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Abstract 
 

The mainstay of the spatial modeling used by ORNIM is the Samuelson and Takayama-Judge 
model (S-TJ model) of trade between regions. Basically, a product is produced in different 
regions with different demand and supply conditions. Transportation causes price differences 
between the regions to be arbitraged in equilibrium, so that prices differ across regions by the 
transportation costs whenever trade occurs. In this model, all markets are competitive and the 
regions themselves are fixed. Transportation can and has entered the model through the addition 
of a fixed transportation price or through the addition of a demand and supply function for 
transportation. Each of these are considered in this paper with an eye towards evaluating policy 
actions to improving the transportation sector when both market power and endogenous regions 
are present. The main objective is to allow for market power and endogenous regions in the 
canonical models of trading regions, in the tradition of Samuelson and Takayama-Judge. 
 
Keywords: Spatial equilibrium, transportation, market power, oligopsony, monopsony, 
transportation oligopoly, welfare, Samuelson and Takayama-Judge models, vertical structure, 
double marginalization. 
 



1 Introduction

In this paper, we set out a template for addressing market power in the spa-

tial context and evaluating the welfare consequences. Our starting point is a

simpli�cation of the classic spatial model of Samuelson (1952) and Takayama

and Judge (1964), to which we add market power in the transportation industry

and in the regional markets (through purchase agents - or "grain elevators" for

concreteness.) In the Samuelson and Takayama-Judge models (S-TJ models),

there is a set of regions trading a good. Each region is endowed with a set of

demand and supply functions. If the markets are completely separated (i.e.,

no trade is allowed, or else is prohibitively costly), markets are cleared in the

usual way in equilibrium. That is, demand and supply functions are equated

for each region to give equilibrium prices and quantities. However, more gen-

erally, transportation provides a mechanism to arbitrage regional di¤erences in

supply and demand. The S-TJ model is easily adapted to this setting through

the addition of an exogenous transportation price or through the derivation of

transportation demand and the addition of transportation supply. This allows

the welfare consequences of improvements to the transportation infrastructure

to be explicitly identi�ed.

We consider two major issues related to equilibrium and welfare measure-

ment of di¤erent policies. The S-TJ model rests on competitive markets. How-

ever, there are many sources through which market power can and has entered

the trade between regions. In our progression, we �rst model the case where

transportation �rms are so small they take prices as given and they compete

1



in a "world" market. This forms a case for which we derive the demand for

transportation services. Since, in many settings, transportation is provided by

a single supplier, we modify the price-taking assumption and allow for monopoly

power in the transportation sector. As a further re�nement we then adapt the

model to allow for market power among transportation �rms. This leads to a

monopsony setting which combined with a monopoly transportation sector leads

to very ine¢ cient market outcomes emanating from "double marginalization".

These initial models are monopoly/monopsony models, in the subsequent sec-

tions, the model is adapted to allow for Cournot competition both in transport

and the grain elevators. The S-TJ model adapted to modeling imperfect com-

petition concludes with a discussion of the bene�ciaries of improvements to the

transportation sector. Such an issue is tantamount import in the formation of

policies that a¤ect trade between a foreign and domestic sector. The general

result we �nd is that the larger the number of "local" markets, the more rents

are captured by foreign consumers.

The model developed is a very special case of the S-TJ framework. In section

4, the more standard S-TJ framework is presented wherein market prices are

connected through an equilibrium. In particular, the prices in each region

depend on the �ows to and from other regions. The model is �rst worked out

for the case of separated markets. Transportation is then added with a �xed

price per unit and the quantity transported (quantity demanded) is derived. To

this model, we add the supply of transportation and consider alternative market

structure assumptions.
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The second major issue addressed rests with the region �xity assumption of

S-TJ models. In some settings, this approach is perfectly reasonable assump-

tion. The assumption requires there is a bordering e¤ect such that individual

suppliers in one region cannot substitute to another region. The models of

sections 3 and 4 provide useful benchmarks to consider the likelihood that, in

some settings, there are important substitution e¤ects. To develop the case in

which there are substitution e¤ects requires the development of a full-�edged

spatial model. This model is developed in section 5, for the competitive case

and adapted to allow for market power among both grain elevators and trans-

portation suppliers. Section 6 concludes the paper with a comparison between

the S-TJ models and the results from the full spatial model.

This research is of central import to evaluating the welfare e¤ects of trans-

portation infrastructure improvements. Such improvements include the devel-

opment of rail line/terminal capacity and waterway capacity. In recent years,

the latter has been of considerable interest to the Army Corps of Engineers

(ACE). ACE maintains U.S. waterways. The waterways include a system of

locks and dams that make river navigable. Most of the locks and dams were

built more than 50 years ago and have obsolesced with time. Redesigns and

replacements require considerable sums. In evaluating whether to improve a

waterway through lock investment, ACE must consider from an array of alterna-

tive restructuring plans and consider the welfare bene�ts from the alternatives.

They use a variety of models that have been criticized by the National Research

Council (NRC) of the National Academy of Sciences and others. The criticisms
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largely focus on forecasting methods and on the treatment of demands in their

simulation models. The later is of particular relevance to this paper in that the

assumptions in the ACE models can be related to a S-TJ type setup. Further,

the NRC recommended that ACE more directly consider the role of space and

market alternatives in their modeling e¤orts. This research pertains directly

to the consideration of space and the presence of market power in the grain

elevator and transportation sectors. The general �ndings presented in the last

section point to di¤erences in welfare consequences measure in the class of S-TJ

models and a full spatial model.

2 Fixed World Price

We begin our analysis with a case of trade from one region to a market. For the

discussion, the market is labeled a "world" market which could be considered

a region in the S-TJ setting.4 In this model, we suppose that the world price

is given exogenously to individual transportation �rms, and then we consider

market power of the individual transportation �rm. The assumption of a �xed

price can be also interpreted as the situation facing a transportation �rm that

has market power in the local market from which it transports, but is a small

player in the global market. In this case, the transportation �rm will be modeled

4Another interpretation is to understand this "world price" as say the price in New Orleans,
which is the point of shipment to farther marketplaces. We shall derive how local conditions
in markets "upstream" translate into quantities supplied to the Port of New Orleans as a
function of world price (i.e., the price in New Orleans). This analysis will basically give us a
supply curve (measured at the Port, and in terms of the price there), that together with an
analogous "demand curve" will render this price endogenous. We take a short-hand (black-
boxed) version of this world demand at the end of this Section. A detailed analysis of the
ingredients to the demand curve, from all the disparate ports of call for shipments leaving the
Port, would follow parallel lines to those developed in this paper for the supply side.
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anyway as taking the world price as �xed, but this device is instrumental in

generating a world supply which can be in turn used as input to generate a world

price endogenously by integrating up over a large number of transportation

�rms that have no e¤ective power in the world market, even though they do

have market power in the local markets from which they transport. In the

sequel, we also consider the case in which the transportation �rm has market

power in the world market. The general structure is quite intricate insofar as we

can treat di¤erent degrees of market power upstream and downstream. That

is, for example, we can have relatively few transportation �rms in the local

production regions, but if there are many transportation �rms in the world

market as a whole, they do not have much market power there (on the world

price) since they are so many, comprising transportation �rms transporting from

many di¤erent regions. However, this sketch may be a little misleading insofar

as the exercise of market power on the local markets can nonetheless cause

signi�cant distortions on the world market (as compared to a benchmark case

of perfect competition).

We �rst present the supply side, from which the demand for transporta-

tion services is generated. We can then use this to determine the actions of

a transportation �rm with market power. The simplest case to address is one

in which there is a monopoly transportation �rm. As we shall see, this trans-

portation �rm behaves analogously to a monopsonist in the local market. This

behavior is, therefore, congruent with the idea of local grain elevators which

buy up produce from local producers. They then have access to a competitive
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transportation technology and can use their market power directly in the buy-

ing market. An third set-up we investigate is a monopsonistic elevator buying

up grain from local producers. It then can transport to the �nal market, but

it faces a transporter with market power. Thus, this situation gives rise to a

chain of monopolies vertical externality double marginalization problem. We

then allow for intermediate degrees of competition in the transport market.

Throughout this and the next Section, we have a virtually "spaceless" econ-

omy to the extent that producers remain attached to their local transportation

points. In later Sections we use a full spatial model to address this point.

3 "Small" transportation �rms in the world mar-
ket

We �rst consider the case where transportation �rms are so small relative to the

world supply that they e¤ectively take the world price as �xed. This analysis

also does enable us to later endogenize this price that is being taken as given,

just as standard economic analysis of demand and supply views each individual

as too small to knowingly have an in�uence on the outcome, and so can be rea-

sonably described as a price-taker. We deal with the material in the following

order, and show various equivalences along the way. We �rst set up the supply

side, and consider a single local market, with a world price that local agents

take as given at a distant location. From this we derive the demand for trans-

portation. We then assume a monopoly transportation �rm and derive the price

this monopolist will set for transportation. Next, we consider a grain elevator
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in conjunction with a competitive supply for transportation, and then we put

both together.

3.1 Deriving the demand for transportation

The �rst step is to describe the primitive market conditions and derive the

demand for transportation.

Suppose that the world price is �xed (or rather, treated as such by the

participants in the local market). Let its level be �p. Furthermore, let the local

supply for the agricultural commodity under analysis be

S (ps) = ps

where ps is the supply price (or �producer price�) which is that price received

by the local participants, and S (:) is the quantity supplied at the given price,

ps, which takes here the simplest linear form. We shall also write the inverse

supply as ps (Q), which is the supply price that induces a quantity supplied of

Q.

We suppose, initially, that there is no local demand for the commodity and so

all the output produced must be sold on the world market at destination price �p.5

However, the local produce has to arrive at the world marketplace, and doing

so involves costly transportation via a transportation intermediary that may

apply its mark-ups in order to generate pro�t for itself from its transportation

business.6

5Recall we take this "world market" as synonymous with demand and supply conditions
at some intermediate point in the supply chain; for concreteness (in the current context
especially) the Port of New Orleans.

6A major motivating example for the analysis is agricultural production, which, being
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The demand for transportation services is then given as the quantity of

shipments that the local suppliers wish to send as a function of the price charged

for making a shipment. Clearly, if the price were �p or more, no shipments would

be made since it would cost more than it was worth to farmers, even if they

were willing to supply at zero price. At the other extreme, a zero transport

cost implies a supply response of S (�p) = �p which is the maximum possible.

Since the supply curve is linear, the demand for transportation services is then

also linear between the two extreme points just derived. More formally, let w

be the price charged for transportation one unit from the supply point to the

destination (world market). Then the demand for transportation as a function

of w is T (w) = �p � w, which we can write in inverse form as w (T ) (= �p � T )

to denote the demand price for a quantity T of transportation services. This

derivation is illustrated in Figure 1: the top panel gives the supply curve at local

prices: netting this from the world price yields the demand for transportation

services in the lower panel.

INSERT FIGURE 1.

Demand for transportation services derived from supply of goods and world

price.

extremely land intensive, necessarily occurs in the hinterland. Locations for other natural
resources are determined by nature and geography (e.g., where the coal veins are). However,
locations for some commodity types are more footloose: �rms must decide where to locate
facilities. The current analysis can also be helpful for endogenizing such location choices, as
well as dealing with their implications for market equilibria in the commodities they product.
For example, locations will depend typically on transport facilities and costs of shipping both
inputs and outputs. Whether inputs or outputs get a higher weighting in the choice depends
on whether the product is "weight-losing" or "weight-gaining" (in the parlance of economic
geography. The importance of the transport net is clear from the locations of factories near
major roads, railways and rivers.

8



More general transportation functions are derived in a similar manner: other

examples are treated below.

3.2 Monopoly vs. competition in the transportation sec-
tor (and capacity constraints)

Suppose �rst that transportation is perfectly competitive. We can describe

equilibrium in the transportation market from equating supply and demand for

transportation. The demand curve was derived above. The simplest case to

describe for the supply side is when the transporting �rms have equal and con-

stant costs per unit transported. Accordingly, let the cost of transportation be

�w, and so this is the supply price of transportation (and the supply curve is

totally elastic at this price). Then the equilibrium amount of produce trans-

ported is T ( �w) = �p� �w and this is the amount of regional supply. Equivalently,

the domestic supply price, in terms of the rate received by domestic producers

per unit produced at the transportation terminal, is ps = �p � �w. Clearly, a

transport rate reduction raises the price received by domestic producers and

so increases the amount produced and transported. If the world price is �xed

(equivalently, think of the transport cost improvement as pertaining solely to

the local market), then all the transport cost improvement is captured as rents

by the local producers. The welfare gain is illustrated in Figure 2.

INSERT FIGURE 2.Welfare gain (accruing to producers) from reduction in

cost of transportation from �w1 to �w0.

If the transport sector is subject to a capacity constraint, there is a limit to
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the amount that can be transported. Call the capacity constraint �T , represent-

ing the maximal amount of transportation on the local link. If capacity is above

T ( �w), then the constraint is not binding. So suppose that instead �T < T ( �w).

Then the amount transported is just �T and all rents from transport cost im-

provements (assuming that these do not relax the capacity constraint) accrue

to transportation �rms - there is no bene�t to local producers, who continue to

receive a producer price of ps = �T . The welfare gain is illustrated in Figure 3.

INSERT FIGURE 3. Welfare gain from reduction in cost of transportation

from �w1 to �w0: accruing to transporters. Here we is the equilibrium price of

transportation services.

Suppose now that the transportation sector is controlled (at least on the local

route) by a monopolist controlling transportation and able to set a transporta-

tion price per unit. The monopoly calculus trades o¤ the mark-up charged

over the cost with the volume of shipments (the cost is retained as �w in the

analysis that follows). Following this logic, the monopolist�s objective is to

render (w � �w)T (w) as large as possible, where this pro�t is the product of

the mark-up and the volume transported. The monopolist is to choose w, the

price it charges per unit transported. With a linear demand, the solution is

geometrically apparent (and can also be readily checked algebraically from the

�rst-order condition). The optimal price is half-way between the cost, �w, and

the transportation demand intercept, �p. Hence, the monopoly price charged,

wm, is
�w+�p
2 . Recall that this is the amount charged for transportation: the
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domestic producers receive a price of �p per unit once the shipments arrive on

the world markets. Hence, the net price received by the producers is the latter

minus the former, or �p� �w+�p
2 = �p� �w

2 . This, given the linear supply function, is

also the amount of local production: see Figure 4.

INSERT FIGURE 4. Monopoly transporter and associated surpluses.

Any transportation cost improvement (reduction in �w) is then split equally

between the monopoly transporter and the local producers, in the sense that

half the cost reduction is passed on as a lower transportation price. This elicits a

supply response that is only half that which would arise under a fully competitive

market.

INSERT FIGURE 5. Welfare gains and distribution of surpluses from re-

duction in cost of transportation from �w1 to �w0.

Figure 5 illustrates the division of the gains from reducing the transportation

cost. First, the monopoly price falls, resulting in a surplus gain to producers of

a+c in the Figure. The rest of the gain accrues to the monopoly transportation

�rm in terms of higher pro�t; �rst because of the lower cost on existing units (the

term e) and furthermore in terms of extra pro�ts on the higher output. Pro�ts

rise by d+ e+ f � a: the a was transferred to producers though. Equivalently,

the social gain is c+ d+ f (the social value of the extra production at the new

higher output level) and the e that represents the lower cost on existing units.
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3.3 A monopsony grain elevator and competitive trans-
portation

Oftentimes, grain is bought up by elevators and then shipped down-river. This

arrangement arguably puts the elevator in a position of market power vis-a-

vis the local producers. As a �rst benchmark, suppose that transportation

is perfectly competitive (we deal with market power in this context below).

There is an important relation between this scenario and that of a monopoly

transportation �rm facing a competitive supply, i.e., without the intermediary.

Namely, the market outcome is identical in terms of amounts transported.

The set-up for this case is as follows. The grain elevator acts as a monopson-

ist by setting the producer price that the producers will receive. It then accesses

the competitive transportation sector to transport the commodity (at rate �w per

unit transported) out to the world market, where the good is sold at price �p

per unit. The elevator then e¤ectively faces a net value of �p � �w per unit that

it induces supplied from the producers, and it earns a mark-up of this minus

the price it has to pay suppliers. It also accounts for the volume of supply it

generates in its choice of price to the producers. Therefore, it faces the problem

of maximizing (�p� �w � ps) ps, which is the product of the mark-up it earns and

the induced quantity supplied. Using the logic of the above monopoly analysis,

the price it will set is midway between zero and �p � �w, i.e., the price received

by suppliers is pms = (�p� �w) =2. The latter price is also, given the one-to-one

output-to-price relation assumed in the supply curve, the quantity transported

in equilibrium. This solution and its derivation are illustrated in Figure 6.
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INSERT FIGURE 6. Monopsony Grain Elevator.

The outcome above is equivalent to monopoly in the transport sector, the

solution described in the preceding sub-section. That is, a monopsonist buying

up the good from suppliers and transporting competitively is equivalent in terms

of output and producer surplus to a monopoly on the transportation sector. It

is also noteworthy that this equivalence result is not speci�c to linear supply,

etc., but holds as a general property. It is a useful result to bear in mind for

the rest of the analysis.

3.4 Amonopsony grain elevator and a transport monopoly:
the double marginalization problem

The equivalence breaks down if the elevator and transporter are both monopo-

lies. Indeed, this market structure can lead to very ine¢ cient market outcomes.

Basically, this ine¢ ciency arises because each monopolist applies its own mar-

gin to extract pro�t. This is known as the double marginalization problem

(the usual context is upstream-downstream manufacturing relations).7 In the

current context, it works as follows.

Think of the transportation monopolist as choosing a mark-up for its trans-

portation services, and taking into account that the grain elevator also uses

its monopsony power in the local supply market. If the transport rate is w,

we know from the previous sub-section that the elevator chooses a price for

the competitive suppliers as (�p� w) =2, which is the quantity supplied. Un-

derstanding this relation between the rate it charges and the quantity that is
7See Tirole (1988, Ch. 4) for an exemplary modern treatment. The forthcoming Handbook

of Industrial Organization (third volume, forthcoming) brings Tirole�s text up to date.
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transported, the transport sector operator then chooses the transport rate to

maximize (w � �w) ((�p� w) =2). The solution to this problem is to choose a

rate w = (�p+ �w) =2. The grain elevator then applies its own margin to further

increase the mark-up grabbing monopoly distortion and the price received by

the competitive suppliers is then (�p� [(�p+ �w) =2]) =2 = �p� �w
4 which is fully one

quarter of the competitive outcome, and one half of the outcome under either a

monopoly transporter alone or a monopsony in the local supply market alone.

This successive application of mark-ups, therefore, can be very ine¢ cient. Para-

doxically, perhaps, the exercise of market power may ultimately help domestic

�rms (those with the market power) to retain rents from transport cost improve-

ments that would otherwise go to foreign consumers (see more details below on

this).

3.5 Cournot competition in transportation

We looked above at a comparison between monopoly and competition among

transportation �rms, before going on to look at market power of the grain

elevator. We now return to the case of competition at all levels apart from the

transportation market, and consider the cases intermediate to pure monopoly

and perfect competition, namely oligopoly.

Suppose that there are n competing transportation �rms. We follow the

standard "work-horse" Cournot model of imperfect competition, by supposing

that each transportation �rm recognizes the strategic interaction of the small

group in the industry. Each rationally anticipates the quantity transported by

the other transportation �rms and maximizes its own pro�t accordingly. In
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doing so, each realizes full well all its competitors are doing likewise.

To �nd this equilibrium, denote by qi the quantity transported by trans-

portation �rm i. Then the total quantity transported is �qi and the price

received for transportation is determined in the following manner. Recall that

T (w) = �p � w, which we can write in inverse form as w (T ) = �p � T , where T

is the total quantity shipped. Hence T = �qi, and the Cournot assumption has

�rms recognizing through this relation their individual in�uence on the price w

for transportation in the market.

The pro�t of transportation �rm i can then be written as

�i = [w (T )� �w] qi

= [w (�qj)� �w] qi

where the �rst term is the mark-up over the price paid for transportation and

the last one is the quantity transported by i. The �rst-order condition to the

problem is then

@�i
@qi

= [w (�qj)� �w] + w0 (�qj) qi;

which is interpreted as follows. The �rst term on the RHS is the extra revenue

from transporting one more unit of the good; the second term is loss on exist-

ing units transported. The latter is the product of the amount by which the

market price falls to induce an extra unit to be transported (w0 (�qj)), and the

individual transportation �rm�s volume of shipments.

In the case of the particular linear supply function used above (which implies

the transportation demand function is w = �p � �qj), the �rst-order condition
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reduces to

@�i
@qi

= [�p� �qj � �w]� qi;

setting equal to zero and summing over all n transportation �rms gives a relation

n [�p� �qj � �w] = �qj(= T ),

or

T =
n

n+ 1
[�p� �w]

The gratifying properties of this relation are that the amount of transporta-

tion is the monopoly amount, T = 1
2 [�p� �w], for n = 1, and it tends to the

competitive level, T = [�p� �w] as n gets large. Moreover, the convergence is

"monotonic": the more competitors, the larger is the amount of production.

Nonetheless, although the total is increasing with the number of transportation

�rms, the size of each individual �rm (that is, the amount it transports) is de-

creasing. That amount is 1
n+1 [�p� �w], which is decreasing in n. Thus, more

competitive markets involve smaller transportation �rms but with a greater

total output shipped.

3.6 Cournot competition among grain elevators, compet-
itive transportation

Just as we did above for a single monopoly in the transport sector, and a

single monopoly in buying up the product, we can think of a vertical structure

with di¤erent degrees of market power at the two levels. For example, we

can model several grain elevators buying grain (and taking into account their
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monopsony power on the supply of agricultural produce), and faced with a

monopoly (or an oligopoly) in the transportation sector. This enables us to

describe various degrees of market power. The double marginalization problem

of vertical structure will still remain, though it will be muted in the presence of

more competition at either level.

3.7 Endogenous world price and foreign rents

One dimension of interest regards who bene�ts from transportation improve-

ments. The models above take the world price as given and parametric. This is

of interest in its own right for some commodities,. However, for others, the ac-

tions of many small production areas aggregate into a signi�cant economic force,

and world prices are then a¤ected. Who earns how much extra surplus from a

transportation improvement depends on various demand and cost elasticities,

as well as market structure in the various sub-markets along the way.

To illustrate the general approach, suppose �rst that all markets are com-

petitive. There are m supply regions, and for simplicity, they all face the same

conditions (same distance from the �nal market, same supply relation). As a

function of the world price, pw (which therefore replaces �p in the analysis above),

each will supply to the world market a quantity pw � �w. This means that the

total quantity supplied at world price pw is m (pw � �w).

Now suppose the world demand is given as Dw = �w � pw. Equating world

demand and supply yields �w � pw = m (pw � �w), or pw = �w+m �w
m+1 . The

associated shipment from each local market is this amount less �w (from the

local supply curves), i.e., �w� �w
m+1 : the total amount shipped is m times this, or
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m(�w� �w)
m+1 , and we can immediately verify that this equals world demand at the

price pw = �w+m �w
m+1 .8

A transport improvement (fall in �w) now reduces the world price by an

amount m
m+1 per dollar reduction. Note that this means that the larger the

number of local markets, then the greater the bene�ts to the foreign consumers.

In particular, with very competitive markets, foreigners will capture nearly all

the rents.

Consider now the domestic regions. Since the equilibrium supply price is

�w� �w
m+1 , a transport improvement (fall in �w) now raises the individual supply

prices by an amount 1
m+1 per dollar reduction. The more local regions there

are, the more rents are captured by the foreign consumers.

4 Trading Regions

We now describe the S-TJ set-up when there are trading regions, and each

may have both a domestic (or local) demand and supply. Transportation, if

not too costly, allows trade to occur between such regions and causes price dif-

ferences between regions to be arbitraged. To illustrate, suppose, there were

no transportation costs. The prices in the regions then must be the same in

equilibrium. No di¤erence can be sustained because goods would �ow from

any low price region to a higher price one if transportation is costless. With

costly transportation, di¤erential prices will re�ect transportation costs: trans-

portation will arbitrage excessive price di¤erences between the regions. In what

8World demand at price pw = �w+m�t
m+1

is �w � pw = �wm�m�t
m+1

, which is the expression
given in the text for the total amount shipped (world supply).
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follows we start by generating demand for transportation and the competitive

solution to the model. The solutions under various market power assumptions

follow along similar lines to those in the previous Section.

4.1 An Illustrative Example - Prohibitive Transportation
Costs

Consider a simple example of two regions with linear demand and supply func-

tions given by:

D1 = �1 � p1

D2 = �2 � p2

S1 = p1

S2 = p2

where the subscripts represent two di¤erent regions, 1 and 2. Suppose that �2

> �1: since supply parameters are the same, trade will �ow from Region 1 to

Region 2, Accordingly, we can think of 1 as the �supply region�and 2 as the

�demand region�. In this case, if there is trade, then it will �ow from the low

demand region (1) to the high demand region (2).

However, if trade costs are too high, then autarky prevails and each market

clears independently of the other. It is straightforward to �nd the equilibrium

without trade as
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p�1 =
1

2
�1; p�2 =

1

2
�2; D�

1 = S
�
1 =

1

2
�1; D�

2 = S
�
2 =

1

2
�2

.

In this simple model, the prices and quantities (both produced and sold) in the

high demand region (2) are greater.

4.2 Transportation Costs and the Demand for Transporta-
tion

Transportation arbitrages price di¤erences across regions. The point is

most simply illustrated with zero transportation costs. The equilibrium can

then be found by equating excess demand to excess supply. The excess demand

equations are simply the residual demands for each region. Obviously, if the

equilibrium price under trade is greater than �1demand in region 1 is zero.

This will hold as long as �2 is large enough relative to �1. Equilibrium then

is determined in market 2 , which is supplied by both Region 1 and Region 2

suppliers. Excess demand in Region 2 is simply ED = �2 � 2p2, which is then

set equal to excess supply from Region 1 suppliers, which is simply equal to

p1as long as price is high enough that domestic demand in 1 is crowded out.

That is, given that it is assumed that �2 is su¢ ciently high relative to �1so that

demand is zero in 1, excess supply is simply Region 1�s supply function. Since

transportation costs are zero, p1 = p2 and so ES = p1 = p2. The equilibrium

prices and quantities under trade then are:

S�1 = S
�
2 = p

�
1 = p

�
2 =

1

3
�2; D�

1 = 0; D�
2 =

2

3
�2;
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and this outcome holds as long as

�2 � 3�1:

If �2 is lower than 3�1 (but still retaining the assumption that it exceeds �1),

then Region 1 consumers consume some of the good, and the rest is exported.

We can �nd the outcome using the same technique as above, equating excess

demand and excess supply. Region 2�s excess demand function is just the same,

ED = �2�2p2, and costless transportation again implies perfect price arbitrage,

so that p1 = p2. What changes is Region 1�s excess supply function, which now

needs to account for domestic consumption eating into domestic production.

Thus ES = 2p1��1, which is simply domestic supply minus domestic demand.

Pulling these equations together yields the equilibrium prices and quantities

under trade as:

S�1 = S
�
2 = p

�
1 = p

�
2 =

�1 + �2
4

; D�
1 =

3�1 � �2
4

; D�
2 =

3�2 � �1
4

;

which holds as long as

�2 2 [�1; 3�1] :

Transportation, however, is costly. Let w represent the cost per unit of

of the good transported. For now, consider the case of one mode providing

transportation from Region 1 to Region 2. The excess demand and excess

supply equations above still apply to the case of costly transportation, but
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transportation can no longer arbitrage prices to be the same. Instead, arbitrage

implies that price di¤erences cannot exceed the transport cost. That is, the

prices are linked by the constraint p2 � p1 +w. If there is trade in equilibrium,

this holds with equality (so p2 = p1 + w) and di¤erential prices simply re�ect

the cost of getting the good transported to the demand region. On the other

hand, if prices are closer together than w ( p2 < p1 + w) there can be no trade

since arbitrage cannot be pro�table. The equilibrium types then are like the

ones we have already described: if transport costs are too large, the autarkic

equilibrium prevails. For lower costs, there is trade, and the supply region will

export its total production only if its domestic demand is weak relative to that

in the demand region.

The autarky regime is the simplest to describe. As we showed above, autarky

prices are p�1 =
1

2
�1 and p�2 =

1

2
�2, so that autarky attains as long as the price

di¤erence is less than the transportation cost. Equivalently, �2��1 � 2w means

there will be no trade.

In the case of lower transport cost but weak demand in the supply region,

then demand in the low demand Region, 1, is zero. To characterize this case,

we equate excess demand and excess supply so �2 � 2p2 = p1 and use the

price di¤erence equation p2 = p1 + w. Solving out yields p�1 =
�2�2w

3 and

p�2 =
�2+w
3 . Each region�s domestic production equals its domestic supply, and

quantity consumed in Region 1 is zero, while in Region 2 it is given by the

demand curve as D�
2 =

2�2 � w
3

. For this regime to be pertinent, we require

p�1 � �1 otherwise there would be positive consumption in the supply region.
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This condition is �2 � 2w � 3�1. Notice that the quantity transported from 1

to 2 is the full quantity produced in 1, namely �2�2w
3 , which expression forms

the demand for transportation, and is a decreasing function of w.

For low transport cost and relatively strong Region 1 demand, not all Region

1�s production will be exported. Equating excess demand and excess supply in

this case implies that �2 � 2p2 = 2p1 � �1, and again the price di¤erence

equation p2 = p1 + w holds. Solving these equations gives p�1 =
�1+�2�2w

4 and

p�2 =
�1+�2+2w

4 : once again, these are also the respective expressions for the

domestic supplies, S�1 and S
�
2 respectively. The quantities consumed are D

�
1 =

3�1��2+2w
4 and D�

2 =
��1+3�2�2w

4 respectively.9 From the �rst of these, it is

clear that we need the condition 3�1+2w > �2 to hold in order for D�
1 to indeed

be positive. The quantity transported in this case is given by T = (�2��1)
2 �w.

The result of both cases are similar. Speci�cally, as demand in the excess

demand region grows, quantities transported increase and as the transportation

rate increases, quantities transported fall. In the second case, as demand in the

excess supply region grows (i.e., �1 increases) less is transported.

The model to this point has treated as exogenous the cost of providing trans-

portation. When there is market power in the transportation sector, the trans-

portation companies use the demand for transportation to extract rents, anal-

ogous to the previous section�s analysis.

9 It is readily checked that total production equals total consumption, i.e., S�1 + S�2 =

D�
1 +D

�
2 (= �1+�2

2
).
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5 A Full Spatial Model

The analysis above has treated regions simply as points in space connected by

transport costs, without regard to the fact that production of most agricul-

tural commodities is quite land intensive. This is especially important because

transportation costs typically comprise a large fraction of the selling price for

agricultural goods. The geography of production and the transportation net-

work are then crucial determinants of the market equilibrium.

We suppose that geography (and �xed costs) restrict the number of river

terminals to be few, and we further assume the rail terminals are located at the

same points as the river terminals (see Anderson and Wilson, 2005, for a dis-

cussion of these assumptions). Then each shipper (farmer) has to choose which

terminal to ship from and which mode to use once there (rail or river). Truck

transport is used to reach the terminal, distance is measured via the "block-

metric," and truck transportation costs t per unit distance per unit trucked.

Suppose for the moment that each farmer is assigned to the closest "pool" �we

relax this assumption below. The importance of the assumption now though

is that it generates demands for the barge transportation exactly of the form

analyzed above, namely demands that are linear in the price of the barge trans-

portation to the �nal port, the rate wi above. The geography of the hinterland

production and the �xed region assumption are shown in Figure 7.

INSERT FIGURE 7. Agricultural gathering area for �xed region constrained

to be coincident with pool latitudes.
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Note that the area farmed rises linearly with reductions in the barge rate;

moreover, the transportation demand for each pool is independent of the barge

rates charged at any other pool (see Anderson and Wilson, 2005). This means

that the full linear demand analysis of Section 2 above, with its full market struc-

ture implications, apply directly to this case. It therefore forms an important

benchmark by allowing for market structure within a speci�able full geographic

framework while at the same time enabling the analyst to break into two parts

the e¤ects of market structure in the S-TJ framework and then allowing for a

richer geographical structure.

The above structure follows if no "lock-jumping" is allowed (in tandem with

the S-TJ implicit assumption to this e¤ect). The linear demand assumption IS

consistent with a spatial market, albeit a restricted version thereof. Suppose

now instead that farmers are permitted to choose the terminal (and mode) that

minimizes costs of transportation. Figure 8 shows the geographical structure of

terminals along the river, and also how the market boundaries between demand

areas change with barge rates in other pools.

INSERT FIGURE 8. Endogenous Pool Markets and Barge Rates.

For simplicity, suppose in the development below that agricultural produce

entails no production costs �the object of interest is the transportation sector

for the moment, and costs can readily be added once the ideas here are under-

stood.10 Figure 9 illustrates the catchment areas for agricultural produce when

choices are fully endogenous to the model.
10As noted below, this causes no extra di¢ culty.
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INSERT FIGURE 9. Endogenous Markets and Catchment Areas.

The �rst task is to determine the latitudes that delineate markets. By

equating the costs of trucking plus barge from a location along the river-side,

we �nd the following relation:

ŷi =
yi + yi�1

2
+
wi � wi�1

2t
:

Clearly, the analogous relation applies to the upper boundary, just by replacing

indices of pools, so:

ŷi+1 =
yi+1 + yi

2
+
wi+1 � wi

2t
:

Hence, these are the upper and lower boundary levels, as per Figures 8 and 9

above. However, we also need to deal with the extensive margin within these

latitudes, as per the lozenge shape illustrated in Figure 9. Given it was just

assumed that the production cost is zero (it would su¢ ce to just net it from �p,

as long as it is independent of location), we have the following expression for

the extensive margin at any given latitude, y:

�p = wi + t jy � yij+ tx

As is apparent from Figure 9, this expression covers two cases, that are broken

down as follows. First, for y > yi, we have

x =
�p� wi
t

+ yi � y;

while for y � yi, we have

x =
�p� wi
t

+ y � yi:
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Given the above analysis, we can now write out demand as (assuming a

constant density across space of agricultural production):

Di =

Z yi+1+yi
2 +

wi+1�wi
2t

yi

�
�p� wi
t

+ yi � y
�
dy

+

Z yi

yi+yi�1
2 +

wi�wi�1
2t

�
�p� wi
t

+ y � yi
�
dy:

The �rst of these constitutes the area above y > yi (i.e., y > yi) and up to the

upper latitude of the catchment area, while the second is the area below yi, and

down to the lower latitude.

Now, we are interested in the shape of this demand function: it is rather

cumbersome (although straightforward) to write it out, but it is also simpler

to identify its fundamental form and identify parameters of the base form as

necessary. In particular, it is shown in the Appendix that the demand function

is a quadratic function. One interesting (and decidedly non-trivial) property

of the demand is that markets are chain linked. Namely, demand at each pool

depends on the barge prices at neighboring pools, which in turn depend on prices

above and below them. This property implies that all markets are a¤ected if

there is a change in any one of them: equilibrium prices will adjust according

to the chain structure. For example, a change in the market structure or in the

transportation cost at any one pool has implications for all (although the e¤ects

dampen with distance: the largest e¤ects are felt in the immediately neighboring

pools. This property in turn implies that the welfare e¤ects of transportation

changes are wide-reaching and quite intricate.
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6 Appendix

First note that (using Leibnitz�rule)

dDi
dwi+1

=
1

2t

�
�p� wi
t

+ yi �
�
yi+1 + yi

2
+
wi+1 � wi

2t

��
=

1

2t

�
2�p� wi � wi+1

2t
�
�
yi+1 � yi

2

��
which is positive. The derivative with respect to the other price, wi�1, looks

just the same, except that yi�1 replaces yi+1 and wi�1 replaces wi+1.

Moreover,

dDi
dwi

=
�1
t

Z yi+1+yi
2 +

wi+1�wi
2t

yi+yi�1
2 +

wi�wi�1
2t

dy

�1
2t

�
�p� wi
t

+ yi �
�
yi+1 + yi

2
+
wi+1 � wi

2t

��
�1
2t

�
�p� wi
t

+

�
yi + yi�1

2
+
wi � wi�1

2t

�
� yi

�
:

Then this simpli�es to

dDi
dwi

=
�1
t

�
yi+1 � yi�1

2
+
wi+1 + wi�1 � 2wi

2t

�
�1
2t

�
2�p� wi � wi+1

2t
�
�
yi+1 � yi

2

��
�1
2t

�
2�p� wi � wi�1

2t
+

�
yi�1 � yi

2

��
or

dDi
dwi

=
�1
t

�
yi+1 � yi�1

2
+
wi+1 + wi�1 � 2wi

2t

�
�1
2t

�
4�p� 2wi � wi+1 � wi�1

2t
�
�
yi+1 � yi�1

2

��
or

dDi
dwi

=
�1
2t

�
yi+1 � yi�1

2
+
4�p+ wi+1 + wi�1 � 6wi

2t

�
;
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which is negative. It is also convex, which follows from its spatial roots (see

Figure 9).

The cross derivatives (other second partials) are symmetric and negative.

Hence, the spatial structure generates a quadratic form, which we can write as

Di = �i � �iwi + iw2i + �iwi (wi�1 + wi+1) + "iwi�1 + "iwi+1,

where the Greek letters are positive parameters.

29



( )Sp Q

P  

 
 
Figure 1.—Demand for Transportation Derived from the Supply of Goods and the World 
Market Price 

Q  
Output (Supply) 

Quantity Demanded of  
Transportation Services, T

Transport 
Rate w 
($/Unit) 

 Product 
Price 

( )w T($/Unit) 
 

P  

( )T w

( )sp p T−



          

 

P  

 
Figure 2.—Welfare Gain (accruing to producers) from a Reduction in the Cost of 
Transportation from 1w  to 0w . 
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Figure 3.—Welfare gain (accruing to transporters) from a reduction in the cost of 
transportation from 1w  to 0w .  Note:  is the equilibrium price of transportation given 
binding capacity, 
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Figure 4.—Monopoly Transporter. 
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Figure 5.—Welfare Gain and Division of Surplus. 
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Figure 6.  Monopsony Grain Elevator. 
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Figure 7.—Extensive Margin of Cultivation and Lower Barge Rates. 
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Figure 8—Endogenous Pool Markets and Barge Rates 
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 Figure 9.—Endogenous Markets 
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The NETS research program is developing a series of 
practical tools and techniques that can be used by 
Corps navigation planners across the country to 
develop consistent, accurate, useful and comparable 
information regarding the likely impact of proposed 
changes to navigation infrastructure or systems. 

 
 

The centerpiece of these efforts will be a suite of simulation models. This suite will include: 
 

• A model for forecasting international and domestic traffic flows and how they may be 
affected by project improvements. 

• A regional traffic routing model that will identify the annual quantities of commodities 
coming from various origin points and the routes used to satisfy forecasted demand at 
each destination. 

• A microscopic event model that will generate routes for individual shipments from 
commodity origin to destination in order to evaluate non-structural and reliability 
measures. 

 
 

As these models and other tools are finalized they will be available on the NETS web site: 
 
    http://www.corpsnets.us/toolbox.cfm 
 
 

The NETS bookshelf contains the NETS body of knowledge in the form of final reports, 
models, and policy guidance. Documents are posted as they become available and can be 
accessed here: 

 
    http://www.corpsnets.us/bookshelf.cfm  
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