
LQCD on GPUs 
(from a hardware perspective) 



Outline 
•  Quick overview of GPUs & 

 how they address (some) LQCD requirements 

•  LQCD performance on GPUs 

•  Performance constraints 
–  Amdahl’s Law constraints 
–  I/O limitations 

•  Future accelerator architectures 



Modern GPUs 
 Characteristics of GPUs: 

–  Lots of simple cores with fast context switching and many contexts 
per core to hide memory latency 

–  SIMD architecture (single instruction, multiple data) 
–  High memory bandwidth 
–  Complex memory hierarchy, to achieve high bandwidth at low cost 

Commodity Processors	
 CPU	
 NVIDIA Fermi GPU	


#cores	
 10	
 512	


Clock speed	
 ~3 GHz	

(2.53 best flops/$)	


1.5 GHz	


Main memory bandwidth (streams)	
 37 GB/s	

(2.53 / 1066)	


177 GB/s	


I/O bandwidth for scaling	
   7 GB/s	

(dual QDR IB)	


   11 GB/s	

(bidirectional on PCIe)	


Power 	
 80 watts	
 225 watts	




GPU Best Fit 
1.  High data parallelism 

–  Perform the same set of operations on many data items 

2.  High flop count on a small kernel 
–  Problem needs to fit into the GPU (1 - 6 Gbytes) 

 (or multi-GPU if communications are modest) 

–  Has little data dependent branching, no recursion 

–  Needs to do enough work to amortize cost of pushing the 
problem into the GPU and getting the results back 
 (sometimes it is possible to pipeline the problem and data) 

3.  High memory bandwidth requirements 
–  But problem doesn’t fit into CPU cache 



Quick Look: LQCD on GPUs 
Lattice QCD is very memory bandwidth intensive 
 1 instruction per byte of memory touched 

 Size of lattice problem ~1000 x CPU cache memory size 

 Large faction of work is in solving for a matrix inverse (the inverter) 

 Flops (sustained) is roughly memory bandwidth (single precision) 
–  Dual Nehalem: Streams 37 GB/s,  

      LQCD: ~20 Gflops (latest R&D code gives > 30) 
–  GPU (GTX-580 gaming card): Streams ~177 GB/s,  

      LQCD: > 330 Gflops (split precision gives 2x boost) 

Problem sizes today are 1-4 GPUs, moving to 8 (minimum) 

GPU programming is difficult (2 person years for key kernel), 
but the end result is compelling for many science problems 



ARRA GPU Cluster 
125 nodes, 500 GPUs 
 2.4 / 2.53 GHz Nehalem / Westmere 
  48 GB memory per node 
  85 with SDR Infiniband (file I/O) 
  32 with QDR in 4x slot == ½ QDR 
    8 with dual QDR 

Optimized for 4-8 GPUs / job 
One quad-GPU node =                                    

one rack of Infiniband nodes 



Card	
 GPU	
 #cores	

clock 
speed 
(GHz)	


memory 
size 

(GB)	


raw memory 
bandwidth 

(GB/s)	


clover 
inverter 
(Gflops)1	


cost	


GTX-285	
 GT200b	
 240	
 1.47	
 2	
 159	
 135	
 $500	

C1060	
 GT200b	
 240	
 1.30	
 4	
 102	
 100	
 $1500	

GTX-480	
 Fermi	
 480	
 1.40	
 1.25	
 177	
 270	
 $500	

C20502	
 Fermi	
 448	
 1.15	
 2.67	
 144	
 185	
 $2100	


GPU Comparison (in use at JLab) 

1 Newest development code gets up to 310 Gflops on GTX-480; data is this talk uses older 270 Gflops; 
all numbers are for mixed precision	


2 C2050 evaluated with ECC enabled	


The Fermi Tesla line of cards (C2050) has a significant advantage in having ECC memory 
so that more than just inverters can be safely executed.  This comes at a steep price: 4x 
on GPU price, and 1.5x on lower performance.  Integrated into a host this yields a price 
performance difference between the two of 3x.	


Conclusion: judicious use of gaming cards is a very good idea as long as we have inverter 
heavy loads (which we do).	




Project	
 2010-2011 
GPU Hours	


#GPUs, 
nodes	


Xeon core hours /
GPU hour 	

(job time)	


Effective 
Performance	

Gflops/node	


GPU used	


Spectrum	
 1,359,000	
 4, 1	
 90	
 800	
 (average)	

thermo	
 503,000	
 4, 1	
 45	
 400	
 (average)	

disco	
 459,000	
 4, 1	
 46	
 410	
 C2050	

Tcolor	
 404,000	
 4, 1	
   20*	
   175*	
 GTX285	

emc	
 311,000	
 4, 1	
 40	
 350	
 (average)	

gwu	
 136,000	
 32, 32	
   24*	
     50*	
 GTX285	


GPU Job Effective Performance 
Comparing GPUs to regular clusters can’t be done on the basis of inverter 

performance (Amdahl’s Law problem), so instead we compare job clock times, 
and from that derive an “effective” equivalent performance, which is the cluster 
inverter performance multiplied by the job clock time reduction.	


The following table shows the number of core-hours in a job needed to match one 
GPU-hour in a job.  Last project used 32 single GPU nodes and was I/O bound.	


The allocation-weighted performance of the cluster is 63 TFlops.	


    *using only 2009 generation GPUs, which are 2x slower 



Weak & Strong Scaling 
•  Key points in inverter behavior 

–  communicate surface (face) of sub-cube in 1 to 5 dimensions 
–  concurrently compute internal update 
–  update surface after face exchange 

•  I/O Limitations: 
–  GPUs are I/O bound: only 11 GB/s (PCI) I/O for 200 Gflops 

compared to 6 GB/s and 20 Gflops on dual Xeon QDR node 
–  Observed: 32^3 x 256 problem fits on 8 GPUs,  

 only needs ½ GB/s between the two hosts (only ¼ of I/O on IB)  
 (SDR in x4 slot, slice on time dimension only) 

–  Strong scaling to 32 GPUs using full QDR, GPUDirect 
–  If scaling is worse than expected, add second QDR rail 
–  Weak scaling for 48^3 x 384 lattice (5x) to 128 GPUs 
–  Switch to dual rail FDR when GPUs get 2x faster 



GPUDirect 
Transferring data via host 

memory cuts 
performance in half 

Direct device to device 
communications will 
accelerate our theory 
modeling with little 
software change 

PCIe switch chips (PLX)
create a network within 
a host, with 10 GB/s 
bandwidth per GPU, 
with 4-8 GPUs/host 



Dealing with Amdahl’s Law 

•  Currently the largest production use of GPUs is the inverter 
(“small” kernel, carefully optimized, 3 person-years and climbing) 

•  Only part of the analysis work in so inverter heavy such 
that quad GPU nodes are optimal (Amdahl’s Law problem) 

•  Going forward, need more code on the GPU 
–  extreme by hand optimization: too manpower intensive 

–  JIT based, use of patterns to translate: feasible, lower acceleration, 
but probably good enough 

–  wait for hybrid CPUs, and let vendors deliver compiler that can 
handle all the code 



Summary 
•  General Purpose GPUs are excellent compute engines 

(high flop rate, low watts/flops) 
•  Difficult to program (disruptive), but worth the effort in 

many cases 

•  Extremely cost effective for aggregate HPC  
 (1-10 Tflops/job or 1K-10K cores: 10x compared to next best solution) 

•  Software and software tools have to evolve to better 
exploit heterogeneous architectures 

•  We are watching & exploring multiple architectures & 
approaches 


