident. Image: Version 7, Sep 33 Soil Survey Area: Not nate or not available Image: Version 7, Sep 34 The orthophoto or other base map on which the soil lines were compiled and digitzed probably differs from the background imagery displayed on these maps. As a result, some minor sh of map unit boundaries may be evident. Image: Version 7, Sep 34 Version 7, Sep 34 <td>Soil Map Units Please rely on the bar scale on each map sheet for accurate measurements. Soil Map Units Source of Map: Natural Resources Conservation Service Web Soil Survey URL: http://websoilsurvey.ncs.usd.gov Cordinate System: UTM Zone 16N NAD83 AD B B This product is generated from the USDA-NRCS certified data a the version date(s) listed below. B C CD Soil Survey Area: Roane County, Tennessee Survey Area Data: Version 7, Sep 23, 2009 D D Not rated or not available Date(s) aerial images were photographed: 12/5/2006 Vexter Fettres Oceans Image: Visplayed on these maps. As a result, some minor shift of map unit boundaries may be evident. Visplayed on these maps. As a result, some minor shift of map unit boundaries may be evident. Image: Visplayed on these maps. As a result, some minor shift of map unit boundaries may be evident. Image: Visplayed on these maps. As a result, some minor shift of map unit boundaries may be evident. Image: Visplayed on these maps. As a result, some minor shift of map unit boundaries may be evident. Image: Visplayed on these maps. As a result, some minor shift of map unit boundaries may be evident. Image: Visplayed on these maps. As a result, some minor shift of map unit boundaries may be evident. Image: Visplayed on these maps. As a result some minor shift of map unit boundaries may b</td> <td>Soils Soil Map Units Please rely on the bar scale on each map sheet for accurate m measurements. Soil Ratiry= Source of Map: Natural Resources Conservation Service Web Soil Survey URL: http://websoilsurvey.ncs.usd.gov Coordinate System: UTM Zone 16N NAD83 B B Source of Map: Natural Resources Conservation Service Web Soil Survey URL: http://websoilsurvey.ncs.usd.gov Coordinate System: UTM Zone 16N NAD83 B B Source of Map: Natural Resources Conservation Service Web Soil Survey URL: http://websoilsurvey.ncs.usd.gov Coordinate System: UTM Zone 16N NAD83 C B/D Soil Survey Area: Roane County, Tennessee Survey Area Data: Version 7, Sep 23, 2009 D C/D D Not rated or not available Soil Survey Area: Roane County, Tennessee Survey Area Data: Version 7, Sep 23, 2009 Veter Fettres Oceans Veter Fettres Oceans Streams and Canals The orthophoto or other base map on which the soil lines were compiled and digitized probably differs from the background imagery displayed on these maps. As a result, some minor shill of map unit boundaries may be evident. Veter Fettres US Routes Waigr Roads Local Roads Waigr Roads Local Roads</td> <td></td> <td>Area of Interest (AOI)</td> <td>The soil surveys that comprise your AOI were mapped at 1:24,00</td>	Soil Map Units Please rely on the bar scale on each map sheet for accurate measurements. Soil Map Units Source of Map: Natural Resources Conservation Service Web Soil Survey URL: http://websoilsurvey.ncs.usd.gov Cordinate System: UTM Zone 16N NAD83 AD B B This product is generated from the USDA-NRCS certified data a the version date(s) listed below. B C CD Soil Survey Area: Roane County, Tennessee Survey Area Data: Version 7, Sep 23, 2009 D D Not rated or not available Date(s) aerial images were photographed: 12/5/2006 Vexter Fettres Oceans Image: Visplayed on these maps. As a result, some minor shift of map unit boundaries may be evident. Visplayed on these maps. As a result, some minor shift of map unit boundaries may be evident. Image: Visplayed on these maps. As a result, some minor shift of map unit boundaries may be evident. Image: Visplayed on these maps. As a result, some minor shift of map unit boundaries may be evident. Image: Visplayed on these maps. As a result, some minor shift of map unit boundaries may be evident. Image: Visplayed on these maps. As a result, some minor shift of map unit boundaries may be evident. Image: Visplayed on these maps. As a result, some minor shift of map unit boundaries may be evident. Image: Visplayed on these maps. As a result some minor shift of map unit boundaries may b	Soils Soil Map Units Please rely on the bar scale on each map sheet for accurate m measurements. Soil Ratiry= Source of Map: Natural Resources Conservation Service Web Soil Survey URL: http://websoilsurvey.ncs.usd.gov Coordinate System: UTM Zone 16N NAD83 B B Source of Map: Natural Resources Conservation Service Web Soil Survey URL: http://websoilsurvey.ncs.usd.gov Coordinate System: UTM Zone 16N NAD83 B B Source of Map: Natural Resources Conservation Service Web Soil Survey URL: http://websoilsurvey.ncs.usd.gov Coordinate System: UTM Zone 16N NAD83 C B/D Soil Survey Area: Roane County, Tennessee Survey Area Data: Version 7, Sep 23, 2009 D C/D D Not rated or not available Soil Survey Area: Roane County, Tennessee Survey Area Data: Version 7, Sep 23, 2009 Veter Fettres Oceans Veter Fettres Oceans Streams and Canals The orthophoto or other base map on which the soil lines were compiled and digitized probably differs from the background imagery displayed on these maps. As a result, some minor shill of map unit boundaries may be evident. Veter Fettres US Routes Waigr Roads Local Roads Waigr Roads Local Roads		Area of Interest (AOI)	The soil surveys that comprise your AOI were mapped at 1:24,00
Soil Ratirus Source of Map: Natural Resources Conservation Service Web Soil Survey URL: http://websoilsurvey.nrcs.usda.gov Coordinate System: UTM Zone 16N NAD83 ADD B B This product is generated from the USDA-NRCS certified data the version date(s) listed below. B/D Coordinate System: UTM Zone 16N NAD83 CO Coordinate System: UTM Zone 16N NAD83 CO B/D CO Coordinate System: UTM Zone 16N NAD83 District System: Coordinate System: UTM Zone 16N NAD83 Coordinate System: UTM Zone 16N NAD83 CO Coordinate System: UTM Zone 16N NAD83 District System: Coordinate System: Coordinate System: UTM Zone 16N NAD83 Coordinate System: UTM Zone 16N NAD83 Vare System: Coordinate System: Coordinate System: Coordinate System: UTM Zone 16N NAD83 Coordinate System: UTM Zone 16N NAD83 Vare System: Coordinate System: Coordinate System: Natural Resources Conservation System: Uterson 7, Sep 23, 2009 Date(s) aerial images were photographed: 12/5/2006 Transport Oceans Streams and Canals The orthophoto or other base map on which the soil lin	Soll Ratings A A A AD B B B/D B/D B/D C C C/D D Not rated or not available Vater Features Cceans Streams and Canals Transportet Major Roads Major Roads Local Roads	Soil Ratings A AD B B/D B/D C C/D C/D D Not rated or not available Vater Features Oceans Streams and Canais Transportation Mains	Soil Ratings A A AD B BD C CD CD D Not rated or not available Vater Features Oceans Streams and Canals Transportation Major Roads Major Roads Local Roads	Soils	Soil Map Units	Please rely on the bar scale on each map sheet for accurate ma measurements.
Image: Indext in the interstate Highways Image: Indext interstate Highw	Image: Streams and Canals Image: Streams and Canals This product is generated from the USDA-NRCS certified data the version date(s) listed below. Soil Survey Area: Roane County, Tennessee Survey Area Data: Version 7, Sep 23, 2009 Date(s) aerial images were photographed: 12/5/2006 The orthophoto or other base map on which the soil lines were compiled and digitized probably differs from the background imagery displayed on these maps. As a result, some minor sh of map unit boundaries may be evident. Image: Version 7, Sep 23, 2009 Date(s) aerial images were photographed: 12/5/2006 The orthophoto or other base map on which the soil lines were compiled and digitized probably differs from the background imagery displayed on these maps. As a result, some minor sh of map unit boundaries may be evident. Image: Version 7, Sep 23, 2009 Date(s) aerial images were photographed: 12/5/2006 The orthophoto or other base map on which the soil lines were compiled and digitized probably differs from the background imagery displayed on these maps. As a result, some minor sh of map unit boundaries may be evident. Image: Version 7, Sep 23, 2009 Date(s) aerial images were photographed: 12/5/2006 The orthophoto or other base map on which the soil lines were compiled and digitized probably differs from the background imagery displayed on these maps. As a result, some minor sh of map unit boundaries may be evident. Image: Version 7, Sep 23, 2009 Date(s) aerial images were photographed: 12/5/2006 The orthophoto or other base map on which the soil lines were compiled and digitized probably differs from the background imagery displayed on these maps. Image: Version 7, Sep 23, 2009 Date(s) aerial images were photographed: 12/5/2006 The orthophoto orther base map on which the soil lines were the orthophotographed: 12/5/2006 The orthophotographed: 12/5/2006 The orthophotographed:	B B/D C C/D D Not rated or not available Water Features Oceans Streams and Canals Transportation Rails Interstate Highways US Routes Major Roads Local Roads	B B/D C C C/D D Not rated or not available Water Features Oceans Streams and Canals Transportation Raits Interstate Highways US Routes Major Roads Local Roads	Soil Rat	ings A	Source of Map: Natural Resources Conservation Service Web Soil Survey URL: http://websoilsurvey.nrcs.usda.gov Coordinate System: UTM Zone 16N NAD83
B/D Soil Survey Area: Roane County, Tennessee C Survey Area Data: Version 7, Sep 23, 2009 C/D Date(s) aerial images were photographed: 12/5/2006 D Not rated or not available Not rated or not available The orthophoto or other base map on which the soil lines were compiled and digitized probably differs from the background imagery displayed on these maps. As a result, some minor sh of map unit boundaries may be evident. Vater Features Oceans Vater Features Streams and Canals Transportation Rails Vater Sources US Routes Major Roads Local Roads	B/D Soil Survey Area: Rails Interstate Highways US Routes Soil Survey Area: Rails Local Roads Soil Survey Area: Roane County, Tennessee Soil Survey Area: Rails Local Roads	B/D C C/D D Not rated or not available Water Features Oceans Streams and Canals Transportation Rails Interstate Highways US Routes Major Roads Local Roads Soil Survey Area: Roane County, Tennessee Survey Area Data: Version 7, Sep 23, 2009 Date(s) aerial images were photographed: 12/5/2006 The orthophoto or other base map on which the soil lines were compiled and digitized probably differs from the background imagery displayed on these maps. As a result, some minor shi of map unit boundaries may be evident.	B/D C C/D D Not rated or not available Water Features Oceans Streams and Canals Transportation Rails Interstate Highways US Routes Major Roads Local Roads Soil Survey Area: Roane County, Tennessee Survey Area Data: Version 7, Sep 23, 2009 Date(s) aerial images were photographed: 12/5/2006 The orthophoto or other base map on which the soil lines were compiled and digitized probably differs from the background imagery displayed on these maps. As a result, some minor shif of map unit boundaries may be evident.		В	This product is generated from the USDA-NRCS certified data as the version date(s) listed below.
C/D Date(s) aerial images were photographed: 12/5/2006 D Not rated or not available The orthophoto or other base map on which the soil lines were compiled and digitized probably differs from the background imagery displayed on these maps. As a result, some minor sho of map unit boundaries may be evident. Water Features Oceans Variando or other base map on which the soil lines were compiled and digitized probably differs from the background imagery displayed on these maps. As a result, some minor sho of map unit boundaries may be evident. Transportation Rails ✓ Interstate Highways ✓ US Routes ✓ Major Roads ✓ Local Roads	C/D Date(s) aerial images were photographed: 12/5/2006 □ D Not rated or not available The orthophoto or other base map on which the soil lines were compiled and digitized probably differs from the background imagery displayed on these maps. As a result, some minor sho of map unit boundaries may be evident. Water Features Oceans ✓ Oceans ✓ Streams and Canals Tansportation US Routes ✓ US Routes ✓ Major Roads ✓ Local Roads	 C/D D Not rated or not available Water Features Oceans Streams and Canals Transportation Rails Interstate Highways US Routes Major Roads Local Roads 	 C/D D Date(s) aerial images were photographed: 12/5/2006 The orthophoto or other base map on which the soil lines were compiled and digitized probably differs from the background imagery displayed on these maps. As a result, some minor shife of map unit boundaries may be evident. Vater Features Oceans Streams and Canals Transportation Rails Interstate Highways US Routes Major Roads Local Roads 		B/D C	Soil Survey Area: Roane County, Tennessee Survey Area Data: Version 7, Sep 23, 2009
 □ □ Not rated or not available Water Features ○ Oceans ✓ Streams and Canals Transportation Interstate Highways ✓ US Routes ✓ Major Roads ✓ Local Roads 	 □ □ Not rated or not available Water Features Oceans Streams and Canals Transportation □ □	 □ □ Not rated or not available Water Features ○ Oceans ○ Streams and Canals Transportation □ □<td> □ □ Not rated or not available Water Features Oceans Streams and Canals Transportation Ⅲ Rails ✓ Interstate Highways ✓ US Routes ✓ Major Roads ✓ Local Roads </td><td></td><td>C/D</td><td>Date(s) aerial images were photographed: 12/5/2006</td>	 □ □ Not rated or not available Water Features Oceans Streams and Canals Transportation Ⅲ Rails ✓ Interstate Highways ✓ US Routes ✓ Major Roads ✓ Local Roads 		C/D	Date(s) aerial images were photographed: 12/5/2006
Water Features imagery displayed on these maps. As a result, some minor sh of map unit boundaries may be evident. Oceans Streams and Canals Transportation Interstate Highways Interstate Highways US Routes Major Roads Local Roads	Water Features imagery displayed on these maps. As a result, some minor sh of map unit boundaries may be evident. Oceans Streams and Canals Transportation Rails Interstate Highways US Routes Wajor Roads Local Roads	Water Features imagery displayed on these maps. As a result, some minor shi of map unit boundaries may be evident. Coceans Streams and Canals Transportation Rails Interstate Highways US Routes Major Roads Local Roads	Water Features imagery displayed on these maps. As a result, some minor shit of map unit boundaries may be evident. ✓ Streams and Canals Transportation Interstate Highways ✓ US Routes ✓ Major Roads ✓ Local Roads		D Not rated or not available	The orthophoto or other base map on which the soil lines were compiled and digitized probably differs from the background
Oceans Streams and Canals Transportation Rails Interstate Highways US Routes Major Roads Local Roads	Oceans Streams and Canals Transportation Interstate Highways US Routes Major Roads Local Roads	 Oceans Streams and Canals Transportation Rails VI Interstate Highways VI SRoutes Major Roads Valor Roads	Oceans ✓ Streams and Canals Transportation Interstate Highways ✓ US Routes ✓ Major Roads ✓ Local Roads	Water Fea	tures	imagery displayed on these maps. As a result, some minor shift of map unit boundaries may be evident.
Streams and Canals Transportation Interstate Highways VIS Routes Major Roads Local Roads	Streams and Canals Transportation Rails Interstate Highways US Routes Major Roads Image: Note Roads	Streams and CanalsTransportationImage: RailsImage: Rails	Streams and CanalsTransportsImage: RailsAllsImage: RoutesImage: Routes		Oceans	
Image: Transportation Rails Image: Transportation Interstate Highways Image: Transportation US Routes Image: Transportation Major Roads Image: Transportation Local Roads	Image: Transportation Rails Image: Transportation Interstate Highways Image: Transportation US Routes Image: Transportation Major Roads Image: Transportation Local Roads	Image: Transport	TransportImage: Provide the system of th	\sim	Streams and Canals	
HH Rails Interstate Highways US Routes Major Roads Local Roads	Rails Interstate Highways US Routes Major Roads Local Roads	Rails Interstate Highways US Routes Major Roads Local Roads	Rails Interstate Highways US Routes Major Roads Local Roads	Transport	ation	
 Interstate Highways US Routes Major Roads Local Roads 	Interstate Highways US Routes Major Roads Iccal Roads	Interstate Highways US Routes Major Roads Local Roads	 Interstate Highways US Routes Major Roads Local Roads 	+++	Rails	
US Routes Major Roads Local Roads	US Routes Major Roads Local Roads	US Routes Major Roads Local Roads	US Routes Major Roads Local Roads	~	Interstate Highways	
Major Roads	Major Roads	Major Roads	Major Roads	\sim	US Routes	
Local Roads	Local Roads	Local Roads	Local Roads	~~	Major Roads	
				\sim	Local Roads	

Hydrologic Soil Group

	Hydrologic Soil Group— Summary	v by Map Unit — Roane	e County, Tennesse	96
Map unit symbol	Map unit name	Rating	Acres in AOI	Percent of AOI
AeC	Allen loam, 5 to 12 percent slopes	В	32.6	19.2%
AeD	Allen loam, 12 to 20 percent slopes	В	13.3	7.8%
EtB	Etowah loam, 2 to 5 percent slopes	В	8.7	5.1%
EtC	Etowah silt loam, 5 to 12 percent slopes	В	22.1	13.0%
JnF	Jefferson cobbly loam, 20 to 50 percent slopes	В	57.8	34.0%
LbD	Lily loam, 12 to 20 percent slopes	В	5.6	3.3%
Ме	Melvin silt loam, frequently flooded	D	3.1	1.8%
W	Water		0.8	0.5%
WaC	Waynesboro loam, 5 to 12 percent slopes	В	20.9	12.3%
WaD	Waynesboro loam, 12 to 20 percent slopes	В	5.0	2.9%
Totals for Area of Int	erest		169.9	100.0%

Description

Hydrologic soil groups are based on estimates of runoff potential. Soils are assigned to one of four groups according to the rate of water infiltration when the soils are not protected by vegetation, are thoroughly wet, and receive precipitation from long-duration storms.

The soils in the United States are assigned to four groups (A, B, C, and D) and three dual classes (A/D, B/D, and C/D). The groups are defined as follows:

Group A. Soils having a high infiltration rate (low runoff potential) when thoroughly wet. These consist mainly of deep, well drained to excessively drained sands or gravelly sands. These soils have a high rate of water transmission.

Group B. Soils having a moderate infiltration rate when thoroughly wet. These consist chiefly of moderately deep or deep, moderately well drained or well drained soils that have moderately fine texture to moderately coarse texture. These soils have a moderate rate of water transmission.

Group C. Soils having a slow infiltration rate when thoroughly wet. These consist chiefly of soils having a layer that impedes the downward movement of water or soils of moderately fine texture or fine texture. These soils have a slow rate of water transmission.

Group D. Soils having a very slow infiltration rate (high runoff potential) when thoroughly wet. These consist chiefly of clays that have a high shrink-swell potential, soils that have a high water table, soils that have a claypan or clay layer at or near the surface, and soils that are shallow over nearly impervious material. These soils have a very slow rate of water transmission.

If a soil is assigned to a dual hydrologic group (A/D, B/D, or C/D), the first letter is for drained areas and the second is for undrained areas. Only the soils that in their natural condition are in group D are assigned to dual classes.

Rating Options

Aggregation Method: Dominant Condition Component Percent Cutoff: None Specified Tie-break Rule: Lower

Hydrologic Soil Group—Roane County, Tennessee (ONSITE AREA)

Natural Resources Conservation Service

Web Soil Survey National Cooperative Soil Survey

МАР	LEGEND	MAP INFORMATION
Area of Intere	est (AOI)	Map Scale: 1:9,440 if printed on A size (8.5" × 11") sheet.
A	rea of Interest (AOI)	The soil surveys that comprise your AOI were mapped at 1:24,000.
Soils	oil Map Units	Please rely on the bar scale on each map sheet for accurate map measurements.
Soil Rating	S	Source of Map: Natural Resources Conservation Service
A		Web Soil Survey URL: http://websoilsurvey.nrcs.usda.gov
A	/D	Coordinate System: UTM Zone 16N NAD83
B		This product is generated from the USDA-NRCS certified data as of the version date(s) listed below.
В	/D	Soil Survey Area: Roane County, Tennessee
<u> </u>		Survey Area Data: Version 7, Sep 23, 2009
	/D	Date(s) aerial images were photographed: 12/5/2006
		The orthophoto or other base map on which the soil lines were
N	ot rated or not available	compiled and digitized probably differs from the background imagery displayed on these maps. As a result, some minor shifting
Water Featur	25	of map unit boundaries may be evident.
C	Iceans	
~ s	treams and Canals	
Transportatio	n	
111 F	ails	
🛹 Ir	iterstate Highways	
🔨 U	S Routes	
~~ N	lajor Roads	
~ L	ocal Roads	

Hydrologic Soil Group

	Hydrologic Soil Group— Summary	v by Map Unit — Roane	e County, Tenness	ee
Map unit symbol	Map unit name	Rating	Acres in AOI	Percent of AOI
ASD	Ash disposal area		2.4	1.5%
DeC	Dewey silt loam, 5 to 12 percent slopes	В	17.6	11.1%
DeD	Dewey silt loam, 12 to 20 percent slopes	В	11.3	7.1%
DeE	Dewey silt loam, 20 to 45 percent slopes	В	73.6	46.5%
EtC	Etowah silt loam, 5 to 12 percent slopes	В	9.3	5.9%
FuE	Fullerton-Pailo complex, 20 to 35 percent slopes	В	7.4	4.7%
Ме	Melvin silt loam, frequently flooded	D	19.8	12.5%
MnC	Minvale gravelly silt loam, 5 to 12 percent slopes	В	0.3	0.2%
MoD	Montevallo channery silt loam, 12 to 20 percent slopes	D	11.6	7.4%
MoE	Montevallo channery silt loam, 20 to 35 percent slopes	D	1.4	0.9%
W	Water		3.6	2.3%
Totals for Area of Int	erest		158.4	100.0%
Description

Hydrologic soil groups are based on estimates of runoff potential. Soils are assigned to one of four groups according to the rate of water infiltration when the soils are not protected by vegetation, are thoroughly wet, and receive precipitation from long-duration storms.

The soils in the United States are assigned to four groups (A, B, C, and D) and three dual classes (A/D, B/D, and C/D). The groups are defined as follows:

Group A. Soils having a high infiltration rate (low runoff potential) when thoroughly wet. These consist mainly of deep, well drained to excessively drained sands or gravelly sands. These soils have a high rate of water transmission.

Group B. Soils having a moderate infiltration rate when thoroughly wet. These consist chiefly of moderately deep or deep, moderately well drained or well drained soils that have moderately fine texture to moderately coarse texture. These soils have a moderate rate of water transmission.

Group C. Soils having a slow infiltration rate when thoroughly wet. These consist chiefly of soils having a layer that impedes the downward movement of water or soils of moderately fine texture or fine texture. These soils have a slow rate of water transmission.

Group D. Soils having a very slow infiltration rate (high runoff potential) when thoroughly wet. These consist chiefly of clays that have a high shrink-swell potential, soils that have a high water table, soils that have a claypan or clay layer at or near the surface, and soils that are shallow over nearly impervious material. These soils have a very slow rate of water transmission.

If a soil is assigned to a dual hydrologic group (A/D, B/D, or C/D), the first letter is for drained areas and the second is for undrained areas. Only the soils that in their natural condition are in group D are assigned to dual classes.

Rating Options

Aggregation Method: Dominant Condition Component Percent Cutoff: None Specified Tie-break Rule: Lower

USDA

Hydrologic Soil Group—Roane County, Tennessee (SBA-1)

Natural Resources Conservation Service

Web Soil Survey National Cooperative Soil Survey

Area of In Soils	terest (AOI) Area of Interest (AOI) Soil Man Units	Map Scale: 1:21,900 if printed on A size (8.5" × 11") sheet. The soil surveys that comprise your AOI were mapped at 1:24,00
Soils	Area of Interest (AOI)	The soil surveys that comprise your AOI were mapped at 1:24,00
Soils	Soil Man Linits	
		Please rely on the bar scale on each map sheet for accurate map measurements.
Soil Rat	ings	Source of Map: Natural Resources Conservation Service
	A	Web Soil Survey URL: http://websoilsurvey.nrcs.usda.gov
	A/D	Coordinate System: UTM Zone 16N NAD83
	В	This product is generated from the USDA-NRCS certified data as the version date(s) listed below.
	C C	Soil Survey Area: Roane County, Tennessee Survey Area Data: Version 7, Sep 23, 2009
	C/D	Date(s) aerial images were photographed: 12/5/2006
	D	The orthophoto or other base map on which the soil lines were
	Not rated or not available	compiled and digitized probably differs from the background
later Fea	itures	imagery displayed on these maps. As a result, some minor shifti of map unit boundaries may be evident.
	Oceans	
\sim	Streams and Canals	
ransport	ation	
+++	Rails	
\sim	Interstate Highways	
\sim	US Routes	
~~	Major Roads	
\sim	Local Roads	

Hydrologic Soil Group

	Hydrologic Soil Group— Summary	y by Map Unit — Roane	e County, Tennesse	e
Map unit symbol	Map unit name	Rating	Acres in AOI	Percent of AOI
AmC	Armuchee silt loam, 5 to 12 percent slopes	С	73.1	7.5%
ASD	Ash disposal area		1.7	0.2%
DeC	Dewey silt loam, 5 to 12 percent slopes	В	27.8	2.9%
DeE	Dewey silt loam, 20 to 45 percent slopes	В	11.0	1.1%
EtB	Etowah loam, 2 to 5 percent slopes	В	28.9	3.0%
FuC	Fullerton-Pailo complex, 5 to 12 percent slopes	В	24.9	2.6%
FuD	Fullerton-Pailo complex, 12 to 20 percent slopes	В	106.0	10.9%
FuE	Fullerton-Pailo complex, 20 to 35 percent slopes	В	276.9	28.4%
FwD	Fullerton-Dewey-Urban land complex, 5 to 20 percent slopes	В	50.3	5.2%
Ме	Melvin silt loam, frequently flooded	D	13.1	1.3%
MnC	Minvale gravelly silt loam, 5 to 12 percent slopes	В	23.4	2.4%
MoE	Montevallo channery silt loam, 20 to 35 percent slopes	D	274.2	28.1%
ТеС	Townley silt loam, 5 to 12 percent slopes	С	18.3	1.9%
TeD	Townley silt loam, 12 to 20 percent slopes	С	44.7	4.6%
Totals for Area of Int	erest	974.3	100.0%	

USDA

Description

Hydrologic soil groups are based on estimates of runoff potential. Soils are assigned to one of four groups according to the rate of water infiltration when the soils are not protected by vegetation, are thoroughly wet, and receive precipitation from long-duration storms.

The soils in the United States are assigned to four groups (A, B, C, and D) and three dual classes (A/D, B/D, and C/D). The groups are defined as follows:

Group A. Soils having a high infiltration rate (low runoff potential) when thoroughly wet. These consist mainly of deep, well drained to excessively drained sands or gravelly sands. These soils have a high rate of water transmission.

Group B. Soils having a moderate infiltration rate when thoroughly wet. These consist chiefly of moderately deep or deep, moderately well drained or well drained soils that have moderately fine texture to moderately coarse texture. These soils have a moderate rate of water transmission.

Group C. Soils having a slow infiltration rate when thoroughly wet. These consist chiefly of soils having a layer that impedes the downward movement of water or soils of moderately fine texture or fine texture. These soils have a slow rate of water transmission.

Group D. Soils having a very slow infiltration rate (high runoff potential) when thoroughly wet. These consist chiefly of clays that have a high shrink-swell potential, soils that have a high water table, soils that have a claypan or clay layer at or near the surface, and soils that are shallow over nearly impervious material. These soils have a very slow rate of water transmission.

If a soil is assigned to a dual hydrologic group (A/D, B/D, or C/D), the first letter is for drained areas and the second is for undrained areas. Only the soils that in their natural condition are in group D are assigned to dual classes.

Rating Options

Aggregation Method: Dominant Condition Component Percent Cutoff: None Specified Tie-break Rule: Lower

Hydrologic Soil Group—Roane County, Tennessee (SBA-2)

Natural Resources Conservation Service

Web Soil Survey National Cooperative Soil Survey

M	AP LEGEND	MAP INFORMATION
Area of Ir	iterest (AOI)	Map Scale: 1:16,100 if printed on A size (8.5" × 11") sheet.
	Area of Interest (AOI)	The soil surveys that comprise your AOI were mapped at 1:24,0
Soils	Soil Map Units	Please rely on the bar scale on each map sheet for accurate m measurements.
Soil Ra	tings A A/D	Source of Map: Natural Resources Conservation Service Web Soil Survey URL: http://websoilsurvey.nrcs.usda.gov Coordinate System: UTM Zone 16N NAD83
	B	This product is generated from the USDA-NRCS certified data a the version date(s) listed below.
	B/D C	Soil Survey Area: Roane County, Tennessee Survey Area Data: Version 7, Sep 23, 2009
	C/D	Date(s) aerial images were photographed: 12/5/2006
	D Not rated or not available	The orthophoto or other base map on which the soil lines were compiled and digitized probably differs from the background
Water Fea	atures	imagery displayed on these maps. As a result, some minor shil of map unit boundaries may be evident.
	Oceans	
\sim	Streams and Canals	
Transpor	tation	
+ + +	Rails	
~	Interstate Highways	
\sim	US Routes	
~~	Major Roads	

Hydrologic Soil Group

Hydrologic Soil Group— Summary by Map Unit — Roane County, Tennessee							
Map unit symbol	Map unit name	Rating	Acres in AOI	Percent of AOI			
DeC	Dewey silt loam, 5 to 12 percent slopes	В	125.5	18.8%			
DeD	Dewey silt loam, 12 to 20 percent slopes	В	12.4	1.9%			
DeE	Dewey silt loam, 20 to 45 percent slopes	В	8.6	1.3%			
FuC	Fullerton-Pailo complex, 5 to 12 percent slopes	В	45.2	6.8%			
FuD	Fullerton-Pailo complex, 12 to 20 percent slopes	В	44.4	6.6%			
FuE	Fullerton-Pailo complex, 20 to 35 percent slopes	В	429.6	64.2%			
Ме	Melvin silt loam, frequently flooded	D	3.3	0.5%			
MoE	Montevallo channery silt loam, 20 to 35 percent slopes	D	0.1	0.0%			
Totals for Area of Int	erest	669.0	100.0%				

Description

Hydrologic soil groups are based on estimates of runoff potential. Soils are assigned to one of four groups according to the rate of water infiltration when the soils are not protected by vegetation, are thoroughly wet, and receive precipitation from long-duration storms.

The soils in the United States are assigned to four groups (A, B, C, and D) and three dual classes (A/D, B/D, and C/D). The groups are defined as follows:

Group A. Soils having a high infiltration rate (low runoff potential) when thoroughly wet. These consist mainly of deep, well drained to excessively drained sands or gravelly sands. These soils have a high rate of water transmission.

Group B. Soils having a moderate infiltration rate when thoroughly wet. These consist chiefly of moderately deep or deep, moderately well drained or well drained soils that have moderately fine texture to moderately coarse texture. These soils have a moderate rate of water transmission.

Group C. Soils having a slow infiltration rate when thoroughly wet. These consist chiefly of soils having a layer that impedes the downward movement of water or soils of moderately fine texture or fine texture. These soils have a slow rate of water transmission.

Group D. Soils having a very slow infiltration rate (high runoff potential) when thoroughly wet. These consist chiefly of clays that have a high shrink-swell potential, soils that have a high water table, soils that have a claypan or clay layer at or near the surface, and soils that are shallow over nearly impervious material. These soils have a very slow rate of water transmission.

If a soil is assigned to a dual hydrologic group (A/D, B/D, or C/D), the first letter is for drained areas and the second is for undrained areas. Only the soils that in their natural condition are in group D are assigned to dual classes.

Rating Options

Aggregation Method: Dominant Condition Component Percent Cutoff: None Specified Tie-break Rule: Lower

					Geo	synte	CD	
					consultants			
					Page	9	of	17
Written by:	Jesus Sanchez	Date:	7/13/2010	Reviewed by:	Ganesh Krishnan	Date:	7/14	/2010
Client: TVA	Project:	Integri	ity Evaluation	of Dike 2	Project/ Proposal No.:	GK4693	Task No.:	02

Soils are classified into hydrologic soil groups (HSG's) to indicate the minimum rate of infiltration obtained for bare soil after prolonged wetting. The HSG's, which are A, B, C, and D, are one element used in determining runoff curve numbers (see chapter 2). For the convenience of TR-55 users, exhibit A-1 lists the HSG classification of United States soils.

The infiltration rate is the rate at which water enters the soil at the soil surface. It is controlled by surface conditions. HSG also indicates the transmission rate—the rate at which the water moves within the soil. This rate is controlled by the soil profile. Approximate numerical ranges for transmission rates shown in the HSG definitions were first published by Musgrave (USDA 1955). The four groups are defined by SCS soil scientists as follows:

Group Asoils have low runoff potential and high infiltration rates even when thoroughly wetted. They consist chiefly of deep, well to excessively drained sand or gravel and have a high rate of water transmission (greater than 0.30 in/hr).

Group Bsoils have moderate infiltration rates when thoroughly wetted and consist chiefly of moderately deep to deep, moderately well to well drained soils with moderately fine to moderately coarse textures. These soils have a moderate rate of water transmission (0.15-0.30 in/hr).

Group Csoils have low infiltration rates when thoroughly wetted and consist chiefly of soils with a layer that impedes downward movement of water and soils with moderately fine to fine texture. These soils have a low rate of water transmission (0.05-0.15 in/hr).

Group Dsoils have high runoff potential. They have very low infiltration rates when thoroughly wetted and consist chiefly of clay soils with a high swelling potential, soils with a permanent high water table, soils with a claypan or clay layer at or near the surface, and shallow soils over nearly impervious material. These soils have a very low rate of water transmission (0-0.05 in/hr).

In exhibit A-1, some of the listed soils have an added modifier; for example, "Abrazo, gravelly." This refers to a gravelly phase of the Abrazo series that is found in SCS soil map legends.

Disturbed soil profiles

As a result of urbanization, the soil profile may be considerably altered and the listed group classification may no longer apply. In these circumstances, use the following to determine HSG according to the texture of the new surface soil, provided that significant compaction has not occurred (Brakensiek and Rawls 1983).

HSG	Soil textures
Α	Sand, loamy sand, or sandy loam
В	Silt loam or loam
С	Sandy clay loam
D	Clay loam, silty clay loam, sandy clay, silty clay, or clay

Drainage and group D soils

Some soils in the list are in group D because of a high water table that creates a drainage problem. Once these soils are effectively drained, they are placed in a different group. For example, Ackerman soil is classified as A/D. This indicates that the drained Ackerman soil is in group A and the undrained soil is in group D.

Geosyntec[▷]

consultants

					Page	10	of	17
Written by:	Jesus Sanchez	Date:	7/13/2010	Reviewed by:	Ganesh Krishnan	Date:	7/14	/2010
Client: TVA	Project:	Integrity Evaluation of Dike 2		Project/ Proposal No.:	GK4693	Task No.:	02	

Cover description			Curve nu	umbers for soil group	
cover description	Average percent		nyuroiogie	son group	
Cover type and hydrologic condition	impervious area 2⁄	Α	в	С	D
Fully developed urban areas (vegetation established)					
Open space (lawns, parks, golf courses, cemeteries, etc.).	<u>3/:</u>				
Poor condition (grass cover < 50%)	-	68	79	86	89
Fair condition (grass cover 50% to 75%)		49	69	79	84
Good condition (grass cover > 75%)		39	61	74	80
Impervious areas:					
Paved parking lots, roofs, driveways, etc.					
(excluding right-of-way)		98	98	98	98
Streets and roads:					
Paved; curbs and storm sewers (excluding					
right-of-way)		98	98	98	98
Paved; open ditches (including right-of-way)		83	89	92	93
Gravel (including right-of-way)		76	85	89	91
Dirt (including right-of-way)		72	82	87	89
Western desert urban areas:					
Natural desert landscaping (pervious areas only) 4		63	77	85	88
Artificial desert landscaping (impervious weed barrier	ſ,				
desert shrub with 1- to 2-inch sand or gravel mulci	h	0.0	0.0	0.7	0.0
and basin borders)		96	96	96	96
Urban districts:	0.5	~~~		~ 1	0.5
Commercial and business		89	92	94	95
Industrial		81	88	91	93
Residential districts by average lot size:	65	77	05	00	09
1/8 acre of less (lowit flouses)		61		90	92
1/4 acre	30	57	79	- 00 - 81	86
1/2 acra		54	70	80	85
l acre	20	51	68	79	84
2 acres		46	65	77	82
Developing urban areas					
Newly graded areas (nervious areas only, no vegetation) 5/		77	86	91	94

similar to those in table 2-2c).

Average runoff condition, and I_a = 0.2S.

² The average percent impervious area shown was used to develop the composite CN's. Other assumptions are as follows: impervious areas are directly connected to the drainage system, impervious areas have a CN of 98, and pervious areas are considered equivalent to open space in good hydrologic condition. CN's for other combinations of conditions may be computed using figure 2-3 or 2-4.

³ CN's shown are equivalent to those of pasture. Composite CN's may be computed for other combinations of open space cover type.

4 Composite CN's for natural desert landscaping should be computed using figures 2-3 or 2-4 based on the impervious area percentage (CN = 98) and the pervious area CN. The pervious area CN's are assumed equivalent to desert shrub in poor hydrologic condition.

⁵ Composite CN's to use for the design of temporary measures during grading and construction should be computed using figure 2-3 or 2-4 based on the degree of development (impervious area percentage) and the CN's for the newly graded pervious areas.

Geosyntec[▷]

consultants

					Page	11	of	17
Written by:	Jesus Sanchez	Date:	7/13/2010	Reviewed by:	Ganesh Krishnan	Date:	7/14/	/2010
Client: TVA	Project:	Integri	ty Evaluation	of Dike 2	Project/ Proposal No.:	GK4693	Task No.:	02

Table 2-2c Runoff curve numbers for other agricultural lands 1/

Cover description		Curve numbers for hydrologic soil group				
Cover type	Hydrologic condition	А	В	С	D	
Pasture, grassland, or range—continuous forage for grazing. ^{2/}	Poor Fair Good		79 69 61	86 79 74	89 84 80	
Meadow—continuous grass, protected from grazing and generally mowed for hay.	_	30	58	71	78	
Brush—brush-weed-grass mixture with brush the major element. $\underline{\mathscr{Y}}$	Poor Fair Good	48 35 30 4⁄	$67 \\ 56 \\ 48$	77 70 65	83 77 73	
Woods—grass combination (orchard or tree farm). [™]	Poor Fair Good	57 43 32	73 65 58	82 76 72	86 82 79	
Woods. 9	Poor Fair Good	45 36 30 4⁄	66 60 55	77 73 70	83 79 77	
Farmsteads—buildings, lanes, driveways, and surrounding lots.	_	59	74	82	86	

Average runoff condition, and I_a = 0.2S.

 2 $\ Poor:$ $\ <50\%)$ ground cover or heavily grazed with no mulch.

Fair: 50 to 75% ground cover and not heavily grazed.

- Good: > 75% ground cover and lightly or only occasionally grazed.
- ³ Poor: <50% ground cover.

Fair: 50 to 75% ground cover.

Good: >75% ground cover.

4 Actual curve number is less than 30; use CN = 30 for runoff computations.

⁵ CN's shown were computed for areas with 50% woods and 50% grass (pasture) cover. Other combinations of conditions may be computed from the CN's for woods and pasture.

6 Poor: Forest litter, small trees, and brush are destroyed by heavy grazing or regular burning.
Fair: Woods are grazed but not burned, and some forest litter covers the soil.
Good: Woods are protected from grazing, and litter and brush adequately cover the soil.

					Geosyntec ^D			
					consultants			
					Page	12	of	17
Written by:	Jesus Sanchez	Date:	7/13/2010	Reviewed by:	Ganesh Krishnan	Date:	7/14	/2010
Client: TVA	Project:	Integri	ty Evaluation	of Dike 2	Project/ Proposal No.:	GK4693	Task No.:	02

Attachment 5 – Conduit Properties

Written by: Jesus Sanchez Date: 07/13/2010 Client: TVA Project: Integrity Evaluation of Dike 2

Conduit Properties

Conduits discharging from PN to PC:

Conduit Name: Culvert_1, _2, _3	
Length (feet):	68, 66, 66
Inlet Invert Elevation (feet-MSL):	747.1, 745, 745.3
Outlet Invert Elevation (feet-MSL):	745
Dimensions:	48" diameter pipe
Pipe Material:	Corrugated Metal Pipe; Manning's n = 0.030
Entrance Type:	Projecting, no headwall
Note: Specifications as shown on page 10W	V290_08 of drawing package.

Conduit Name: North Embayment Discharge Culverts (NED_CU)

Length (feet):	137
Inlet Invert Elevation (feet-MSL):	738.5
Outlet Invert Elevation (feet-MSL):	738.0
Dimensions:	2x63" diameter pipe; 58.8" inside diameter
Pipe Material:	HDPE; Manning's n = 0.011
Entrance Type:	Mitered to conform to fill
Note: Specifications as shown on page 10W2	290_08 of drawing package.

Conduits discharging from PC to Emory River:

Conduit Name: Overflow Pipe 1 & 2	
Inlet Invert Elevation (feet-MSL):	743.0, 743.5
Dimensions:	60" diameter pipe
Note: Specifications as shown on page 10W	290_04 of drawing package.

115
736.5
736.0
5x63" diameter pipe; 58.8" inside diameter
HDPE; Manning's n = 0.011
Mitered to conform to fill
290_08 of drawing package.

Written by: Jesus Sanchez Date: 07/13/2010 Client: TVA Project: Integrity Evaluation of Dike 2

Conduit Properties

Conduits discharging from PC to Emory River (continued):

Conduit Name: Emergency Spillway (Spillway)							
Crest Invert Elevation (feet-MSL):	746						
Crest Length (feet):	4.4						
Notch Angle (degrees):	144.0						
Rise (feet)	4						
Note: Dimensions taken from 05-19-10 top	ographic data as shown on this page.						

engineers I scientists | innovators

Reviewed by: Winsley Peter Date: 07/13/2010 Client: TVA Project: Integrity Evaluation of Dike 2

Page No. 2 of 2

			Geosyntec				CD	
					consultants			
					Page	13	of	17
Written by:	Jesus Sanchez	Date:	7/13/2010	Reviewed by:	Ganesh Krishnan	Date:	7/14/	/2010
Client: TVA	Project:	Integri	ty Evaluation	of Dike 2	Project/ Proposal No.:	GK4693	Task No.:	02

Attachment 6 – Stage-Storage Relationships

	P				Tim		
						The second s	
		Eleva	tions Table				
Numb	er Minim	Eleva num Elevation	tions Table Maximum Elevation	Color			
Numb 1	er Minim	Eleva num Elevation 741.0	tions Table Maximum Elevation 742.0	Color			
Numb 1 2	er Minim	Eleva num Elevation 741.0 742.0	tions Table Maximum Elevation 742.0 744.0	Color			
Numb 1 2 3	er Minim	Eleva num Elevation 741.0 742.0 744.0	tions Table Maximum Elevation 742.0 744.0 746.0	Color			
Numb 1 2 3 4	er Minim	Eleva num Elevation 741.0 742.0 744.0 746.0	tions Table Maximum Elevation 742.0 744.0 746.0 748.0	Color			
Numb 1 2 3 4 5	er Minim	Eleva num Elevation 741.0 742.0 744.0 746.0 748.0	tions Table Maximum Elevation 742.0 744.0 744.0 746.0 748.0 750.0	Color			
Numb 1 2 3 4 5	er Minim	Eleva num Elevation 741.0 742.0 744.0 746.0 748.0	Maximum Elevation 742.0 744.0 746.0 748.0 750.0	Color			
Numb 1 2 3 4 5 DND CENTRAL	er Minim	Eleva num Elevation 741.0 742.0 744.0 746.0 748.0	Maximum Elevation 742.0 744.0 746.0 748.0 750.0	Color			
Numb 1 2 3 4 5 DND CENTRAL ELEVATION	er Minim	Eleva num Elevation 741.0 742.0 744.0 746.0 748.0	tions Table Maximum Elevation 742.0 744.0 746.0 748.0 750.0 UBIC YARDS	Color			
Numb 1 2 3 4 5 DND CENTRAL ELEVATION	er Minim	Eleva num Elevation 741.0 742.0 744.0 746.0 746.0 748.0	tions Table Maximum Elevation 742.0 744.0 746.0 748.0 748.0 750.0 UBIC YARDS 0.0 3190.0	Color	0.0		
Numb 1 2 3 4 5 DND CENTRAL ELEVATION	er Minim	Eleva num Elevation 741.0 742.0 744.0 746.0 748.0	tions Table Maximum Elevation 742.0 744.0 746.0 746.0 748.0 750.0 UBIC YARDS 0.0 3190.0 23862.9	Color	0.0 2.0 14.8		
Numb 1 2 3 4 5 DND CENTRAL ELEVATION	er Minim 5 5 741.0 744.0 746.0	Eleva num Elevation 741.0 742.0 744.0 746.0 748.0 748.0	tions Table Maximum Elevation 742.0 744.0 746.0 746.0 748.0 750.0 UBIC YARDS 0.0 3190.0 23862.9 58997.6	Color	0.0 2.0 14.8 36.6		

STAGE-STORAGE RELATIONSHIP FOR PN

0.0 2.0 15.7 47.3 93.9 158.2

Elevations Table								
Number	Minimum Elevation Maximum Elevation		Color					
1	741.0	742.0						
2	742.0	744.0						
3	744.0	746.0						
4	746.0	748.0						
5	748.0	750.0						

PONDNORTH		
ELEVATIONS	CUBIC YARDS	ACRE-FEET
741.0	0.0	
742.0	3247.7	
744.0	25321.8	
746.0	76367.7	
748.0	151531.4	
750.0	255210.3	

			Geosynte				CD	
					consultants			
					Page	14	of	17
Written by:	Jesus Sanchez	Date:	7/13/2010	Reviewed by:	Ganesh Krishnan	Date:	7/14/	/2010
Client: TVA	Project:	Integri	ty Evaluation	of Dike 2	Project/ Proposal No.:	GK4693	Task No.:	02

Attachment 7 – Rainfall Distribution

			Geosyntec ^{>}							
			consultants							
			Page	15	of	17				
Written by:	Jesus Sanchez	Date: 7/13/2010 Reviewed by:	Ganesh Krishnan Date: 7/14/2010	-						
Client: TVA	Project:	Integrity Evaluation of Dike 2	Project/ Proposal No.: GK4693 Task No.: 02							

Figure B-2 Approximate geographic boundaries for NRCS (SCS) rainfall distributions

Geosyntec[▷]

consultants

						consultur		
					Page	16	of	17
Written by:	Jesus Sanchez	Date:	7/13/2010	Reviewed by:		Date:		
Client: TVA	Project:	Integri	ty Evaluation	of Dike 2	Project/ Proposal No.:	GK4693	Task No.:	02

Attachment 8 – Nodal Network Diagram

Geosyntec[▷]

					comountair		
				Page	17	of	17
Written by:	Jesus Sanchez	Date: 7/13/2010	Reviewed by:		Date:		
Client: TVA	Project:	Integrity Evaluatio	n of Dike 2	Project/ Proposal No.:	GK4693	Task No.:	02
						1.011	

Attachment 9 – Computer Modeling

Area Listing (all nodes)

Area	CN	Description
(acres)		(subcatchment-numbers)
800.000	58	Composite CN (S2, S3)
84.000	59	Composite CN (S5)
794.000	61	Composite CN (S4, S6)
882.000	66	Composite CN (S1)
165.500	91	Newly Graded Areas, HSG C (Silt) (S7, S8, S9)
67.697	100	Pond (S10, S11)
2,793.197		TOTAL AREA

Soil Listing (all nodes)

Area	Soil	Subcatchment
(acres)	Group	Numbers
0.000	HSG A	
0.000	HSG B	
165.500	HSG C	S7, S8, S9
0.000	HSG D	
2,627.697	Other	S1, S10, S11, S2, S3, S4, S5, S6
2,793.197		TOTAL AREA

Line#	Node In-Invert Number (feet)		Out-Invert (feet)	Length (feet)	Slope (ft/ft)	n	Diam/Width (inches)	Height (inches)	Fill (inches)
 1	P1	736.50	736.00	115.0	0.0043	0.011	58.8	0.0	0.0
2	P2	747.10	745.00	68.0	0.0309	0.030	48.0	0.0	0.0
3	P2	745.00	745.00	66.0	0.0000	0.030	48.0	0.0	0.0
4	P2	745.30	745.00	66.0	0.0045	0.030	48.0	0.0	0.0
5	P2	738.50	738.00	137.0	0.0036	0.011	58.8	0.0	0.0

Pipe Listing (all nodes)

Spillway_Analysis Type II	24-hr 100-year, 24-hour Rainfall=6.77"
HydroCAD® 9.10 s/n 00929 © 2009 HydroCAD Software Solutions I	LLC Page 4
Time span=0.00-48.00 hrs, dt=0.05	hrs, 961 points
Runoff by SCS TR-20 method,	UH=SCS
Reach routing by Stor-Ind+Trans method - Ponc	d routing by Stor-Ind method
Subcatchment S1: SA_1 Runoff Area=882.00 Flow Length=12,641' Slope=0.0146 '/' Tc=348.70	00 ac 0.00% Impervious Runoff Depth=3.02" 7 min CN=66 Runoff=361.54 cfs 222.325 af
Subcatchment S10: PN Area Runoff Area=30.718	ac 100.00% Impervious Runoff Depth=6.77"
Tc=0.0	0 min CN=100 Runoff=334.28 cfs 17.330 af
Subcatchment S11: PC Area Runoff Area=36.979	ac 100.00% Impervious Runoff Depth=6.77"
Tc=0.1	0 min CN=100 Runoff=402.41 cfs 20.862 af
Subcatchment S2: SA_2 Runoff Area=624.00 Flow Length=8,746' Slope=0.0308 '/' Tc=166.	00 ac 0.00% Impervious Runoff Depth=2.25" 1 min CN=58 Runoff=321.02 cfs 117.223 af
Subcatchment S3: NA_1 Runoff Area=176.00	00 ac 0.00% Impervious Runoff Depth=2.25"
Flow Length=3,358' Slope=0.0259 '/' Tc=69	9.6 min CN=58 Runoff=174.27 cfs 33.063 af
Subcatchment S4: NA_2 Runoff Area=646.00 Flow Length=6,729' Slope=0.0036 '/' Tc=267.00	00 ac 0.00% Impervious Runoff Depth=2.54" 0 min CN=61 Runoff=262.49 cfs 136.588 af
Subcatchment S5: NA_3 Runoff Area=84.00	00 ac 0.00% Impervious Runoff Depth=2.35"
Flow Length=1,252' Slope=0.0935 '/' Tc=9	9.7 min CN=59 Runoff=296.97 cfs 16.434 af
Subcatchment S6: NA_4 Runoff Area=148.00 Flow Length=4,599' Slope=0.0398 '/' Tc=54	00 ac 0.00% Impervious Runoff Depth=2.54" 4.9 min CN=61 Runoff=202.73 cfs 31.293 af
Subcatchment S7: ASHBODY-1 Runoff Area=24.40	00 ac 0.00% Impervious Runoff Depth=5.71"
Flow Length=1,058' Slope=0.0076 '/' Tc=20	0.2 min CN=91 Runoff=144.86 cfs 11.616 af
Subcatchment S8: ASHBODY-2 Runoff Area=127.50	00 ac 0.00% Impervious Runoff Depth=5.71"
Flow Length=2,755' Slope=0.0247 '/' Tc=29	9.2 min CN=91 Runoff=612.24 cfs 60.696 af
Subcatchment S9: ASHBODY-3 Runoff Area=13.60	00 ac 0.00% Impervious Runoff Depth=5.71"
Flow Length=647' Slope=0.0680 '/' Tc=	=4.1 min CN=91 Runoff=130.41 cfs 6.474 af
Pond P1: PC Peak Elev=744.29' Stol 6.67 cfs 636.826 af Secondary=111.55 cfs 37.077 af Tertiary=0.00	rage=20.298 af Inflow=914.78 cfs 673.904 af cfs 0.000 af Outflow=838.22 cfs 673.904 af
Pond P2: PN Peak Elev=744.88' Sto	rage=24.334 af Inflow=567.61 cfs 246.324 af

Total Runoff Area = 2,793.197 acRunoff Volume = 673.904 afAverage Runoff Depth = 2.90"97.58% Pervious = 2,725.500 ac2.42% Impervious = 67.697 ac

Summary for Subcatchment S1: SA_1

Runoff = 361.54 cfs @ 16.66 hrs, Volume= 222.325 af, Depth= 3.02"

Runoff by SCS TR-20 method, UH=SCS, Time Span= 0.00-48.00 hrs, dt= 0.05 hrs Type II 24-hr 100-year, 24-hour Rainfall=6.77"

	Area	(ac) C	N De	scription		
*	882.	000	66 Co	mposite CN		
	882.	000	100).00% Pervi	ous Area	
	Тс	Length	Slope	Velocity	Capacity	Description
	(min)	(feet)	(ft/ft)	(ft/sec)	(cfs)	
	348.7	12,641	0.0146	0.60		Shallow Concentrated Flow, Overland Flow Woodland Kv= 5.0 fps

Subcatchment S1: SA_1

Summary for Subcatchment S10: PN Area

[46] Hint: Tc=0 (Instant runoff peak depends on dt)

Runoff = 334.28 cfs @ 11.89 hrs, Volume= 17.330 af, Depth= 6.77"

Runoff by SCS TR-20 method, UH=SCS, Time Span= 0.00-48.00 hrs, dt= 0.05 hrs Type II 24-hr 100-year, 24-hour Rainfall=6.77"

_	Area (ac)	CN	Description
*	30.718	100	Pond
	30.718		100.00% Impervious Area

Subcatchment S10: PN Area

Summary for Subcatchment S11: PC Area

[46] Hint: Tc=0 (Instant runoff peak depends on dt)

Runoff = 402.41 cfs @ 11.89 hrs, Volume= 20.862 af, Depth= 6.77"

Runoff by SCS TR-20 method, UH=SCS, Time Span= 0.00-48.00 hrs, dt= 0.05 hrs Type II 24-hr 100-year, 24-hour Rainfall=6.77"

	Area (ac)	CN	Description
*	36.979	100	Pond
	36.979		100.00% Impervious Area

Subcatchment S11: PC Area

Summary for Subcatchment S2: SA_2

Runoff = 321.02 cfs @ 14.20 hrs, Volume= 117.223 af, Depth= 2.25"

Runoff by SCS TR-20 method, UH=SCS, Time Span= 0.00-48.00 hrs, dt= 0.05 hrs Type II 24-hr 100-year, 24-hour Rainfall=6.77"

	Area	(ac)	CN	Desc	cription		
*	624.	000	58	Com	posite CN		
	624.	000		100.0	00% Pervi	ous Area	
	Tc (min)	Lengt	ר : י	Slope	Velocity	Capacity	Description
	166 1	8 746) 3 0	0308		(013)	Shallow Concentrated Flow, Overland Flow
	100.1	0,740	, 0		0.00		Woodland Kv= 5.0 fps

Subcatchment S2: SA_2

Summary for Subcatchment S3: NA_1

Runoff = 174.27 cfs @ 12.79 hrs, Volume= 33.063 af, Depth= 2.25"

Runoff by SCS TR-20 method, UH=SCS, Time Span= 0.00-48.00 hrs, dt= 0.05 hrs Type II 24-hr 100-year, 24-hour Rainfall=6.77"

	Area	(ac) (CN	Desc	ription		
*	176.	000	58	Com	posite CN		
	176.	000		100.0	00% Pervi	ous Area	
	Tc (min)	Length (feet)	S	Slope (ft/ft)	Velocity (ft/sec)	Capacity (cfs)	Description
	69.6	3,358	0.0	0259	0.80		Shallow Concentrated Flow, Overland Flow Woodland Ky= 5.0 fps

Subcatchment S3: NA_1

Summary for Subcatchment S4: NA_2

Runoff = 262.49 cfs @ 15.69 hrs, Volume= 136.588 af, Depth= 2.54"

Runoff by SCS TR-20 method, UH=SCS, Time Span= 0.00-48.00 hrs, dt= 0.05 hrs Type II 24-hr 100-year, 24-hour Rainfall=6.77"

	Area	(ac) C	N Des	scription		
*	646.	000	61 Coi	nposite CN		
	646.	000	100	0.00% Pervi	ous Area	
	Тс	Length	Slope	Velocity	Capacity	Description
	(min)	(feet)	(ft/ft)	(ft/sec)	(cfs)	
	267.0	6,729	0.0036	0.42		Shallow Concentrated Flow, Overland FLow Short Grass Pasture Kv= 7.0 fps

Subcatchment S4: NA_2

Summary for Subcatchment S5: NA_3

Runoff = 296.97 cfs @ 12.02 hrs, Volume= 16.434 af, Depth= 2.35"

Runoff by SCS TR-20 method, UH=SCS, Time Span= 0.00-48.00 hrs, dt= 0.05 hrs Type II 24-hr 100-year, 24-hour Rainfall=6.77"

	Area	(ac) (CN	Desc	ription		
*	84.	000	59	Com	posite CN		
	84.	000		100.0	00% Pervi	ous Area	
	Тс	Length	S	lope	Velocity	Capacity	Description
	(min)	(feet)	((ft/ft)	(ft/sec)	(cfs)	
	9.7	1,252	0.0)935	2.14		Shallow Concentrated Flow, Overland Flow Short Grass Pasture Kv= 7.0 fps

Subcatchment S5: NA_3

Summary for Subcatchment S6: NA_4

Runoff = 202.73 cfs @ 12.59 hrs, Volume= 31.293 af, Depth= 2.54"

Runoff by SCS TR-20 method, UH=SCS, Time Span= 0.00-48.00 hrs, dt= 0.05 hrs Type II 24-hr 100-year, 24-hour Rainfall=6.77"

	Area	(ac) (CN	Description			
*	148.	000	61	Com	posite CN		
	148.000			100.00% Pervious Area			
	Тс	Length	S	Slope	Velocity	Capacity	Description
	(min)	(teet)		(ft/ft)	(ft/sec)	(cts)	
	54.9	4,599	0.0	0398	1.40		Shallow Concentrated Flow, Overland Flow Short Grass Pasture Ky= 7.0 fps

Subcatchment S6: NA_4

Summary for Subcatchment S7: ASHBODY-1

Runoff = 144.86 cfs @ 12.12 hrs, Volume= 11.616 af, Depth= 5.71"

Runoff by SCS TR-20 method, UH=SCS, Time Span= 0.00-48.00 hrs, dt= 0.05 hrs Type II 24-hr 100-year, 24-hour Rainfall=6.77"

	Area	(ac) C	N Des	scription		
*	24.	400 9	91 Nev	wly Graded	Areas, HS	G C (Silt)
	24.	400	100).00% Pervi	ous Area	
	Тс	Length	Slope	Velocity	Capacity	Description
	(min)	(feet)	(ft/ft)	(ft/sec)	(cfs)	
	20.2	1,058	0.0076	0.87		Shallow Concentrated Flow, Overland Flow Nearly Bare & Untilled Kv= 10.0 fps

Subcatchment S7: ASHBODY-1

Summary for Subcatchment S8: ASHBODY-2

Runoff = 612.24 cfs @ 12.22 hrs, Volume= 60.696 af, Depth= 5.71"

Runoff by SCS TR-20 method, UH=SCS, Time Span= 0.00-48.00 hrs, dt= 0.05 hrs Type II 24-hr 100-year, 24-hour Rainfall=6.77"

	Area	(ac) C	N Des	cription			
*	127.	500 9	91 Nev	vly Graded	Areas, HS	G C (Silt)	
127.500 100.00% Pervious Area							
	Tc (min)	Length (feet)	Slope (ft/ft)	Velocity (ft/sec)	Capacity (cfs)	Description	
	29.2	2,755	0.0247	1.57		Shallow Concentrated Flow, Overland Flow Nearly Bare & Untilled Ky= 10.0 fps	

Subcatchment S8: ASHBODY-2

Summary for Subcatchment S9: ASHBODY-3

[49] Hint: Tc<2dt may require smaller dt

Runoff = 130.41 cfs @ 11.94 hrs, Volume= 6.474 af, Depth= 5.71"

Runoff by SCS TR-20 method, UH=SCS, Time Span= 0.00-48.00 hrs, dt= 0.05 hrs Type II 24-hr 100-year, 24-hour Rainfall=6.77"

	Area	(ac)	CN	Desc	cription		
*	13.	600	91	New	ly Graded	Areas, HS	G C (Silt)
	13.600		100.	00% Pervi	ous Area		
	Tc (min)	Length (feet)	n 3)	Slope (ft/ft)	Velocity (ft/sec)	Capacity (cfs)	Description
	4.1	647	7 0.	.0680	2.61		Shallow Concentrated Flow, Overland Flow Nearly Bare & Untilled Ky= 10.0 fps

Subcatchment S9: ASHBODY-3

Summary for Pond P1: PC

[81] Warning: Exceeded Pond P2 by 0.25' @ 23.35 hrs

Inflow Area =		2,793.197 ac,	2.42% Impervious, Inflov	v Depth = 2.90"	for 100-year, 24-hour event
Inflow	=	914.78 cfs @	12.23 hrs, Volume=	673.904 af	
Outflow	=	838.22 cfs @	16.12 hrs, Volume=	673.904 af, Atte	en= 8%, Lag= 233.4 min
Primary	=	726.67 cfs @	16.12 hrs, Volume=	636.826 af	
Secondary	=	111.55 cfs @	16.12 hrs, Volume=	37.077 af	
Tertiary	=	0.00 cfs @	0.00 hrs, Volume=	0.000 af	

Routing by Stor-Ind method, Time Span= 0.00-48.00 hrs, dt= 0.05 hrs Peak Elev= 744.29' @ 16.12 hrs Surf.Area= 0.000 ac Storage= 20.298 af

Plug-Flow detention time= 11.5 min calculated for 673.902 af (100% of inflow) Center-of-Mass det. time= 11.5 min (1,044.8 - 1,033.3)

Volume	Invert	Avail.Stora	ge Storage Description
#1	741.00'	158.188	af Custom Stage Data Listed below
Elevation (feet	n Cum.S t) (acre-t	Store feet <u>)</u>	
741.0	0 0	.000	
742.0	0 2	.013	
744.0	0 15	.695	
746.0	0 47	.335	
748.0	0 93	.924	
750.00	0 158	.188	
Device	Routing	Invert	Outlet Devices
#1	Secondary	743.00'	60.0" Horiz. Overflow Pipe 1 C= 0.600
			Limited to weir flow at low heads
#2	Secondary	743.50'	60.0" Horiz. Overflow Pipe 2 C= 0.600
	Diana		Limited to weir flow at low heads
#3	Primary	736.50	58.8" Round O_CU X 5.00
			Inlet / Outlet Invert= $736.50' / 736.00'$ S= $0.0043' / Cc= 0.900$ n= 0.011 PVC smooth interior
#4	Tertiary	746.00'	144.0 deg x 4.4' long x 4.00' rise Spillway C= 2.57

Primary OutFlow Max=726.69 cfs @ 16.12 hrs HW=744.29' TW=741.00' (Fixed TW Elev= 741.00') **3=O_CU** (Inlet Controls 726.69 cfs @ 7.71 fps)

Secondary OutFlow Max=111.47 cfs @ 16.12 hrs HW=744.29' TW=741.00' (Fixed TW Elev= 741.00') 1=Overflow Pipe 1 (Weir Controls 75.34 cfs @ 3.72 fps) 2=Overflow Pipe 2 (Weir Controls 36.13 cfs @ 2.91 fps)

Tertiary OutFlow Max=0.00 cfs @ 0.00 hrs HW=741.00' TW=741.00' (Fixed TW Elev= 741.00') **4=Spillway** (Controls 0.00 cfs)

Pond P1: PC

Summary for Pond P2: PN

Inflow Area	a =	1,109.118 ac,	2.77% Impervious, Inflow	Depth = 2.6	67" for	100-year, 24-hour event
Inflow	=	567.61 cfs @	11.92 hrs, Volume=	246.324 af		
Outflow	=	305.73 cfs @	16.20 hrs, Volume=	246.324 af,	Atten= 4	6%, Lag= 257.2 min
Primary	=	305.73 cfs @	16.20 hrs, Volume=	246.324 af		-

Routing by Stor-Ind method, Time Span= 0.00-48.00 hrs, dt= 0.05 hrs Peak Elev= 744.88' @ 16.20 hrs Surf.Area= 0.000 ac Storage= 24.334 af

Plug-Flow detention time= 38.2 min calculated for 246.066 af (100% of inflow) Center-of-Mass det. time= 38.2 min (1,025.2 - 987.1)

Volume	Inv	ert Avail.Stora	age Storage Description
#1	741.0	00' 101.017	af Pond North Listed below
Elevatior (feet	n Ci t) (a	um.Store acre-feet)	
741.0	0	0.000	
742.00	0	1.977	
744.00	0	14.791	
746.00	0	36.569	
748.00	0	65.872	
750.00	0	101.017	
Device	Routing	Invert	Outlet Devices
#1	Primary	747.10'	48.0" Round Culvert 1
	ŗ		L= 68.0' CMP, projecting, no headwall, Ke= 0.900 Inlet / Outlet Invert= 747.10' / 745.00' S= 0.0309 '/' Cc= 0.900 n= 0.030. Corrugated metal
#2	Primary	745.00'	48.0" Round Culvert_2 L= 66.0' CMP, projecting, no headwall, Ke= 0.900
			Inlet / Outlet Invert= 745.00° / 745.00° S= 0.0000° / Cc= 0.900° n= 0.030° Corrugated metal
#3	Primary	745.30'	48.0" Round Culvert_3
			Inlet / Outlet Invert= $745.30' / 745.00' = 0.0045'/$ Cc= 0.900 n= 0.030 Corrugated metal
#4	Primary	738.50'	58.8" Round NED_CU X 2.00 L= 137.0' CPP, mitered to conform to fill, Ke= 0.700
			Inlet / Outlet Invert= 738.50' / 738.00' S= 0.0036 '/' Cc= 0.900 n= 0.011 PVC, smooth interior
Primary	OutFlow	Max=305.86 cfs	s @ 16.20 hrs_HW=744.88' (Free Discharge)

(Г ge)

-1=Culvert_1 (Controls 0.00 cfs) -2=Culvert_2 (Controls 0.00 cfs)

-3=Culvert_3 (Controls 0.00 cfs)

-4=NED_CU (Barrel Controls 305.86 cfs @ 8.16 fps)

Pond P2: PN

Spillway_Analysis	<i>Type II 24-hr 500</i>	-year, 24-hour Rainfall=8.31"
Prepared by Geosyntec Consultan	ts	Printed 7/14/2010
<u>HydroCAD® 9.10 s/n 00929 © 2009 Hyr</u>	droCAD Software Solutions LLC	Page 20
Time spar Rund Reach routing by Stor-I	n=0.00-48.00 hrs, dt=0.05 hrs, 961 pc off by SCS TR-20 method, UH=SCS nd+Trans method - Pond routing by	pints v Stor-Ind method
Subcatchment S1: SA_1	Runoff Area=882.000 ac 0.009	% Impervious Runoff Depth=4.26"
Flow Length=12,641'	Slope=0.0146 '/' Tc=348.7 min CN=	66 Runoff=517.14 cfs 313.329 af
Subcatchment S10: PN Area	Runoff Area=30.718 ac 100.009 Tc=0.0 min CN=	% Impervious Runoff Depth=8.31" 100 Runoff=410.31 cfs 21.272 af
Subcatchment S11: PC Area	Runoff Area=36.979 ac 100.009 Tc=0.0 min CN=	% Impervious Runoff Depth=8.31" 100 Runoff=493.95 cfs 25.608 af
Subcatchment S2: SA_2	Runoff Area=624.000 ac 0.00%	% Impervious Runoff Depth=3.34"
Flow Length=8,746	Slope=0.0308 '/' Tc=166.1 min CN=	58 Runoff=492.19 cfs 173.602 af
Subcatchment S3: NA_1	Runoff Area=176.000 ac 0.009	% Impervious Runoff Depth=3.34"
Flow Length=3,35	58' Slope=0.0259 '/' Tc=69.6 min CN	=58 Runoff=269.30 cfs 48.965 af
Subcatchment S4: NA_2	Runoff Area=646.000 ac 0.009	% Impervious Runoff Depth=3.68"
Flow Length=6,729'	Slope=0.0036 '/' Tc=267.0 min CN=	61 Runoff=389.53 cfs 198.252 af
Subcatchment S5: NA_3	Runoff Area=84.000 ac 0.00%	% Impervious Runoff Depth=3.45"
Flow Length=1,2	252' Slope=0.0935 '/' Tc=9.7 min CN	=59 Runoff=442.92 cfs 24.170 af
Subcatchment S6: NA_4	Runoff Area=148.000 ac 0.00%	% Impervious Runoff Depth=3.68"
Flow Length=4,59	99' Slope=0.0398 '/' Tc=54.9 min CN	=61 Runoff=302.71 cfs 45.420 af
Subcatchment S7: ASHBODY-1	Runoff Area=24.400 ac 0.00%	% Impervious Runoff Depth=7.23"
Flow Length=1,05	58' Slope=0.0076 '/' Tc=20.2 min CN	=91 Runoff=181.05 cfs 14.702 af
Subcatchment S8: ASHBODY-2	Runoff Area=127.500 ac 0.00%	% Impervious Runoff Depth=7.23"
Flow Length=2,7	55' Slope=0.0247 '/' Tc=29.2 min CN	=91 Runoff=765.82 cfs 76.826 af
Subcatchment S9: ASHBODY-3	Runoff Area=13.600 ac 0.00%	% Impervious Runoff Depth=7.23"
Flow Length	=647' Slope=0.0680 '/' Tc=4.1 min Cl	N=91 Runoff=162.52 cfs 8.195 af
Pond P1: PC	Peak Elev=745.75' Storage=43.375 a	af Inflow=1,213.38 cfs 950.341 af
)1 cfs 810.298 af Secondary=298.57 cfs	140.043 af Tertiary=0.00 cfs 0.000 af	Outflow=1,171.58 cfs 950.341 af
Pond P2: PN	Peak Elev=747.18' Storage=53.802	2 af Inflow=786.26 cfs 352.781 af Outflow=427.48 cfs 352.781 af
Total Duraff Area 2 702 4		Average Duneff Danth 40

Total Runoff Area = 2,793.197 acRunoff Volume = 950.341 afAverage Runoff Depth = 4.08"97.58% Pervious = 2,725.500 ac2.42% Impervious = 67.697 ac

Summary for Subcatchment S1: SA_1

Runoff = 517.14 cfs @ 16.65 hrs, Volume= 313.329 af, Depth= 4.26"

Runoff by SCS TR-20 method, UH=SCS, Time Span= 0.00-48.00 hrs, dt= 0.05 hrs Type II 24-hr 500-year, 24-hour Rainfall=8.31"

	Area	(ac)	CN	Desc	ription		
*	882.	000	66	Com	posite CN		
882.000 100.00% Pervious Area							
	Tc (min)	Length (feet)	n S	Slope (ft/ft)	Velocity (ft/sec)	Capacity (cfs)	Description
	348.7	12,641	0.0	0146	0.60	<u>_</u>	Shallow Concentrated Flow, Overland Flow Woodland Kv= 5.0 fps

Subcatchment S1: SA_1

Summary for Subcatchment S10: PN Area

[46] Hint: Tc=0 (Instant runoff peak depends on dt)

Runoff = 410.31 cfs @ 11.89 hrs, Volume= 21.272 af, Depth= 8.31"

Runoff by SCS TR-20 method, UH=SCS, Time Span= 0.00-48.00 hrs, dt= 0.05 hrs Type II 24-hr 500-year, 24-hour Rainfall=8.31"

	Area (ac)	CN	Description
*	30.718	100	Pond
	30.718		100.00% Impervious Area

Subcatchment S10: PN Area

Summary for Subcatchment S11: PC Area

[46] Hint: Tc=0 (Instant runoff peak depends on dt)

Runoff = 493.95 cfs @ 11.89 hrs, Volume= 25.608 af, Depth= 8.31"

Runoff by SCS TR-20 method, UH=SCS, Time Span= 0.00-48.00 hrs, dt= 0.05 hrs Type II 24-hr 500-year, 24-hour Rainfall=8.31"

	Area (ac)	CN	Description
*	36.979	100	Pond
	36.979		100.00% Impervious Area

Subcatchment S11: PC Area

Summary for Subcatchment S2: SA_2

Runoff = 492.19 cfs @ 14.19 hrs, Volume= 173.602 af, Depth= 3.34"

Runoff by SCS TR-20 method, UH=SCS, Time Span= 0.00-48.00 hrs, dt= 0.05 hrs Type II 24-hr 500-year, 24-hour Rainfall=8.31"

	Area	(ac) (CN	Desc	ription		
*	624.	000	58	Com	posite CN		
624.000 100.00% Pervious Area							
	Тс	Length	S	lope	Velocity	Capacity	Description
	(min)	(feet)		(ft/ft)	(ft/sec)	(cfs)	
	166.1	8,746	0.0	0308	0.88		Shallow Concentrated Flow, Overland Flow Woodland Ky= 5.0 fps

Subcatchment S2: SA_2

Summary for Subcatchment S3: NA_1

Runoff = 269.30 cfs @ 12.77 hrs, Volume= 48.965 af, Depth= 3.34"

Runoff by SCS TR-20 method, UH=SCS, Time Span= 0.00-48.00 hrs, dt= 0.05 hrs Type II 24-hr 500-year, 24-hour Rainfall=8.31"

	Area	(ac) C	N Des	cription		
*	176.	000	58 Con	nposite CN		
176.000 100.00% Pervious Area						
	Tc (min)	Length	Slope	Velocity	Capacity	Description
		2 250	0.0250		(015)	Shallow Concentrated Flow, Overland Flow
	09.0	3,300	0.0259	0.80		Woodland Ky= 5.0 fps

Subcatchment S3: NA_1

Summary for Subcatchment S4: NA_2

Runoff = 389.53 cfs @ 15.47 hrs, Volume= 198.252 af, Depth= 3.68"

Runoff by SCS TR-20 method, UH=SCS, Time Span= 0.00-48.00 hrs, dt= 0.05 hrs Type II 24-hr 500-year, 24-hour Rainfall=8.31"

	Area	(ac)	CN	Desc	cription		
*	646.	000	61	Com	posite CN		
	646.	000		100.0	00% Pervi	ous Area	
	Tc	Length		Slope	Velocity	Capacity	Description
	(min)	(teet)		(IT/IT)	(It/sec)	(CIS)	
	267.0	6,729	0.	.0036	0.42		Shallow Concentrated Flow, Overland FLow Short Grass Pasture Kv= 7.0 fps

Subcatchment S4: NA_2

Summary for Subcatchment S5: NA_3

Runoff = 442.92 cfs @ 12.02 hrs, Volume= 24.170 af, Depth= 3.45"

Runoff by SCS TR-20 method, UH=SCS, Time Span= 0.00-48.00 hrs, dt= 0.05 hrs Type II 24-hr 500-year, 24-hour Rainfall=8.31"

	Area	(ac) (CN	Desc	ription		
*	84.	000	59	Com	posite CN		
	84.	000		100.0	00% Pervi	ous Area	
	Тс	Length	S	lope	Velocity	Capacity	Description
	(min)	(feet)		(ft/ft)	(ft/sec)	(cfs)	
	9.7	1,252	0.0	0935	2.14		Shallow Concentrated Flow, Overland Flow Short Grass Pasture Ky= 7.0 fps

Subcatchment S5: NA_3

Summary for Subcatchment S6: NA_4

Runoff = 302.71 cfs @ 12.58 hrs, Volume= 45.420 af, Depth= 3.68"

Runoff by SCS TR-20 method, UH=SCS, Time Span= 0.00-48.00 hrs, dt= 0.05 hrs Type II 24-hr 500-year, 24-hour Rainfall=8.31"

	Area	(ac) (CN	Desc	ription		
*	148.	000	61	Com	posite CN		
	148.	000		100.0	00% Pervi	ous Area	
	Тс	Length	S	Slope	Velocity	Capacity	Description
	(min)	(feet)		(ft/ft)	(ft/sec)	(cfs)	
	54.9	4,599	0.0	0398	1.40		Shallow Concentrated Flow, Overland Flow Short Grass Pasture Ky= 7.0 fps

Subcatchment S6: NA_4

Summary for Subcatchment S7: ASHBODY-1

Runoff = 181.05 cfs @ 12.12 hrs, Volume= 14.702 af, Depth= 7.23"

Runoff by SCS TR-20 method, UH=SCS, Time Span= 0.00-48.00 hrs, dt= 0.05 hrs Type II 24-hr 500-year, 24-hour Rainfall=8.31"

	Area	(ac) C	<u>CN</u> E)esc	ription		
*	24.	400	91 N	lewl	y Graded	Areas, HSO	G C (Silt)
	24.	400	1	00.0	00% Pervi	ous Area	
	Тс	Length	Slo	ре	Velocity	Capacity	Description
	(min)	(feet)	(ft	/ft)	(ft/sec)	(cfs)	
	20.2	1,058	0.00	76	0.87		Shallow Concentrated Flow, Overland Flow Nearly Bare & Untilled Kv= 10.0 fps

Subcatchment S7: ASHBODY-1

Summary for Subcatchment S8: ASHBODY-2

Runoff = 765.82 cfs @ 12.22 hrs, Volume= 76.826 af, Depth= 7.23"

Runoff by SCS TR-20 method, UH=SCS, Time Span= 0.00-48.00 hrs, dt= 0.05 hrs Type II 24-hr 500-year, 24-hour Rainfall=8.31"

	Area	(ac) (CN	Desc	cription		
*	127.	500	91	New	ly Graded	Areas, HSC	G C (Silt)
127.500			100.00% Pervious Area				
	Тс	Length	S	Slope	Velocity	Capacity	Description
	(min)	(feet)		(ft/ft)	(ft/sec)	(cfs)	
	29.2	2,755	0.	0247	1.57		Shallow Concentrated Flow, Overland Flow Nearly Bare & Untilled Ky= 10.0 fps

Subcatchment S8: ASHBODY-2

Summary for Subcatchment S9: ASHBODY-3

[49] Hint: Tc<2dt may require smaller dt

Runoff = 162.52 cfs @ 11.94 hrs, Volume= 8.195 af, Depth= 7.23"

Runoff by SCS TR-20 method, UH=SCS, Time Span= 0.00-48.00 hrs, dt= 0.05 hrs Type II 24-hr 500-year, 24-hour Rainfall=8.31"

	Area	(ac)	CN	Desc	cription		
*	13.	600	91	New	ly Graded	Areas, HS	G C (Silt)
	13.	600		100.	00% Pervi	ous Area	
	Tc (min)	Length (feet)	n 5	Slope (ft/ft)	Velocity (ft/sec)	Capacity (cfs)	Description
	4.1	647	0.	0680	2.61		Shallow Concentrated Flow, Overland Flow Nearly Bare & Untilled Ky= 10.0 fps

Subcatchment S9: ASHBODY-3

Summary for Pond P1: PC

[81] Warning: Exceeded Pond P2 by 0.26' @ 24.90 hrs

Inflow Area	=	2,793.197 ac,	2.42% Impervious, Inflow	Depth = 4.0	08" for 500-year, 24-hour event
Inflow =	=	1,213.38 cfs @	14.97 hrs, Volume=	950.341 af	
Outflow =	=	1,171.58 cfs @	16.43 hrs, Volume=	950.341 af,	Atten= 3%, Lag= 88.0 min
Primary :	=	873.01 cfs @	16.43 hrs, Volume=	810.298 af	
Secondary :	=	298.57 cfs @	16.43 hrs, Volume=	140.043 af	
Tertiary =	=	0.00 cfs @	0.00 hrs, Volume=	0.000 af	

Routing by Stor-Ind method, Time Span= 0.00-48.00 hrs, dt= 0.05 hrs Peak Elev= 745.75' @ 16.43 hrs Surf.Area= 0.000 ac Storage= 43.375 af

Plug-Flow detention time= 17.6 min calculated for 950.339 af (100% of inflow) Center-of-Mass det. time= 17.6 min (1,055.2 - 1,037.7)

Volume	Invert	Avail.Stora	ge Storage Description
#1	741.00'	158.188	af Custom Stage DataListed below
Elevatio (fee	n Cum.S t) (acre-	Store feet)	
741.0	0 0	.000	
742.0	0 2	.013	
744.0	0 15	.695	
746.0	746.00 47.335		
748.0	0 93	.924	
750.0	0 158	.188	
Device	Routing	Invert	Outlet Devices
#1	Secondary	743.00'	60.0" Horiz. Overflow Pipe 1 C= 0.600
			Limited to weir flow at low heads
#2	Secondary	743.50'	60.0" Horiz. Overflow Pipe 2 C= 0.600
<i>щ</i> о	Drimon		Limited to weir flow at low heads
#3	Phillary	730.50	$J = 115.0^{\circ}$ CPP mitered to conform to fill Ke= 0.700
			Inlet / Outlet Invert= $736.50'$ / $736.00'$ S= 0.0043 '/' Cc= 0.900
			n= 0.011 PVC, smooth interior
#4	Tertiary	746.00'	144.0 deg x 4.4' long x 4.00' rise Spillway C= 2.57

Primary OutFlow Max=873.01 cfs @ 16.43 hrs HW=745.75' TW=741.00' (Fixed TW Elev= 741.00') **3=O_CU** (Inlet Controls 873.01 cfs @ 9.26 fps)

Secondary OutFlow Max=298.57 cfs @ 16.43 hrs HW=745.75' TW=741.00' (Fixed TW Elev= 741.00') 1=Overflow Pipe 1 (Orifice Controls 156.77 cfs @ 7.98 fps) 2=Overflow Pipe 2 (Orifice Controls 141.80 cfs @ 7.22 fps)

Tertiary OutFlow Max=0.00 cfs @ 0.00 hrs HW=741.00' TW=741.00' (Fixed TW Elev= 741.00') **4=Spillway** (Controls 0.00 cfs)

Pond P1: PC

Page 33

Page 34

Inflow A	Area =	1,109.118 ac,	2.77% Impervious, Inflow	Depth = 3.82"	for 500-year, 24-hour event
Inflow	=	786.26 cfs @	11.92 hrs, Volume=	352.781 af	
Outflow	/ =	427.48 cfs @	16.38 hrs, Volume=	352.781 af, At	ten= 46%, Lag= 267.2 min
Primary	/ =	427.48 cfs @	16.38 hrs, Volume=	352.781 af	

Routing by Stor-Ind method, Time Span= 0.00-48.00 hrs, dt= 0.05 hrs Peak Elev= 747.18' @ 16.38 hrs Surf.Area= 0.000 ac Storage= 53.802 af

Plug-Flow detention time= 63.3 min calculated for 352.413 af (100% of inflow) Center-of-Mass det. time= 63.2 min (1,043.8 - 980.6)

Volume	Inve	ert Avail.Stora	age Storage Description
#1	741.0	0' 101.017	7 af Pond North Listed below
Elevatio (fee	on Cu et) (a	ım.Store cre-feet)	
741.0)0	0.000	
742.0	00	1.977	
744.0	00	14.791	
746.0	00	36.569	
748.0	0	65.872	
750.0	0	101.017	
Device	Routing	Invert	Outlet Devices
#1	Primary	747.10'	48.0" Round Culvert_1
			L= 68.0' CMP, projecting, no headwall, Ke= 0.900 Inlet / Outlet Invert= 747.10' / 745.00' S= 0.0309 '/' Cc= 0.900
			n= 0.030 Corrugated metal
#2	Primary	745.00'	48.0" Round Culvert_2
			L= 66.0 CMP, projecting, no neadwall, Ke= 0.900
			n = 0.030 Corrugated metal
#3	Primarv	745.30'	48.0" Round Culvert 3
	j		L= 66.0' CMP, projecting, no headwall, Ke= 0.900
			Inlet / Outlet Invert= 745.30' / 745.00' S= 0.0045 '/' Cc= 0.900
			n= 0.030 Corrugated metal
#4	Primary	738.50'	58.8" Round NED_CU X 2.00
			L= 137.0° CPP, mitered to conform to fill, Ke= 0.700°
			$n_{\rm e} = 0.011 \text{ P}/\text{C}$ smooth interior

Primary OutFlow Max=427.46 cfs @ 16.38 hrs HW=747.18' (Free Discharge)

-1=Culvert_1 (Barrel Controls 0.04 cfs @ 0.98 fps)

-2=Culvert_2 (Barrel Controls 14.27 cfs @ 2.96 fps)

-3=Culvert 3 (Barrel Controls 13.34 cfs @ 3.38 fps)

-4=NED_CU (Inlet Controls 399.81 cfs @ 10.60 fps)

Spillway_Analysis	<i>Type II 24-hr 1</i>	000-year, 24-hour Rainfall=9.00"
Prepared by Geosyntec Consultants	S	Printed 7/14/2010
HydroCAD® 9.10 s/n 00929 © 2009 Hyd	roCAD Software Solutions LLC	Page 36
Time span	=0.00-48.00 hrs, dt=0.05 hrs, 96	61 points
Runo	ff by SCS TR-20 method, UH=S	CS
Reach routing by Stor-Ir	nd+Trans method - Pond routin	Ig by Stor-Ind method
Subcatchment S1: SA_1	Runoff Area=882.000 ac 0	0.00% Impervious Runoff Depth=4.84"
Flow Length=12,641'	Slope=0.0146 '/' Tc=348.7 min	CN=66 Runoff=589.60 cfs 355.793 af
Subcatchment S10: PN Area	Runoff Area=30.718 ac 100 Tc=0.0 min	0.00% Impervious Runoff Depth=9.00" CN=100 Runoff=444.38 cfs 23.039 af
Subcatchment S11: PC Area	Runoff Area=36.979 ac 100 Tc=0.0 min	0.00% Impervious Runoff Depth=9.00" CN=100 Runoff=534.96 cfs 27.734 af
Subcatchment S2: SA_2	Runoff Area=624.000 ac (0.00% Impervious Runoff Depth=3.86"
Flow Length=8,746'	Slope=0.0308 '/' Tc=166.1 min	CN=58 Runoff=573.81 cfs 200.464 af
Subcatchment S3: NA_1	Runoff Area=176.000 ac (0.00% Impervious Runoff Depth=3.86"
Flow Length=3,35	8' Slope=0.0259 '/' Tc=69.6 min	CN=58 Runoff=314.43 cfs 56.541 af
Subcatchment S4: NA_2	Runoff Area=646.000 ac (0.00% Impervious Runoff Depth=4.22"
Flow Length=6,729'	Slope=0.0036 '/' Tc=267.0 min	CN=61 Runoff=450.16 cfs 227.384 af
Subcatchment S5: NA_3	Runoff Area=84.000 ac(0.00% Impervious Runoff Depth=3.98"
Flow Length=1,2	52' Slope=0.0935 '/' Tc=9.7 min	CN=59 Runoff=511.52 cfs 27.845 af
Subcatchment S6: NA_4	Runoff Area=148.000 ac (0.00% Impervious Runoff Depth=4.22"
Flow Length=4,59	9' Slope=0.0398 '/' Tc=54.9 min	CN=61 Runoff=349.67 cfs 52.094 af
Subcatchment S7: ASHBODY-1	Runoff Area=24.400 ac(0.00% Impervious Runoff Depth=7.91"
Flow Length=1,05	8' Slope=0.0076 '/' Tc=20.2 min	CN=91 Runoff=197.19 cfs 16.090 af
Subcatchment S8: ASHBODY-2	Runoff Area=127.500 ac(0.00% Impervious Runoff Depth=7.91"
Flow Length=2,75	5' Slope=0.0247 '/' Tc=29.2 min	CN=91 Runoff=834.31 cfs 84.077 af
Subcatchment S9: ASHBODY-3	Runoff Area=13.600 ac(0.00% Impervious Runoff Depth=7.91"
Flow Length=	647' Slope=0.0680 '/' Tc=4.1 mir	n CN=91 Runoff=176.84 cfs 8.968 af
Pond P1: PC	Peak Elev=746.64' Storage=62.28	38 af Inflow=1,388.85 cfs 1,080.028 af
cfs 891.923 af Secondary=347.99 cfs 18	6.429 af Tertiary=9.91 cfs 1.677	af Outflow=1,309.38 cfs 1,080.028 af
Pond P2: PN	Peak Elev=748.09' Storage=67	7.467 af Inflow=890.66 cfs 402.993 af Outflow=491.57 cfs 402.993 af

Total Runoff Area = 2,793.197 acRunoff Volume = 1,080.028 afAverage Runoff Depth = 4.64"97.58% Pervious = 2,725.500 ac2.42% Impervious = 67.697 ac

Summary for Subcatchment S1: SA_1

Runoff = 589.60 cfs @ 16.65 hrs, Volume= 355.793 af, Depth= 4.84"

Runoff by SCS TR-20 method, UH=SCS, Time Span= 0.00-48.00 hrs, dt= 0.05 hrs Type II 24-hr 1000-year, 24-hour Rainfall=9.00"

	Area	(ac) C	CN De	escription		
*	882.	000	66 Co	mposite CN		
	882.	000	10	0.00% Perv	ious Area	
	Тс	Length	Slop	e Velocity	Capacity	Description
	(min)	(feet)	(ft/f	:) (ft/sec)	(cfs)	
	348.7	12,641	0.014	6 0.60		Shallow Concentrated Flow, Overland Flow Woodland Ky= 5.0 fps

Subcatchment S1: SA_1

Summary for Subcatchment S10: PN Area

[46] Hint: Tc=0 (Instant runoff peak depends on dt)

Runoff = 444.38 cfs @ 11.89 hrs, Volume= 23.039 af, Depth= 9.00"

Runoff by SCS TR-20 method, UH=SCS, Time Span= 0.00-48.00 hrs, dt= 0.05 hrs Type II 24-hr 1000-year, 24-hour Rainfall=9.00"

	Area (ac)	CN	Description
*	30.718	100	Pond
	30.718		100.00% Impervious Area

Subcatchment S10: PN Area

Summary for Subcatchment S11: PC Area

[46] Hint: Tc=0 (Instant runoff peak depends on dt)

Runoff = 534.96 cfs @ 11.89 hrs, Volume= 27.734 af, Depth= 9.00"

Runoff by SCS TR-20 method, UH=SCS, Time Span= 0.00-48.00 hrs, dt= 0.05 hrs Type II 24-hr 1000-year, 24-hour Rainfall=9.00"

	Area (ac)	CN	Description
*	36.979	100	Pond
	36.979		100.00% Impervious Area

Subcatchment S11: PC Area

Summary for Subcatchment S2: SA_2

Runoff = 573.81 cfs @ 14.19 hrs, Volume= 200.464 af, Depth= 3.86"

Runoff by SCS TR-20 method, UH=SCS, Time Span= 0.00-48.00 hrs, dt= 0.05 hrs Type II 24-hr 1000-year, 24-hour Rainfall=9.00"

	Area	(ac) (CN	Desc	ription		
*	624.	000	58	Com	posite CN		
	624.	000		100.0	00% Pervi	ous Area	
	Тс	Length	SI	ope	Velocity	Capacity	Description
	(min)	(feet)	(1	ft/ft)	(ft/sec)	(cfs)	
	166.1	8,746	0.0	308	0.88		Shallow Concentrated Flow, Overland Flow Woodland Ky= 5.0 fps

Subcatchment S2: SA_2

Summary for Subcatchment S3: NA_1

Runoff = 314.43 cfs @ 12.77 hrs, Volume= 56.541 af, Depth= 3.86"

Runoff by SCS TR-20 method, UH=SCS, Time Span= 0.00-48.00 hrs, dt= 0.05 hrs Type II 24-hr 1000-year, 24-hour Rainfall=9.00"

	Area	(ac)	CN	Desc	ription		
*	176.	000	58	Com	posite CN		
	176.	000		100.0	00% Pervi	ous Area	
	Tc	Length	5	Slope	Velocity	Capacity	Description
	(min)	(Teet)		(π/π)	(IT/SEC)	(CIS)	
	69.6	3,358	0.	.0259	0.80		Shallow Concentrated Flow, Overland Flow Woodland Kv= 5.0 fps

Subcatchment S3: NA_1

Summary for Subcatchment S4: NA_2

Runoff = 450.16 cfs @ 15.46 hrs, Volume= 227.384 af, Depth= 4.22"

Runoff by SCS TR-20 method, UH=SCS, Time Span= 0.00-48.00 hrs, dt= 0.05 hrs Type II 24-hr 1000-year, 24-hour Rainfall=9.00"

	Area	(ac) (CN	Desc	ription		
*	646.	000	61	Com	posite CN		
	646.	000		100.0	00% Pervi	ous Area	
	Tc	Length	S		Velocity	Capacity	Description
	(min)	(leet)		(Π/Π)	(IT/Sec)	(CIS)	
	267.0	6,729	0.	0036	0.42		Shallow Concentrated Flow, Overland FLow Short Grass Pasture Ky= 7.0 fps

Subcatchment S4: NA_2

Summary for Subcatchment S5: NA_3

Runoff = 511.52 cfs @ 12.02 hrs, Volume= 27.845 af, Depth= 3.98"

Runoff by SCS TR-20 method, UH=SCS, Time Span= 0.00-48.00 hrs, dt= 0.05 hrs Type II 24-hr 1000-year, 24-hour Rainfall=9.00"

	Area	(ac) (CN De	escription		
*	84.	000	59 Co	omposite CN	l	
	84.	000	10	0.00% Perv	ious Area	
	Тс	Length	Slop	e Velocity	Capacity	Description
	(min)	(feet)	(ft/f	t) (ft/sec)	(cfs)	
	9.7	1,252	0.093	5 2.14		Shallow Concentrated Flow, Overland Flow Short Grass Pasture Ky= 7.0 fps

Subcatchment S5: NA_3

Summary for Subcatchment S6: NA_4

Runoff = 349.67 cfs @ 12.57 hrs, Volume= 52.094 af, Depth= 4.22"

Runoff by SCS TR-20 method, UH=SCS, Time Span= 0.00-48.00 hrs, dt= 0.05 hrs Type II 24-hr 1000-year, 24-hour Rainfall=9.00"

	Area	(ac) (CN	Desc	cription		
*	148.	000	61	Com	posite CN		
	148.	000		100.0	00% Pervi	ous Area	
	Tc (min)	Length (feet)	S	Slope (ft/ft)	Velocity (ft/sec)	Capacity (cfs)	Description
	54.9	4,599	0.0	0398	1.40		Shallow Concentrated Flow, Overland Flow Short Grass Pasture Ky= 7.0 fps

Subcatchment S6: NA_4

Summary for Subcatchment S7: ASHBODY-1

Runoff = 197.19 cfs @ 12.12 hrs, Volume= 16.090 af, Depth= 7.91"

Runoff by SCS TR-20 method, UH=SCS, Time Span= 0.00-48.00 hrs, dt= 0.05 hrs Type II 24-hr 1000-year, 24-hour Rainfall=9.00"

	Area	(ac) (CN	Desc	ription		
*	24.	400	91	New	ly Graded	Areas, HSC	G C (Silt)
	24.	400		100.0	00% Pervi	ous Area	
	Тс	Length	S	lope	Velocity	Capacity	Description
	(min)	(feet)		(ft/ft)	(ft/sec)	(cfs)	
	20.2	1,058	0.0	076	0.87		Shallow Concentrated Flow, Overland Flow Nearly Bare & Untilled Kv= 10.0 fps

Subcatchment S7: ASHBODY-1

Summary for Subcatchment S8: ASHBODY-2

Runoff = 834.31 cfs @ 12.22 hrs, Volume= 84.077 af, Depth= 7.91"

Runoff by SCS TR-20 method, UH=SCS, Time Span= 0.00-48.00 hrs, dt= 0.05 hrs Type II 24-hr 1000-year, 24-hour Rainfall=9.00"

	Area	(ac) (CN	Desc	ription		
*	127.	500	91	Newl	y Graded	Areas, HSC	G C (Silt)
	127.	500		100.0	0% Pervi	ous Area	
	Tc (min)	Length (feet)	SI (lope (ft/ft)	Velocity (ft/sec)	Capacity (cfs)	Description
	29.2	2,755	0.0)247	1.57	()	Shallow Concentrated Flow, Overland Flow Nearly Bare & Untilled Ky= 10.0 fps

Subcatchment S8: ASHBODY-2

Summary for Subcatchment S9: ASHBODY-3

[49] Hint: Tc<2dt may require smaller dt

Runoff = 176.84 cfs @ 11.94 hrs, Volume= 8.968 af, Depth= 7.91"

Runoff by SCS TR-20 method, UH=SCS, Time Span= 0.00-48.00 hrs, dt= 0.05 hrs Type II 24-hr 1000-year, 24-hour Rainfall=9.00"

	Area	(ac)	CN	Desc	cription		
*	13.	600	91	New	ly Graded	Areas, HS	G C (Silt)
	13.600			100.00% Pervious Area			
	Tc (min)	Length (feet)	n S)	Slope (ft/ft)	Velocity (ft/sec)	Capacity (cfs)	Description
	4.1	647	' 0.	.0680	2.61		Shallow Concentrated Flow, Overland Flow Nearly Bare & Untilled Ky= 10.0 fps

Subcatchment S9: ASHBODY-3

Summary for Pond P1: PC

[81] Warning: Exceeded Pond P2 by 0.29' @ 25.25 hrs

Inflow Area	a =	2,793.197 ac,	2.42% Impervious, In	flow Depth = 4.6	4" for 1000-year, 24-hour event
Inflow	=	1,388.85 cfs @	14.97 hrs, Volume=	1,080.028 af	-
Outflow	=	1,309.38 cfs @	16.75 hrs, Volume=	1,080.028 af,	Atten= 6%, Lag= 107.0 min
Primary	=	951.48 cfs @	16.75 hrs, Volume=	891.923 af	-
Secondary	=	347.99 cfs @	16.75 hrs, Volume=	186.429 af	
Tertiary	=	9.91 cfs @	16.75 hrs, Volume=	1.677 af	

Routing by Stor-Ind method, Time Span= 0.00-48.00 hrs, dt= 0.05 hrs Peak Elev= 746.64' @ 16.75 hrs Surf.Area= 0.000 ac Storage= 62.288 af

Plug-Flow detention time= 21.7 min calculated for 1,078.902 af (100% of inflow) Center-of-Mass det. time= 21.7 min (1,060.5 - 1,038.9)

Volume	Invert	Avail.Stora	ge Storage Description
#1	741.00'	158.188	af Custom Stage DataListed below
Elevatio (fee	n Cum.S t) (acre-	Store feet)	
741.0	0 0	.000	
742.0	0 2	.013	
744.0	0 15	.695	
746.0	0 47	.335	
748.0	0 93	.924	
750.0	0 158	.188	
Device	Routing	Invert	Outlet Devices
#1	Secondary	743.00'	60.0" Horiz. Overflow Pipe 1 C= 0.600
			Limited to weir flow at low heads
#2	Secondary	743.50'	60.0" Horiz. Overflow Pipe 2 C= 0.600
<i>щ</i> о	Drimon		Limited to weir flow at low heads
#3	#3 Primary		$J = 115.0^{\circ}$ CPP mitered to conform to fill Ke= 0.700
			Inlet / Outlet Invert= $736.50'$ / $736.00'$ S= 0.0043 '/' Cc= 0.900
			n= 0.011 PVC, smooth interior
#4	Tertiary	746.00'	144.0 deg x 4.4' long x 4.00' rise Spillway C= 2.57

Primary OutFlow Max=951.48 cfs @ 16.75 hrs HW=746.64' TW=741.00' (Fixed TW Elev= 741.00') **3=O_CU** (Inlet Controls 951.48 cfs @ 10.09 fps)

Secondary OutFlow Max=348.00 cfs @ 16.75 hrs HW=746.64' TW=741.00' (Fixed TW Elev= 741.00') 1=Overflow Pipe 1 (Orifice Controls 180.42 cfs @ 9.19 fps) 2=Overflow Pipe 2 (Orifice Controls 167.58 cfs @ 8.53 fps)

Tertiary OutFlow Max=9.88 cfs @ 16.75 hrs HW=746.64' TW=741.00' (Fixed TW Elev= 741.00') **4=Spillway** (Weir Controls 9.88 cfs @ 2.41 fps)

Pond P1: PC
Summary for Pond P2: PN

Inflow A	Area =	1,109.118 ac,	2.77% Impervious, Inflow	v Depth = 4.36"	for 1000-year, 24-hour event
Inflow	=	890.66 cfs @	11.92 hrs, Volume=	402.993 af	
Outflow	/ =	491.57 cfs @	16.35 hrs, Volume=	402.993 af, Atte	en= 45%, Lag= 265.5 min
Primary	/ =	491.57 cfs @	16.35 hrs, Volume=	402.993 af	

Routing by Stor-Ind method, Time Span= 0.00-48.00 hrs, dt= 0.05 hrs Peak Elev= 748.09' @ 16.35 hrs Surf.Area= 0.000 ac Storage= 67.467 af

Plug-Flow detention time= 72.0 min calculated for 402.991 af (100% of inflow) Center-of-Mass det. time= 71.9 min (1,049.9 - 978.0)

Volume	Inve	ert Avail.Stora	age Storage Description
#1	741.0	0' 101.017	7 af Pond North Listed below
Elevatio (fee	n Cu t) (a	ım.Store cre-feet)	
741.0	0	0.000	
742.0	0	1.977	
744.0	0	14.791	
746.0	0	36.569	
748.0	0	65.872	
750.0	0	101.017	
Device	Routing	Invert	Outlet Devices
#1	Primary	747.10'	48.0" Round Culvert_1
			L= 68.0' CMP, projecting, no headwall, Ke= 0.900 Inlet / Outlet Invert= 747.10' / 745.00' S= 0.0309 '/' Cc= 0.900 n= 0.030 Corrugated metal
#2	Primary	745.00'	48.0" Round Culvert_2 L= 66.0' CMP, projecting, no headwall, Ke= 0.900
			Inlet / Outlet Invert= 745.00' / 745.00' S= 0.0000 '/' Cc= 0.900 n= 0.030 Corrugated metal
#3	Primary	745.30'	48.0" Round Culvert_3
			Inlet / Outlet Invert= 745.30' / 745.00' $S = 0.0045$ '/' Cc= 0.900
#4	Primary	738.50'	58.8" Round NED_CU X 2.00
			L= 137.0' CPP, mitered to conform to fill, Ke= 0.700 Inlet / Outlet Invert= 738.50' / 738.00' S= 0.0036 '/' Cc= 0.900 n= 0.011 PVC, smooth interior
			,

Primary OutFlow Max=491.56 cfs @ 16.35 hrs HW=748.09' (Free Discharge)

1=Culvert_1 (Inlet Controls 6.49 cfs @ 2.68 fps)

-2=Culvert_2 (Barrel Controls 28.68 cfs @ 3.80 fps)

-3=Culvert_3 (Barrel Controls 28.22 cfs @ 4.24 fps)

-4=NED_CU (Inlet Controls 428.18 cfs @ 11.35 fps)

Pond P2: PN

APPENDIX – B

GEOTECHNICAL INTEGRITY EVALUATION

GEOSYNTEC CONSULTANTS

COMPUTATION COVER SHEET

Client: <u>TVA</u> Project: Inte	grity Evaluation of Dike 2 Project/Proposal #: <u>GK4693</u> Task #: <u>03</u>
TITLE OF COMPUTATIONS	GEOTECHNICAL INTEGRITY EVALUATION
COMPUTATIONS BY:	Signature July 12,200 Printed Name Joseph Sura and Title Senior Staff Engineer
ASSUMPTIONS AND PROCEDURE CHECKED BY: (Peer Reviewer)	Printed Name Ming Zhu, P.E. T/12/2010 DATE
COMPUTATIONS CHECKED BY:	and Title Project Engineer Signature Ming Zhu, P.E. / Fan Zhu 7/12/20/0 Printed Name Ming Zhu, P.E. / Fan Zhu DATE and Title Project Engineer/Scaler Scale Coglass DATE
COMPUTATIONS BACKCHECKED BY: (Originator)	Signature Joseph Sura Printed Name Joseph Sura and Title Senjor Staff Engineer
APPROVED BY: (PM or Designate)	SignatureJauh finishnam12 July 2010Printed NameGanesh Krishnan, P.E., CPESCDATEand TitleAssociate
APPROVAL NOTES:	
REVISIONS (Number and initial all re NO. SHEET DA'	EVisions) FE BY CHECKED BY APPROVAL

					Geo	syntee	CD	
					consultants			
					Page	1	of	38
Written by: Joseph Sura		Date: 7/8/2010 Reviewed by: Ming Zhu D		Date:	7/9/	2010		
Client: TVA	Project:	Integri	ty Evaluation	of Dike 2	Project/ Proposal No.:	GK4693	Task No.:	03

GEOTECHNICAL INTEGRITY EVALUATION

PURPOSE OF ANALYSES

The purpose of this calculation package is to calculate the slope stability for the existing Dike 2 at the Tennessee Valley Authority (TVA) Kingston site. Slope stability analyses have previously been performed by Geosyntec on Dike 2 in the package titled "Slope Stability Analyses for Dike 2" [Geosyntec, 2009] (hereafter referred to as the 2009 Stability Analyses). The analyses presented herein are intended to calculate the factor of safety (FS) for slope stability under the influence of different water elevations within the Dike 2 basin. Analyses are performed for potential slip surfaces through the embankment and/or subsurface foundation materials.

This package presents the stability analyses for four different water level elevation scenarios within the Dike 2 basin. These include the following.

- Water Elevation 744.5 Feet MSL Water level elevation lower than the crest of the emergency spillway.
- Water Elevation 746.0 Feet MSL Water level elevation at the crest of the emergency spillway.
- Water Elevation 748.0 Feet MSL Water level elevation at approximately half available flow depth in the emergency spillway.
- Water Elevation 750.0 Feet MSL Water level elevation at the top of the embankment of Dike 2.

METHODOLOGY

Static Stability

Slope stability analyses of circular slip surfaces were performed using Spencer's method [Spencer, 1973], as implemented in the computer program SLIDE, version 5.044 [Rocscience, 2010]. The program was used to generate potential slip surfaces, calculate the factor of safety (FS) for each of these surfaces, and identify the slip surface with the lowest FS. The target FS for static slope stability was considered to be 1.3 because this is a short-term, temporary condition.

					Geo	synteo	_C D	
					consultants			
					Page	2	of	38
Written by:	Joseph Sura	Date: 7/8/2010 Reviewed by		Reviewed by:	Ming Zhu	Date:	7/9/	2010
Client: TVA	Project:	Integri	ty Evaluation	of Dike 2	Project/ Proposal No.:	GK4693	Task No.:	03

Seismic Stability

Seismic slope stability analyses were performed using a procedure consistent with a guidance document prepared by the U.S. Environmental Protection Agency [USEPA, 1995]. The procedure is as follows:

- 1. Estimate the peak ground acceleration (PGA) at the site.
- 2. Perform pseudo-static slope stability analyses for the potential critical section to evaluate the yield acceleration. The yield acceleration is the horizontal acceleration at which a marginally stable condition is produced (i.e., factor of safety of 1.0) for the potential slip surface. A trial-and-error process was applied to evaluate the yield acceleration.
- 3. The yield acceleration (k_y) was compared to the peak horizontal acceleration (a_{max}) of the slide mass due to the design earthquake. If k_y is greater than a_{max} , the analysis is concluded, as Dike 2 will not likely undergo permanent displacement. If k_y is less than a_{max} , then Dike 2 will likely undergo permanent displacement and a displacement analysis is performed to evaluate the magnitude of the permanent displacement.
- 4. The seismic displacement, corresponding to the computed k_y/a_{max} ratio, is estimated using the results presented by Hynes and Franklin [1984] and the "modified mean + one standard deviation curve" developed by Geosyntec, as presented in Figure 1. The "modified mean + one standard deviation curve" considers data associated with only large earthquakes, and therefore, is more conservative to use. This procedure is consistent with those given in the recent USEPA guidance document [USEPA, 1995]. According to the USEPA guidance document [1995], and based on the recommendations of Seed and Bonaparte [1992], maximum permanent seismic deformations of 6 to 12 inches are typically considered acceptable.

Information Required

Information required for the slope stability analyses included the Dike 2 geometry, subsurface soil stratigraphy, the expected water surface elevation, and the material properties of the soils and dike.

					Geosyntec [▷]			
					consultants			
					Page	3	of	38
Written by:	Joseph Sura	Date:	7/8/2010	Reviewed by:	Ming Zhu	Date:	7/9/	2010
Client: TVA	Project:	Integri	ty Evaluation	of Dike 2	Project/ Proposal No.:	GK4693	Task No.:	03

SUBSURFACE STRATIGRAPHY & MATERIAL PROPERTIES

The current site topography in the Dike 2 area was provided by Jacobs based on LIDAR contours dated May 19, 2010 and is shown in Figure 2 [TVA, 2009]. It is noted that the LIDAR contours measure the top surface (i.e., including ponded water) and cannot determine the depth of the pond. Therefore, the elevation at the bottom of the pond and bottom of the Emory River have been assumed to be approximately 740 ft and 741 ft, respectively, based on the design drawings. The elevation of the emergency spillway (i.e., top of Dike 2) is approximately 746 ft. The side slopes of Dike 2 are assumed to be 3 horizontal to 1 vertical (3H:1V), with a top width of approximately 24 ft, based on the design details. A small channel containing the overflow risers is located inside the pond approximately 20 ft from Dike 2 and with a bottom elevation of 736 ft. The side slopes of this channel are assumed to be 2H:1V. The subsurface stratigraphy is assumed to consist of an alluvium clay and silt material, based on the Root Cause Analysis of TVA Kingston Dredge Pond Failure form December 22, 2009 Report [AECOM, 2009]. The material properties used in these analyses are based on the Root Cause Analysis [AECOM, 2009] and past experience with site materials. The material properties are summarized in Table 1 and are the same as previously presented in the 2009 Stability Analyses [Geosyntec, 2009]. It is noted that the design condition is expected to represent a short-term condition due to the storm event and therefore only the undrained case has been considered in these analyses.

A parametric study has been performed for the water table elevation inside the basin. Four different water table elevations (i.e., 744.5 ft, 746 ft, 748 ft and 750 ft) have been considered as part of the parametric study. It is noted that the pond has been assumed to be filled with ash up to the top of the lower overflow riser (i.e., elevation 743.0 ft), as shown in Figure 3. The design water table elevation in the Emory River has been assumed to be the summer high water level elevation of 741 ft.

The seismic stability analysis has been performed based on a peak ground acceleration (PGA) with a 90% or greater probability of non-exceedance in 250 years at the site location. Using the USGS Seismic Hazard Curves and Uniform Response Spectra computer program [Frankel, et. al, 2002], the PGA was calculated to be 0.25g.

					Geo	synte	CD		
						consultant			
					Page	4	of	38	
Written by:	Joseph Sura	Date:	7/8/2010	Reviewed by:	Ming Zhu	Date:	7/9/	2010	
Client: TVA	Project:	Integri	ty Evaluation	of Dike 2	Project/ Proposal No.:	GK4693	Task No [.]	03	

ANALYZED CROSS SECTION

The selected Cross Section for analysis passes through the lowest elevation of the emergency spillway as shown on Figure 2. The section geometry and stratigraphy is shown in Figure 4.

RESULTS AND CONCLUSIONS

The calculated minimum FS values for static stability are shown in Table 2. Table 3 summarizes the calculated ground accelerations and permanent deformations under seismic loading. Associated SLIDE output files are included in Attachment 1.

Based on available information and assumptions, the calculation results indicate that Dike 2 is expected to have calculated static FS values greater than the target FS for water elevations of 750 ft and lower. The calculated permanent seismic deformations also satisfy the selected criteria. It is noted that shallow erosion or surface sloughing of the dike may be possible when water flows on the downstream side of the dike (i.e., over the emergency spillway), therefore it is recommended that the dike be inspected for evidence of erosion after large storm events.

					Geo	osynteo	C D	
						S		
					Page	5	of	38
Written by:	Joseph Sura	Date: 7/8/2010 Reviewed by:		Ming Zhu	Date:	7/9/	2010	
Client: TVA	Project:	Integri	ty Evaluation	of Dike 2	Project/ Proposal No.:	GK4693	Task No [·]	03

REFERENCES

AECOM, "Root Cause Analysis of TVA Kingston Dredge Pond Failure from December 22, 2008", Volume 4, June 12, 2009.

Frankel, A.D., Petersen, M.D., Mueller, C.S., Haller, K.M., Wheeler, R.L., Leyendecker, E.V., Wesson, R.L., Harmsen, S.C., Cramer, C.H., Perkins, D.M., and Rukstales, K.S., "Documentation for the 2002 Update of the National Seismic Hazard Maps", United States Geologic Survey, 2002.

Geosyntec., "Slope Stability Analyses for Dike 2", July 2009.

Hynes, M. and Franklin, A., "*Rationalizing the Seismic Coefficient Method*", Department of the Army, Waterways Experiment Station, Corps of Engineers, Vicksburg, Mississippi, Miscellaneous Paper GL-84-14, July 1984.

Rocscience., "*SLIDE — 2-D Limit Equilibrium Slope Stability for Soil and Rock Slopes*", User's Guide, Rocscience Software Inc., Toronto, Ontario, Canada, 2010.

Seed, R. B., and Bonaparte, R., "Seismic Analysis and Design of Lined Waste Fills: Current Practice," *Proceedings, Stability and Performance of Slopes and Embankments-II, Vol. 2*, ASCE Geotechnical Special Publication No. 31, Berkeley, California, 1992, pp. 1521-1545.

Spencer, E., "*The Thrust Line Criterion in Embankment Stability Analysis*", Géotechnique, Vol. 23, No. 1, pp. 85-100, 1973.

Tennessee Valley Authority, "Drawing Set 10W290: Kingston Fossil Plant", 2009.

USEPA. RCRA Subtitle D (258) Seismic Design Guidance for Municipal Solid Waste Landfill Facilities. Document Number EPA600-R-95-051, 1995.

Geosyntec[▷]

consultants

					Page	6	of	38
Written by:	Joseph Sura	Date:	7/8/2010	Reviewed by:	Ming Zhu	Date:	7/9/2	2010
Client: TVA	Project:	Integrit	Integrity Evaluation of Dike 2		Project/ Proposal No.:	GK4693	Task No.:	03

Tables

Geosyntec[▷]

						consultant		
					Page	7	of	38
Written by:	Joseph Sura	Date:	7/8/2010	Reviewed by:	Ming Zhu	Date:	7/9/2	2010
Client: TVA	Project:	Integri	ty Evaluation	of Dike 2	Project/ Proposal No.:	GK4693	Task No.:	03

Table 1: Material Properties

Matarial	Unit Weight	Shear Strength
Material	(pcf)	Properties
Rock Dike	150	c'=0 psf, φ'=45°
Ash	107	c'=100 psf, φ'=0°
Clay and Silt (Foundation Soils)	110	c'=1200 psf, φ'=0°

Note:

These properties are based on data and assumptions previously presented in the 2009 Stability Analyses [Geosyntec, 2009].

			Geosyntec ^D						
					consultants				
					Page	8	of	38	
Written by: Joseph Sura		Date: <u>7/8/2010</u> Reviewed by:		Ming Zhu	Date:	7/9/2	2010		
Client: TVA	Project:	Integrit	y Evaluation	of Dike 2	Project/ Proposal No.:	GK4693	Task No.:	03	

Table 2: Summary of Results

Watar			Static Ar	nalysis		Seismi	ic Analysis	
Elevation (ft)	Description	FS	Target FS	Acceptable?	Yield Acceleration, k _y (g)	k _y /a _{max}	Calculated Deformation (in)	Acceptable?
744.5	Water elevation below emergency spillway	1.61	1.5	Yes	0.15	0.60	1.6	Yes
746	Water elevation at the crest of emergency spillway	1.61	1.5	Yes	0.15	0.60	1.6	Yes
748	Water elevation at approximately half available flow depth in the emergency spillway	1.61	1.5	Yes	0.15	0.60	1.6	Yes
750	Water elevation at the top of the embankment.	1.61	1.5	Yes	0.15	0.60	1.6	Yes

Notes:

- 1) Water elevation refers to the height of water on the upstream side of Dike 2. The height of water on the downstream side of Dike 2 (i.e., the Emory River) is assumed to be 741 ft.
- 2) According to the USEPA guidance document [1995], and based on the recommendations of Seed and Bonaparte [1992], maximum permanent seismic deformations of 6 to 12 inches are typically considered acceptable.
- 3) The associated SLIDE output files are included in Attachment 1.

Geosyntec[▷]

consultants

					Page	9	of	38
Written by:	Joseph Sura	Date:	7/8/2010	Reviewed by:	Ming Zhu	Date:	7/9/	2010
Client: TVA	Project:	Integrit	ty Evaluation	of Dike 2	Project/ Proposal No.:	GK4693	Task No.:	03

Figures

					Geo	osyntee	C,D	
						consultant	S	
					Page	10	of	38
Written by:	Joseph Sura	Date:	7/8/2010	Reviewed by:	Ming Zhu	Date:	7/9/:	2010
Client: TVA	Project:	Integri	ty Evaluation	of Dike 2	Project/ Proposal No.:	GK4693	Task No [.]	03

Modified Seismic Displacement Chart

Figure 1. Seismic Deformation Chart [Hynes and Franklin, 1984]

Note: Cross Section A-A was selected for analysis, as discussed in the package.

Figure 4. Geometry of Selected Cross Section Note: This Cross Section is shown as A-A on Figure 2.

					Page	14	of	38
Written by:	Joseph Sura	Date:	7/8/2010	Reviewed by:	Ming Zhu	Date:	7/9/2	2010
Client: TVA	Project:	Integrit	ty Evaluation	of Dike 2	Project/ Proposal No.:	GK4693	Task	03

Attachment 1:

SLIDE Output Files

Notes:

1. The error messages in the output files are a result of invalid slip surfaces generated by the SLIDE program during the automatic search for the most critical slip surface. The invalid slip surfaces do not affect the valid slip surfaces from which the critical slip surface is identified.

Geosyntec[>] consultants 16 of 38 Page Written by: Joseph Sura Date: **7/8/2010** Reviewed by: Ming Zhu Date: 7/9/2010 Task Client: **TVA** Project: **Integrity Evaluation of Dike 2** Project/ Proposal No .: GK4693 03 No.: Strength Type: Mohr-Coulomb Unit Weight: 150 lb/ft3 Slide Analysis Cohesion: 0 psf Friction Angle: 45 degrees Information Water Surface: Water Table Custom Hu value: 1 **Document Name** Material: Ash (UD) Strength Type: Undrained File Name: Section A 744 Unit Weight: 107 lb/ft3 Cohesion Type: Constant **Project Settings** Cohesion: 100 psf Project Title: SLIDE - An Interactive Slope Water Surface: None Stability Program Failure Direction: Left to Right Material: Clay and Silt (UD) Units of Measurement: Imperial Units Strength Type: Undrained Pore Fluid Unit Weight: 62.4 lb/ft3 Unit Weight: 110 lb/ft3 Groundwater Method: Water Surfaces **Cohesion Type: Constant** Data Output: Standard Cohesion: 1200 psf Calculate Excess Pore Pressure: Off Water Surface: None Allow Ru with Water Surfaces or Grids: Off Random Numbers: Pseudo-random Seed **Global Minimums** Random Number Seed: 10116 Random Number Generation Method: Park Method: spencer and Miller v.3 FS: 1.613400 Center: 122.843, 812.144 Radius: 72.507 Analysis Methods Left Slip Surface Endpoint: 99.138, 743.621 Right Slip Surface Endpoint: 100.693, Analysis Methods used: Spencer 743.102 Resisting Moment=27.9871 lb-ft Number of slices: 25 Driving Moment=17.3466 lb-ft Resisting Horizontal Force=0.366185 lb Tolerance: 0.005 Maximum number of iterations: 50 Driving Horizontal Force=0.226964 lb **Surface Options** Valid / Invalid Surfaces Surface Type: Circular Method: spencer Search Method: Grid Search Number of Valid Surfaces: 25472 Number of Invalid Surfaces: 29979 Radius increment: 10 Composite Surfaces: Disabled Error Codes: Reverse Curvature: Invalid Surfaces Error Code -102 reported for 118 surfaces Minimum Elevation: Not Defined Error Code -103 reported for 294 surfaces Minimum Depth: Not Defined Error Code -106 reported for 641 surfaces Error Code -107 reported for 6322 surfaces **Material Properties** Error Code -108 reported for 11511 surfaces Error Code -111 reported for 475 surfaces Error Code -112 reported for 521 surfaces Material: Rock Dike

Geosyntec[▷]

					consultants			
					Page	17	of	38
Written by:	Joseph Sura	Date:	7/8/2010	Reviewed by:	Ming Zhu	Date:	7/9/	2010
Client: TVA	Project:	Integri	ty Evaluation	of Dike 2	Project/ Proposal No.:	GK4693	Task No.:	03

Error Code -114 reported for 3068 surfaces Error Code -1000 reported for 7029 surfaces

Error Codes

The following errors were encountered during the computation:

-102 = Two surface / slope intersections, but resulting arc is actually outside soil region.

-103 = Two surface / slope intersections,

but one or more surface / nonslope external polygon

intersections lie between them. This usually occurs

when the slip surface extends past the bottom of the

soil region, but may also occur on a benched slope model with two sets of Slope Limits.

-106 = Average slice width is less than

0.0001 * (maximum horizontal extent of soil region).

This limitation is imposed to avoid numerical errors

which may result from too many slices, or too small a slip region.

-107 = Total driving moment or total driving force is negative. This will occur if the wrong failure direction is specified, or if high external or anchor loads are applied against the failure direction.

-108 = Total driving moment or total driving force < 0.1. This is to limit the calculation of extremely high safety factors if the driving force is very small (0.1 is an arbitrary number).

-111 = safety factor equation did not converge

-112 = The coefficient M-Alpha = cos(alpha)(1+tan(alpha)tan(phi)/F) < 0.2 for the final iteration of the safety factor calculation. This screens out some slip surfaces which may not be valid in the context of the analysis, in particular, deep seated slip surfaces with many high negative base angle slices in the passive zone.

-114 = Surface with Reverse Curvature.

-1000 = No valid slip surfaces are generated at a grid center. Unable to draw a surface.

List of All Coordinates

Search Grid	
67.466	738.359
148.224	738.359
148.224	819.061
67.466	819.061

Material Boundary

53.000	741.000
110.000	740.000

Material Boundary

0.000	741.000
33.000	741.000
53.000	741.000

Material Boundary

0.000	736.000
23.000	736.000
33.000	741.000

Material Boundary

53.000	741.000
59.000	743.000

Water Table

0.000	744.500
63.500	744.500
96.500	744.500
107.000	741.000
150.000	741.000

Seismic Slope Stability with Water Elevation of 744.5 ft

					Geo	osynte: consultant		
					Page	19	of	38
Written by:	Joseph Sura	Date:	7/8/2010	Reviewed by:	Ming Zhu	Date:	7/9/	2010
Client: TVA	Project:	Integri	ty Evaluation	of Dike 2	Project/ Proposal No.:	GK4693	Task No.:	03

Slide Analysis Information

Document Name

File Name: Section A_744_Seismic_FS1

Project Settings

Project Title: SLIDE - An Interactive Slope Stability Program Failure Direction: Left to Right Units of Measurement: Imperial Units Pore Fluid Unit Weight: 62.4 lb/ft3 Groundwater Method: Water Surfaces Data Output: Standard Calculate Excess Pore Pressure: Off Allow Ru with Water Surfaces or Grids: Off Random Numbers: Pseudo-random Seed Random Number Seed: 10116 Random Number Generation Method: Park and Miller v.3

Analysis Methods

Analysis Methods used: Spencer

Number of slices: 25 Tolerance: 0.005 Maximum number of iterations: 50

Surface Options

Surface Type: Circular Search Method: Grid Search Radius increment: 10 Composite Surfaces: Disabled Reverse Curvature: Invalid Surfaces Minimum Elevation: Not Defined Minimum Depth: Not Defined

Loading

Seismic Load Coefficient (Horizontal): 0.15

Material Properties

Material: Rock Dike Strength Type: Mohr-Coulomb Unit Weight: 150 lb/ft3 Cohesion: 0 psf Friction Angle: 45 degrees Water Surface: Water Table Custom Hu value: 1

<u>Material: Ash (UD)</u> Strength Type: Undrained Unit Weight: 107 lb/ft3 Cohesion Type: Constant Cohesion: 100 psf Water Surface: None

Material: Clay and Silt (UD) Strength Type: Undrained Unit Weight: 110 lb/ft3 Cohesion Type: Constant Cohesion: 1200 psf Water Surface: None

Global Minimums

Method: spencer FS: 1.009230 Center: 122.843, 812.144 Radius: 72.507 Left Slip Surface Endpoint: 99.138, 743.621 Right Slip Surface Endpoint: 100.693, 743.102 Resisting Moment=25.3847 lb-ft Driving Moment=25.1525 lb-ft Resisting Horizontal Force=0.33214 lb Driving Horizontal Force=0.329101 lb

Valid / Invalid Surfaces

Method: spencer Number of Valid Surfaces: 41085 Number of Invalid Surfaces: 14366 Error Codes: Error Code -102 reported for 118 surfaces Error Code -103 reported for 294 surfaces Error Code -106 reported for 641 surfaces Error Code -107 reported for 12 surfaces

Geosyntec[>]

consultants

					Page	20	of	38
Written by:	Joseph Sura	Date:	7/8/2010	Reviewed by:	Ming Zhu	Date:	7/9/	2010
Client: TVA	Project:	Integri	ty Evaluation	of Dike 2	Project/ Proposal No.:	GK4693	Task No.:	03

Error Code -108 reported for 1552 surfaces Error Code -111 reported for 837 surfaces Error Code -112 reported for 815 surfaces Error Code -114 reported for 3068 surfaces Error Code -1000 reported for 7029 surfaces

Error Codes

The following errors were encountered during the computation:

-102 = Two surface / slope intersections, but resulting arc is actually outside soil region.

-103 = Two surface / slope intersections, but one or more surface / nonslope external polygon

intersections lie between them. This usually occurs

when the slip surface extends past the bottom of the

soil region, but may also occur on a benched slope model with two sets of Slope Limits.

-106 = Average slice width is less than 0.0001 * (maximum horizontal extent of soil region).

This limitation is imposed to avoid numerical errors

which may result from too many slices, or too small a slip region.

-107 = Total driving moment or total driving force is negative. This will occur if the wrong failure direction is specified, or if high external or anchor loads are applied against the failure direction.

-108 = Total driving moment or total driving force < 0.1. This is to limit the calculation of extremely high safety factors if the driving force is very small (0.1 is an arbitrary number).

-111 = safety factor equation did not converge

-112 = The coefficient M-Alpha = cos(alpha)(1+tan(alpha)tan(phi)/F)

< 0.2 for the final iteration of the safety factor calculation. This screens out some slip surfaces which may not be valid in the context of the analysis, in particular, deep seated slip surfaces with many high negative base angle slices in the passive zone.

-114 = Surface with Reverse Curvature.

-1000 = No valid slip surfaces are generated at a grid center. Unable to draw a surface.

List of All Coordinates

Search Grid

67.466	738.359
148.224	738.359
148.224	819.061
67.466	819.061

<u>Material Boundary</u> 53.000 741.000 110.000 740.000

Material Boundary

0.000	741.000
33.000	741.000
53.000	741.000

Material Boundary

0.000	736.000
23.000	736.000
33.000	741.000

Material Boundary

53.000	741.000
59.000	743.000

Water Table

0.000	744.500
63.500	744.500
96.500	744.500
107.000	741.000
150.000	741.000

Static Slope Stability with Water Elevation of 746 ft

consultants 22 of 38 Page Written by: Joseph Sura Date: **7/8/2010** Reviewed by: Ming Zhu Date: 7/9/2010 Task Client: **TVA** Project: Integrity Evaluation of Dike 2 Project/ Proposal No .: GK4693 03 No.: Strength Type: Mohr-Coulomb Slide Analysis Unit Weight: 150 lb/ft3 Cohesion: 0 psf Information Friction Angle: 45 degrees Water Surface: Water Table Custom Hu value: 1 Document Name Material: Ash (UD) File Name: Section A_746 Strength Type: Undrained Unit Weight: 107 lb/ft3 **Project Settings** Cohesion Type: Constant Cohesion: 100 psf Project Title: SLIDE - An Interactive Slope Water Surface: None Stability Program Failure Direction: Left to Right Material: Clay and Silt (UD) Units of Measurement: Imperial Units Strength Type: Undrained Pore Fluid Unit Weight: 62.4 lb/ft3 Unit Weight: 110 lb/ft3 Groundwater Method: Water Surfaces Cohesion Type: Constant Data Output: Standard Cohesion: 1200 psf Calculate Excess Pore Pressure: Off Water Surface: None Allow Ru with Water Surfaces or Grids: Off Random Numbers: Pseudo-random Seed Global Minimums Random Number Seed: 10116 Random Number Generation Method: Park Method: spencer and Miller v.3 FS: 1.613400 Center: 122.843, 812.144 Analysis Methods Radius: 72.507 Left Slip Surface Endpoint: 99.138, 743.621 Analysis Methods used: Right Slip Surface Endpoint: 100.693, 743.102 Spencer Resisting Moment=27.9871 lb-ft Driving Moment=17.3466 lb-ft Number of slices: 25 Resisting Horizontal Force=0.366185 lb Tolerance: 0.005 Driving Horizontal Force=0.226964 lb Maximum number of iterations: 50 Valid / Invalid Surfaces Surface Options Method: spencer Surface Type: Circular Number of Valid Surfaces: 26342 Search Method: Grid Search Number of Invalid Surfaces: 29109 Radius increment: 10 Error Codes: **Composite Surfaces: Disabled** Error Code -102 reported for 118 surfaces **Reverse Curvature: Invalid Surfaces** Error Code -103 reported for 294 surfaces Minimum Elevation: Not Defined Error Code -106 reported for 641 surfaces Minimum Depth: Not Defined Error Code -107 reported for 5349 surfaces Error Code -108 reported for 11566 surfaces **Material Properties** Error Code -111 reported for 486 surfaces Error Code -112 reported for 558 surfaces Material: Rock Dike Error Code -114 reported for 3068 surfaces

GK4693/Geotechnical Integrity Evaluation

Geosyntec^D

Geosyntec[▷]

					(consultant	S	
					Page	23	of	38
Written by:	Joseph Sura	Date:	7/8/2010	Reviewed by:	Ming Zhu	Date:	7/9/	2010
Client: TVA	Project:	Integri	ty Evaluation	of Dike 2	Project/ Proposal No.:	GK4693	Task No.:	03

Error Code -1000 reported for 7029 surfaces

Error Codes

The following errors were encountered during the computation:

-102 = Two surface / slope intersections, but resulting arc is actually outside soil region.

-103 = Two surface / slope intersections, but one or more surface / nonslope external polygon

intersections lie between them. This usually occurs

when the slip surface extends past the bottom of the

soil region, but may also occur on a benched slope model with two sets of Slope Limits.

-106 = Average slice width is less than

0.0001 * (maximum horizontal extent of soil region).

This limitation is imposed to avoid numerical errors

which may result from too many slices, or too small a slip region.

-107 = Total driving moment or total driving force is negative. This will occur if the wrong failure direction is specified, or if high external or anchor loads are applied against the failure direction.

-108 = Total driving moment or total driving force < 0.1. This is to limit the calculation of extremely high safety factors if the driving force is very small (0.1 is an arbitrary number).

-111 = safety factor equation did not converge

-112 = The coefficient M-Alpha = cos(alpha)(1+tan(alpha)tan(phi)/F)
< 0.2 for the final iteration of the safety factor calculation. This screens out some slip surfaces which may not be valid in

particular, deep seated slip surfaces with many high negative base angle slices in the passive zone.

-114 = Surface with Reverse Curvature.

-1000 = No valid slip surfaces are generated at a grid center. Unable to draw a surface.

List of All Coordinates

Search Grid	
67.466	738.359
148.224	738.359
148.224	819.061
67.466	819.061
Material Bour	ndarv
53.000	741.000
110.000	740.000
Material Davis	
Material Bour	<u>idary</u>
0.000	741.000
33.000	741.000
53.000	741.000
Material Bour	ndary
0.000	736.000
23.000	736.000
33.000	741.000
Material Bour	ndarv
53 000	7/1 000
50.000	741.000
59.000	743.000
Water Table	
0.000	746.000
68.000	746.000
92.000	746.000
107.000	741.000
150.000	741.000

the context of the analysis, in

Seismic Slope Stability with Water Elevation of 746 ft

Geosyntec [¢]	>
------------------------	---

						consultant	S	
					Page	25	of	38
Written by:	Joseph Sura	Date:	7/8/2010	Reviewed by:	Ming Zhu	Date:	7/9/2	2010
Client: TVA	Project:	Integri	ty Evaluation	of Dike 2	Project/ Proposal No.:	GK4693	Task No.:	03

Slide Analysis Information

Document Name

File Name: Section A_746_Seismic_FS1

Project Settings

Project Title: SLIDE - An Interactive Slope Stability Program Failure Direction: Left to Right Units of Measurement: Imperial Units Pore Fluid Unit Weight: 62.4 lb/ft3 Groundwater Method: Water Surfaces Data Output: Standard Calculate Excess Pore Pressure: Off Allow Ru with Water Surfaces or Grids: Off Random Numbers: Pseudo-random Seed Random Number Seed: 10116 Random Number Generation Method: Park and Miller v.3

Analysis Methods

Analysis Methods used: Spencer

Number of slices: 25 Tolerance: 0.005 Maximum number of iterations: 50

Surface Options

Surface Type: Circular Search Method: Grid Search Radius increment: 10 Composite Surfaces: Disabled Reverse Curvature: Invalid Surfaces Minimum Elevation: Not Defined Minimum Depth: Not Defined

Loading

Seismic Load Coefficient (Horizontal): 0.15

Material Properties

Material: Rock Dike Strength Type: Mohr-Coulomb Unit Weight: 150 lb/ft3 Cohesion: 0 psf Friction Angle: 45 degrees Water Surface: Water Table Custom Hu value: 1

<u>Material: Ash (UD)</u> Strength Type: Undrained Unit Weight: 107 lb/ft3 Cohesion Type: Constant Cohesion: 100 psf Water Surface: None

Material: Clay and Silt (UD) Strength Type: Undrained Unit Weight: 110 lb/ft3 Cohesion Type: Constant Cohesion: 1200 psf Water Surface: None

Global Minimums

Method: spencer FS: 1.009230 Center: 122.843, 812.144 Radius: 72.507 Left Slip Surface Endpoint: 99.138, 743.621 Right Slip Surface Endpoint: 100.693, 743.102 Resisting Moment=25.3847 lb-ft Driving Moment=25.1525 lb-ft Resisting Horizontal Force=0.33214 lb Driving Horizontal Force=0.329101 lb

Valid / Invalid Surfaces

Method: spencer Number of Valid Surfaces: 41392 Number of Invalid Surfaces: 14059 Error Codes: Error Code -102 reported for 118 surfaces Error Code -103 reported for 294 surfaces Error Code -106 reported for 641 surfaces

Geosyntec[>]

					(consultant	S	
					Page	26	of	38
Written by:	Joseph Sura	Date:	7/8/2010	Reviewed by:	Ming Zhu	Date:	7/9/	2010
Client: TVA	Project:	Integri	ty Evaluation	of Dike 2	Project/ Proposal No.:	GK4693	Task No.:	03

Error Code -108 reported for 1516 surfaces Error Code -111 reported for 508 surfaces Error Code -112 reported for 885 surfaces Error Code -114 reported for 3068 surfaces Error Code -1000 reported for 7029 surfaces

Error Codes

The following errors were encountered during the computation:

-102 = Two surface / slope intersections, but resulting arc is actually outside soil region.

-103 = Two surface / slope intersections,

but one or more surface / nonslope external polygon

intersections lie between them. This usually occurs

when the slip surface extends past the bottom of the

soil region, but may also occur on a benched slope model with two sets of Slope Limits.

-106 = Average slice width is less than

0.0001 * (maximum horizontal extent of soil region).

This limitation is imposed to avoid numerical errors

which may result from too many slices, or too small a slip region.

-108 = Total driving moment or total driving force < 0.1. This is to limit the calculation of extremely high safety factors if the driving force is very small (0.1 is an arbitrary number).

-111 = safety factor equation did not converge

-112 = The coefficient M-Alpha = cos(alpha)(1+tan(alpha)tan(phi)/F)

< 0.2 for the final iteration of the safety factor calculation. This screens out

some slip surfaces which may not be valid in the context of the analysis, in

particular, deep seated slip surfaces with many high negative base angle

slices in the passive zone.

-114 = Surface with Reverse Curvature.

-1000 = No valid slip surfaces are generated at a grid center. Unable to draw a surface.

List of All Coordinates

Search Grid	
67.466	738.359
148.224	738.359
148.224	819.061
67.466	819.061

Material Boundary

53.000	741.000
110.000	740.000

Material Boundary

0.000	741.000
33.000	741.000
53.000	741.000

Material Boundary

0.000	736.000
23.000	736.000
33.000	741.000

Material Boundary

53.000	741.000
59.000	743.000

Water Table

0.000	746.000
68.000	746.000
92.000	746.000
107.000	741.000
150.000	741.000

Static Slope Stability with Water Elevation of 748 ft

Geosyntec[▷] consultants 28 38 Page of 7/9/2010 Joseph Sura 7/8/2010 Reviewed by: Ming Zhu Written by: Date: Date: Task Client: TVA **Integrity Evaluation of Dike 2** Project/ Proposal No.: **GK4693** 03 Project: No.: Unit Weight: 150 lb/ft3 Slide Analysis Cohesion: 0 psf Friction Angle: 45 degrees Information Water Surface: Water Table Custom Hu value: 1 **Document Name** Material: Ash (UD) Strength Type: Undrained File Name: Section A 748 Unit Weight: 107 lb/ft3 Cohesion Type: Constant **Project Settings** Cohesion: 100 psf Water Surface: None Project Title: SLIDE - An Interactive Slope Stability Program Material: Clay and Silt (UD) Failure Direction: Left to Right Strength Type: Undrained Units of Measurement: Imperial Units Unit Weight: 110 lb/ft3 Pore Fluid Unit Weight: 62.4 lb/ft3 Cohesion Type: Constant Groundwater Method: Water Surfaces Cohesion: 1200 psf Data Output: Standard Water Surface: None Calculate Excess Pore Pressure: Off Allow Ru with Water Surfaces or Grids: Off **Global Minimums** Random Numbers: Pseudo-random Seed Random Number Seed: 10116 Method: spencer Random Number Generation Method: Park FS: 1.614190 and Miller v.3 Center: 127.148, 840.153 Radius: 100.500 **Analysis Methods** Left Slip Surface Endpoint: 92.000, 746.000 Right Slip Surface Endpoint: 98.775, 743.742 Analysis Methods used: Resisting Moment=2320.7 lb-ft Spencer Driving Moment=1437.69 lb-ft Resisting Horizontal Force=21.9076 lb Number of slices: 25 Driving Horizontal Force=13.5718 lb Tolerance: 0.005 Maximum number of iterations: 50 Valid / Invalid Surfaces Surface Options Method: spencer Number of Valid Surfaces: 14661 Surface Type: Circular Number of Invalid Surfaces: 13950 Search Method: Grid Search Error Codes: Radius increment: 10 Error Code -101 reported for 12 surfaces Composite Surfaces: Disabled Error Code -103 reported for 288 surfaces Reverse Curvature: Invalid Surfaces Error Code -107 reported for 2328 surfaces Minimum Elevation: Not Defined Error Code -108 reported for 472 surfaces Minimum Depth: Not Defined Error Code -111 reported for 246 surfaces Error Code -112 reported for 278 surfaces

> Error Code -114 reported for 943 surfaces Error Code -1000 reported for 9383 surfaces

Material Properties

Material: Rock Dike Strength Type: Mohr-Coulomb

Geosyntec[>]

					(consultant	S	
					Page	29	of	38
Written by:	Joseph Sura	Date:	7/8/2010	Reviewed by:	Ming Zhu	Date:	7/9/	2010
Client: TVA	Project:	Integri	ty Evaluation	of Dike 2	Project/ Proposal No.:	GK4693	Task No.:	03

Error Codes

The following errors were encountered during the computation:

-101 = Only one (or zero) surface / slope intersections.

-103 = Two surface / slope intersections, but one or more surface / nonslope external polygon

intersections lie between them. This usually occurs

when the slip surface extends past the bottom of the

soil region, but may also occur on a benched slope model with two sets of Slope Limits.

-107 = Total driving moment or

total driving force is negative. This will occur if the wrong failure direction is specified, or if high external or anchor loads are applied against the failure direction.

-108 = Total driving moment or total driving force < 0.1. This is to limit the calculation of extremely high safety factors if the driving force is very small (0.1 is an arbitrary number).

-111 = safety factor equation did not converge

-112 = The coefficient M-Alpha = cos(alpha)(1+tan(alpha)tan(phi)/F) < 0.2 for the final iteration of the safety factor calculation. This screens out

some slip surfaces which may not be valid in the context of the analysis, in

particular, deep seated slip surfaces with many high negative base angle slices in the passive zone.

-114 = Surface with Reverse Curvature.

-1000 = No valid slip surfaces are generated at a grid center. Unable to draw a surface.

List of All Coordinates

Search Grid	
54.198	738.360
143.162	738.360
143.162	840.153
54.198	840.153

Material Boundary

53.000		741.000
110.000)	740.000

Material Boundary

0.000	741.000
33.000	741.000
53.000	741.000

Material Boundary

736.000
736.000
741.000

Material Boundary

53.000	741.000
59.000	743.000

Water Table

0.000	748.000
68.000	748.000
92.000	746.000
107.000	741.000
150.000	741.000

Seismic Slope Stability with Water Elevation of 748 ft

Geosyntec [▷]

					consultants			
					Page	31	of	38
Written by:	Joseph Sura	Date:	7/8/2010	Reviewed by:	Ming Zhu	Date:	7/9/2	2010
Client: TVA	Project:	Integrity Evaluation of Dike 2		Project/ Proposal No.:	GK4693	Task No.:	03	

Slide Analysis Information

Document Name

File Name: Section A_748_Seismic_FS1

Project Settings

Project Title: SLIDE - An Interactive Slope Stability Program Failure Direction: Left to Right Units of Measurement: Imperial Units Pore Fluid Unit Weight: 62.4 lb/ft3 Groundwater Method: Water Surfaces Data Output: Standard Calculate Excess Pore Pressure: Off Allow Ru with Water Surfaces or Grids: Off Random Numbers: Pseudo-random Seed Random Number Seed: 10116 Random Number Generation Method: Park and Miller v.3

Analysis Methods

Analysis Methods used: Spencer

Number of slices: 25 Tolerance: 0.005 Maximum number of iterations: 50

Surface Options

Surface Type: Circular Search Method: Grid Search Radius increment: 10 Composite Surfaces: Disabled Reverse Curvature: Invalid Surfaces Minimum Elevation: Not Defined Minimum Depth: Not Defined

Loading

Seismic Load Coefficient (Horizontal): 0.15

Material Properties

Material: Rock Dike Strength Type: Mohr-Coulomb Unit Weight: 150 lb/ft3 Cohesion: 0 psf Friction Angle: 45 degrees Water Surface: Water Table Custom Hu value: 1

Material: Ash (UD)

Strength Type: Undrained Unit Weight: 107 lb/ft3 Cohesion Type: Constant Cohesion: 100 psf Water Surface: None

Material: Clay and Silt (UD) Strength Type: Undrained Unit Weight: 110 lb/ft3 Cohesion Type: Constant Cohesion: 1200 psf Water Surface: None

Global Minimums

Method: spencer FS: 1.009800 Center: 125.369, 836.081 Radius: 96.067 Left Slip Surface Endpoint: 91.988, 746.000 Right Slip Surface Endpoint: 98.136, 743.955 Left Slope Intercept: 91.988 746.001 Right Slope Intercept: 98.136 743.955 Resisting Moment=1655.85 lb-ft Driving Moment=1639.79 lb-ft Resisting Horizontal Force=16.3541 lb Driving Horizontal Force=16.1954 lb

Valid / Invalid Surfaces

Method: spencer Number of Valid Surfaces: 16904 Number of Invalid Surfaces: 11707 Error Codes: Error Code -101 reported for 12 surfaces Error Code -103 reported for 288 surfaces

						Geosyntec			
							consultant	S	
						Page	32	of	38
Written by:	Joseph Sura	Date:	7/8/2010	Reviewed by	<i>.</i>	Ming Zhu	Date:	7/9/2	2010
Client: TVA	Project:	Integrity	v Evaluation (of Dike 2	Proje	ect/ Proposal No.:	GK4693	Task No.:	03
Error	r Code -108 reported for	217 surfa	aces	List	of All C	Coordinates			
Error	r Code -112 reported for	688 surfa	aces	Sea	rch Grid				
Error	r Code -114 reported for	943 surfa	aces	54	.198	738.360			
Error	r Code -1000 reported for	r 9383 su	ırfaces	14	3.162	738.360			
				14	3.162	840.153			
<u>Erro</u>	<u>r Codes</u>			54	.198	840.153			
The	following errors were end	countered	d during	Mate	erial Bou	undary			
the con	nputation:		-	53	000.	741.000			
				11	0.000	740.000			
-101	= Only one (or zero)			• • •					
surfa	ace / slope intersections.			Mate	erial Bou	<u>undary</u>			
102	- Two ourfood / clone in	torootio	~~	0.0	000	741.000			
-103 but c	ne or more surface / nor	slone ev	ternal	53		741.000			
polygor		Slope ex		00	.000	741.000			
inter	sections lie between ther	n. This u	sually	Mate	erial Bou	undary			
occurs			,	0.0	000	736.000			
wher	n the slip surface extends	s past the	e bottom	23	.000	736.000			
of the				33	.000	741.000			
soil r	egion, but may also occu	ir on a be	enched						
slope	e model with two sets of	Slope Lin	nits.	Mate	<u>erial Bou</u>	<u>undary</u>			
109	- Total driving moment			53	000	741.000			
- 100 or to	tal driving force < 0.1 Th	ie ie to		59	.000	743.000			
limit	the calculation of extrem	elv high s	safety	Wat	er Table	1			
facto	ors if the driving force is v	erv smal		0.0	000	748.000			
(0.1	is an arbitrary number).	,		68	.000	748.000			
,	,			92	.000	746.000			
-111	= safety factor equation	did not c	onverge	10	7.000	741.000			
				15	0.000	741.000			
-112	= The coefficient M-Alph	a =							
cos(aip	ona)(1+tan(alpha)tan(phi)	/F)	factor						
< 0.2 calcula	tion This screens out	ne salety	/ lactor						
some	e slip surfaces which may	v not be v	valid in						
the con	text of the analysis, in	, 1101 00							
partie	cular, deep seated slip su	urfaces w	/ith						
many h	high negative base angle								
slice	s in the passive zone.								
-114	= Surface with Reverse	Curvatur	e.						
-100 at a g	0 = No valid slip surfaces grid center. Unable to dra	s are gen aw a surf	erated ace.						

~

Static Slope Stability with Water Elevation of 750 ft

Geosyntec[>] consultants 34 of 38 Page Written by: Joseph Sura Date: **7/8/2010** Reviewed by: Ming Zhu Date: 7/9/2010 Task Client: **TVA** Project: Integrity Evaluation of Dike 2 Project/ Proposal No.: GK4693 03 No.: Unit Weight: 150 lb/ft3 Slide Analysis Cohesion: 0 psf Friction Angle: 45 degrees Information Water Surface: Water Table Custom Hu value: 1 **Document Name** Material: Ash (UD) Strength Type: Undrained File Name: Section A_750 Unit Weight: 107 lb/ft3 Cohesion Type: Constant **Project Settings** Cohesion: 100 psf Water Surface: None Project Title: SLIDE - An Interactive Slope Stability Program Material: Clay and Silt (UD) Failure Direction: Left to Right Strength Type: Undrained Units of Measurement: Imperial Units Unit Weight: 110 lb/ft3 Pore Fluid Unit Weight: 62.4 lb/ft3 Cohesion Type: Constant Groundwater Method: Water Surfaces Cohesion: 1200 psf Data Output: Standard Water Surface: None Calculate Excess Pore Pressure: Off Allow Ru with Water Surfaces or Grids: Off **Global Minimums** Random Numbers: Pseudo-random Seed Random Number Seed: 10116 Method: spencer Random Number Generation Method: Park FS: 1.614200 and Miller v.3 Center: 127.148, 840.153 Radius: 100.500 Analysis Methods Left Slip Surface Endpoint: 92.000, 746.000 Right Slip Surface Endpoint: 98.775, 743.742 Analysis Methods used: Resisting Moment=2320.71 lb-ft Spencer Driving Moment=1437.69 lb-ft Resisting Horizontal Force=21.9076 lb Number of slices: 25 Driving Horizontal Force=13.5718 lb Tolerance: 0.005 Maximum number of iterations: 50 Valid / Invalid Surfaces **Surface Options** Method: spencer Number of Valid Surfaces: 15959 Surface Type: Circular Number of Invalid Surfaces: 12652 Search Method: Grid Search Error Codes: Radius increment: 10 Error Code -101 reported for 12 surfaces Composite Surfaces: Disabled Error Code -103 reported for 288 surfaces **Reverse Curvature: Invalid Surfaces** Error Code -107 reported for 788 surfaces Minimum Elevation: Not Defined Error Code -108 reported for 635 surfaces Minimum Depth: Not Defined Error Code -111 reported for 264 surfaces Error Code -112 reported for 339 surfaces **Material Properties** Error Code -114 reported for 943 surfaces Error Code -1000 reported for 9383 surfaces Material: Rock Dike Strength Type: Mohr-Coulomb

					Geo	osyntee	C C	
						consultant	S	
					Page	35	of	38
Written by: Joseph Sura	Date:	7/8/2010	Reviewed by:		Ming Zhu	Date:	7/9/:	2010
Client: TVA Project:	Integri	ty Evaluation	of Dike 2	Proj	ect/ Proposal No.:	GK4693	Task No.:	03
Error Codes			List of	f All C	Coordinates			
The following errors were en the computation:	countere	ed during	<u>Search</u> 54.1 143.	<u>n Grid</u> 98 162	738.360 738.360 840.153			
surface / slope intersections			54 1	98	840 153			
			04.1	50	040.100			
-103 = Two surface / slope ir	tersecti	ons,	Materi	al Bou	<u>undary</u>			
but one or more surface / no	nslope e	external	53.0	00	741.000			
polygon			110.	000	740.000			
intersections lie between the	m. This	usually						
occurs			Materi	al Bou	undary			
when the slip surface extend	s past tr	ne bottom	0.00	0	741.000			
oi the		anahad	33.U 52.0	00	741.000			
soli region, but may also occ	ur on a r Slope l	imite	53.0	00	741.000			
slope model with two sets of	Зюре с	imits.	Matari	al Roi	Indary			
-107 - Total driving moment	or			<u>αι D0ι</u> Λ	736 000			
total driving force is negative	This w	ill occur	23.0	00	736.000			
if the wrong failure direction i	s specif	ied	33.0	00	741 000			
or if high external or anchor l	oads are	e applied	0010	00				
against the failure direction.			Materi	al Bou	undary			
5			53.0	00	741.000			
-108 = Total driving moment			59.0	00	743.000			
or total driving force < 0.1. The	nis is to							
limit the calculation of extrem	ely high	n safety	Water	Table	<u>)</u>			
factors if the driving force is v	ery sma	all	0.00	0	750.000			
(0.1 is an arbitrary number).			68.0	00	750.000			
			92.0	00	746.000			
-111 = safety factor equation	did not	converge	107. 150.	000 000	741.000 741.000			
-112 = The coefficient M-Alpl	na =							
cos(alpha)(1+tan(alpha)tan(phi < 0.2 for the final iteration of)/F) the safe	ty factor						
calculation. This screens out	_							
some slip surfaces which ma	y not be	e valid in						
the context of the analysis, in								
particular, deep seated slip s	urraces	with						
many high negative base angle								
Silves in the passive 2011e.								
-114 = Surface with Reverse	Curvatu	ıre.						
-1000 = No valid slip surface	s are ge	nerated						

at a grid center. Unable to draw a surface.

Seismic Slope Stability with Water Elevation of 750 ft

Geosyntec ^c	>
------------------------	---

						consultants			
					Page	37	of	38	
Written by:	Joseph Sura	Date:	7/8/2010	Reviewed by:	Ming Zhu	Date:	7/9/2	2010	
Client: TVA	Project:	Integrity Evaluation of Dike 2		Project/ Proposal No.:	GK4693	Task No.:	03		

Slide Analysis Information

Document Name

File Name: Section A_750_Seismic_FS1

Project Settings

Project Title: SLIDE - An Interactive Slope Stability Program Failure Direction: Left to Right Units of Measurement: Imperial Units Pore Fluid Unit Weight: 62.4 lb/ft3 Groundwater Method: Water Surfaces Data Output: Standard Calculate Excess Pore Pressure: Off Allow Ru with Water Surfaces or Grids: Off Random Numbers: Pseudo-random Seed Random Number Seed: 10116 Random Number Generation Method: Park and Miller v.3

Analysis Methods

Analysis Methods used: Spencer

Number of slices: 25 Tolerance: 0.005 Maximum number of iterations: 50

Surface Options

Surface Type: Circular Search Method: Grid Search Radius increment: 10 Composite Surfaces: Disabled Reverse Curvature: Invalid Surfaces Minimum Elevation: Not Defined Minimum Depth: Not Defined

Loading

Seismic Load Coefficient (Horizontal): 0.15

Material Properties

Material: Rock Dike Strength Type: Mohr-Coulomb Unit Weight: 150 lb/ft3 Cohesion: 0 psf Friction Angle: 45 degrees Water Surface: Water Table Custom Hu value: 1

<u>Material: Ash (UD)</u> Strength Type: Undrained Unit Weight: 107 lb/ft3 Cohesion Type: Constant Cohesion: 100 psf

Water Surface: None

Material: Clay and Silt (UD) Strength Type: Undrained Unit Weight: 110 lb/ft3 Cohesion Type: Constant Cohesion: 1200 psf Water Surface: None

Global Minimums

Method: spencer FS: 1.009810 Center: 123.590, 829.974 Radius: 89.719 Left Slip Surface Endpoint: 92.000, 746.000 Right Slip Surface Endpoint: 98.478, 743.841 Resisting Moment=1839.5 lb-ft Driving Moment=1821.63 lb-ft Resisting Horizontal Force=19.4547 lb Driving Horizontal Force=19.2657 lb

Valid / Invalid Surfaces

Method: spencer Number of Valid Surfaces: 16861 Number of Invalid Surfaces: 11750 Error Codes: Error Code -101 reported for 12 surfaces Error Code -103 reported for 288 surfaces Error Code -108 reported for 217 surfaces Error Code -111 reported for 171 surfaces

						Geo	CD		
							consultants		
						Page	38	of	38
/ritten by:	Joseph Sura	Date:	7/8/2010	Reviewed by:		Ming Zhu	Date:	7/9/2	2010
lient: TVA	Project:	Integrity	y Evaluation	of Dike 2	Proj	ect/ Proposal No.:	GK4693	Task No.:	03
Error	Code -112 reported for	736 surfa	aces	Search	n Grid				
Error	Code -114 reported for	943 surfa	aces	54.1	98	738.360			
Error	Code -1000 reported fo	r 9383 si	urfaces	143.	162	738.360			
				143.	162	840.153			
Error	Codes			54.1	98	840.153			
The fo	ollowing errors were end	countered	d durina	Materia	al Boi	Indary			
the com	nutation.	Journero	a danng	53.0	<u>, 20,</u>	741 000			
	putation			110	000	740.000			
-101 =	= Only one (or zero)			110.		1 10.000			
surfac	ce / slope intersections.			Materia	al Boi	undarv			
0011010				0.00)	741.000			
-103 =	= Two surface / slope in	tersectio	ns.	33.0	00	741.000			
but or	ne or more surface / nor	nslope ex	ternal	53.0	00	741.000			
polygon									
inters	ections lie between ther	n. This u	sually	Materia	al Boi	undary			
occurs			,	0.00	C	736,000			
when	the slip surface extends	s past the	e bottom	23.0	00	736.000			
of the	•	•		33.0	00	741.000			
soil re	egion, but may also occu	ur on a b	enched						
slope	model with two sets of	Slope Lir	nits.	Materia	al Bou	undary			
•				53.0	00	741.000			
-108 =	= Total driving moment			59.0	00	743.000			
or tota	al driving force < 0.1. Th	is is to							
limit th	he calculation of extrem	ely high	safety	Water	Table	<u>)</u>			
factor	s if the driving force is v	ery smal	1	0.00	0	750.000			
(0.1 is	s an arbitrary number).	•		68.0	00	750.000			
				92.0	00	746.000			
-111 =	= safety factor equation	did not c	onverge	107.0	000	741.000			
			-	150.0	000	741.000			
-112 =	= The coefficient M-Alph	na =							
cos(alph	na)(1+tan(alpha)tan(phi)	/F)							
< 0.2	for the final iteration of t	he safet	y factor						
calculati	on. This screens out								
some	slip surfaces which may	y not be	valid in						
the conte	ext of the analysis, in								
partic	ular, deep seated slip si	urfaces v	vith						
many hig slices	gh negative base angle								
0		_							
-114 =	= Surface with Reverse	Curvatur	e.						
1000	- No volid olip ourfood	oro aor	orotod						

-1000 = No valid slip surfaces are generated at a grid center. Unable to draw a surface.

List of All Coordinates