Research and Strategy in Energy

Ellen D. Williams BP Chief Scientist

Follow on to Steve Koonin's initiatives at BP

Rigorous technical information to inform decisions Well to Wheels vs. Tank to Wheels

The Energy Biosciences Institute Tailored yeast for lignocellulosic sugar mixtures

The Big Problem

Energy production in a resource-constrained world

Energy scales

Thermodynamic Limits		
Fuel	Heat of Combustion	Combustion CO ₂
	MJ/kg	kg CO ₂ /MJ
Coal	15-27	0.07 - 0.19
Oil	~42	~0.074
Methane	55	0.050
Butanol	36	0.065
Ethanol	30.5	0.063
Sucrose	16.5	0.093
Glucose	14.2	0.10

Caution:

In the energy literature the prefixes m, mm, M, or MM are somewhat randomly used to mean a thousand or a million. Bn or bn is often also used to indicate a billion.

Here M means million and k, G and T also have standard meaning.

Transition in the energy supply

U.S. Primary Energy Consumption Estimates by Source, 1850-2010

Source: U.S. Energy Information Administration Annual Energy Review, Tables 1.3, 10.1, and E1

Greenhouse gas emissions and energy

Total GHG emissions: 44 Gtonne CO₂e/year in 2005:

Fuel standards and the Tank to Wheels Fallacy

Well-to-Wheels CO2 emissions and LC Biofuels

bp

Well-to-Wheels CO_2 emissions and vehicle effficiency

Levelized Cost of Electricy

bp

Global context – energy demand is rising

Scenarios: energy mix in 2035

Changes required for sustainability

Contributions to reductions in the IEA 2DS:

BP energy production 2011

Oil and Gas

BP Biofuels

Low carbon

- ~ 7 million tonne total crush capacity
- ~ 500 M liters
 - ~ 0.7 % of world biofuels

Oil ~ 107 Mtonne

~ 2.7% of world oil

Gas ~ 69 Mtoe

 $\sim 2.3\%$ of world gas

BP Wind Energy
~ 2 GW
gross rated capacity
~ 0.8 % of world wind

Founded in 2007 as a joint program among BP, UC Berkeley, UIUC and LBNL

\$35M/year open research + \$15M/year commercial

http://www.energybiosciencesinstitute.org/

Low Carbon Energy–biofuels

All carbon in the biofuel derived from atmospheric CO₂

Lignocellulosic Biofuels

Base case LC to Ethanol Production Flowchart

Slide Adapted from Bruce Dale

Fermentation of LC sugars

Problem: Standard fermentation yeast cannot import and metabolize xylose.

Pretreatment:

Acid pretreatment of biomass yields cellulose and hemicelluose

Saccharification

Hydrolysis breaks hemicellulose to sugar xylose and cellulose (in a two-step process) to glucose

Fermentation

Yeast imports glucose, converts via glycolysis and exports ethanol

Co-fermentation of cellobiose and xylose

Research Goal– Bioengineering

Present: Success in developing a commercially viable process with enzymatic digestion of cellulose and single-yeast fermentation, but ... batch process with multiple "pots"

Desired: One pot, continuous flow process, recycling of yeast and enzymes, continuous removal of fuel

Modification of Saccharification Enzyme

Neurospora crassa

- Saprophyte: grows on dead plant material (burned grasses)
- Used as a model system for molecular biology since the 1940s
 - Large compendium of strains maintained by the Fungal Genetics Stock Center
 - Full genome deletion collection

GH-61 Cellulases (now called PMO)

Thermostable proteins

Regulation of enzyme expression

Oxidative cellulose cleavage

Enhanced cellulose degradation

Energy Sustainability ?

FOOD, ENERGY, WATER AND THE CLIMATE: A PERFECT STORM OF

GLOBAL EVENTS?

By John Beddington CMG FRS

Chief Scientific Adviser to HM Government

The Big Problem

Energy production in a resource-constrained world

The Energy Sustainability Challenge

What are the implications of natural resource (water, land and minerals) constraints on energy production and supply in the context of a growing world population, greenhouse gas emissions and climate change?

www.bp.com/sustainability

Complexity, connectivity and scale Sound information is essential for policy and planning

Water Use in Power Production

ESC - Water Footprint Analysis of Electricity Generation, Ghoneim et al.

24

Energy and water use projections

Technical choices can significantly reduce the impact on natural resources

Projected energy growth

Water withdrawals for thermoelectric power

Water for fossil fuel extraction

In energy extraction, advances in the past 50 years have dramatically improved water management

Linked Resources – energy-water-land

Complexity, connectivity and scale Sound information is essential for policy and planning

- bp
- Rigorous technical analysis: Improving engine efficiency is the most effective *near term* opportunity to reduce total greenhouse gas emissions due to transport.
- EBI: Fundamental advances based on genetic manipulation of yeasts and enzyme-producing fungi are essential to reducing the capital and operating costs for lignocellulosic crops
- The Big Problem: Energy-related water, land and minerals constraints can be managed sustainably...

...however doing so will require technically sound governance decisions

BP Internal

Back up Material

Land and Water Scales

Land Areas			
Total: 148.9 million km ² = 14,890 Mha			
Crop land: 1553 M ha			
Pasture: 3326 M ha			
Secondary forest: 1093 M ha			
Primary forest: 2574 M ha			

World Water withdrawals per year (in 2000)	
*3800 km ³	
3.8 Tm ³	
1.0 Pgal (US)	
0.84 Pgal (Impl.)	
3.8 PLiter	
3.1 Gacre-foot	
3.8 Ttonne	

*Land values from G.C. Hurtt, Global Change Biology 12, 1208 (2006) *Water values from the 3d UN World Water Development Report, 2009,

Table 7.1