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THERMAL FRONT CIRCULATION MODEL

Messon B. Gbah, Guy A. Meadows, and Stanley J. Jacobs

ABSTRACT. A model of the thermal bar circulation in a large lake, of small aspect ratio is
presented. Unlike models that use prescribed values of the eddy viscosity and diffusivity, this
model utilizes a second order turbulence-closure scheme to compute flow variables and turbu-
lence properties as part of the overall solution.

1. INTRODUCTION

In his study of the thermal structure of Lake Ladoga, Tikhomirov (1963) suggested that the thermal bar is a
common feature of all large lakes in temperate regions during spring and autumn. Tikhomirov described the
thermal bar as a moving boundary between “the thermo-passive and thermo-active regions” of the lake, and also
recognized that the thermal bar influences limnological, biological, optical, and chemical properties of the lake
and, therefore, affects “aspects of life of a lake.”

Boyce (1989) has reviewed studies on the thermal structure of the Great Lakes. This work presents the historical
development of physical limnology, the seasonal thermal structure, and general circulation in the Great Lakes.

Rodgers (1966) measured the surface and cross section temperatures of Lake Ontario in the spring of 1965 and the
winter of 1965-66 at times when the lake had isotherms above and below 4oC. Drogue measurements near the
thermal bar showed convergence at the bar of warmer, shallower, stratified water and of the deeper and colder
mid-lake water. Rodgers also recorded the migration to deeper water of the thermal bar as a function of time,
depth, bathymetry, and temperature gradients.

A theoretical study of the thermal circulation in Lake Michigan was carried out by Huang (1971) in 1971 in which
the velocity and temperature fields were obtained by solving the equations of motion and using a perturbation and
matched asymptotic expansion scheme. The model was steady and neglected any along-front variation. It ap-
peared to predict the mean circulation pattern in the lake with reasonable accuracy.

A generalization of Huang’s steady-state model was carried out in 1971 by Bennett (1971) in a numerical study. In
Bennett’s calculations, the model basin was taken as an infinitely long rotating channel with no along-channel
variation. The equations of motion were reduced to a system of prediction equations which were solved for the
temperature, the along-channel velocity, and the stream function at each time step. A motion was predicted that is
confined to the stratified region where a geostrophic current parallel to shore is dominant. Also found were a zone
of sinking water centered around the 4oC isotherm and a zone of upwelling in the shallow regions.

A combined laboratory and theoretical investigation of the thermal bar was carried out by Elliott (1971). In the
theoretical part of the study, Elliott neglected horizontal advection and the diffusion of heat, and computed the
temperature field using a one-dimensional heat diffusion equation. Two expressions for the temperature distribu-
tion were derived, one for the deeper, convective, unstable side of the bar and the other for the shallower, strati-
fied, stable side. The velocity field was determined using the vorticity equation under the assumption that the flow
is driven by buoyancy and viscous forces, and after replacing the temperature field by an approximate expression
valid on both sides of the bar. In light of the reasonably good agreement of the mathematical model with labora-
tory measurements, Elliott extended the model to natural lakes, even though it did not incorporate rotation effects.

All of the theoretical studies reviewed above use a constant eddy viscosity and diffusivity model, or some combi-
nation of spatially variable eddy viscosity and diffusivity coefficients. None of them used a turbulence model.
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Difficulties in obtaining accurate values of the viscosity and diffusivity coefficients for various flow situations
justify looking for alternative models. Turbulence models have been developed to handle successfully various
flows. Even though the complexity of such models makes a problem difficult to solve, they have the advantage of
computing the turbulence characteristics as part of the solution to the flow, and generally do a much better job
than constant coefficients models. For this reason, the present study uses a second order turbulence model to
describe the mean flow.

2. GOVERNING EQUATIONS

Using the Boussinesq and f-plane approximations, the equations of motion describing viscous, heat-conducting
flow on the rotating earth are
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Here, we have used Einstein’s tensorial notation, with summation on the repeated indices, f is the Coriolis param-
eter, v and Γ are the molecular kinematic viscosity and thermal diffusivity, T is the temperature, ρ is a temperature
dependent equation of state in polynomial form as used by Mamayev (1975). g is the acceleration of gravity, and
δ

ij
, is the Kronecker delta. The conditions at the upper and lower boundaries of the fluid will be specified later. For

large scale turbulent geophysical flows, effects due to molecular viscosity and diffusivity can be neglected except
in viscous sublayers near solid boundaries, which will not be treated here. Hence, the terms involving v and Γ in
(1) and (2) will be omitted throughout our work.

3. DONALDSON’S TURBULENCE CLOSURE MODEL

We employ Reynolds’ approach of averaging the equations of motion as follows. A generic dependent variable θ
will be expressed as the sum Θ + θ’, where Θ and θ’ denote the mean and fluctuating components, and where an
overbar denotes the Reynolds average. The averaged continuity, momentum, and energy equations are
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Here, and for the remainder of this work, T denotes the mean-flow temperature.Subscripts i, j, and k take the

values 1, 2, and 3. The presence of the Reynolds stresses, u ui j
' ' , and the temperature flux, u Ti

' ' , make the system

of equations incomplete. Lewellen (1977) presents a model for the correlations of the fluctuating variables
devised by Donaldsont, which has been extensively verified for and successfully applied to various engineering
and geophysical flows. The equations of Donaldson’s model are:
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Here we have defined τ
ij 
= u ui j' '  as the Reynolds stress tensor divided by the density, h u Ti i= ' ' is

the turbulent heat flux in i direction, ϕ = ( )T '
2 as the mean square temperature fluctuation, q u ui i= ' '

as twice the turbulent kinetic energy, Λ as the macroscale length of turbulence, and

D Dt t U xi i/ / /= ∂ ∂ + ∂ ∂( )  as the total derivative operator. The quantities c
i 
are constants given in Table 1

and are slightly different from those given in Lewellen (1977), which uses an inappropriate value of 0.36 for the
Karman constant k.

Table 1. Constants of Donaldson’s Turbulence Model for k=0.4

C
l

     C
2

 C
3

  C
4

     C
5

 C
6

 C
7

C
8

0.3 0.07769 0.35 0.375 0.672717 0.75 0.45 0.8
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4. BOUNDARY CONDITIONS

We neglect water waves and assume that the flows near the water surface and the bottom satisfy the usual loga-

rithmic law of the wall. Let S  denote the tangential component of the stress at a boundary, N  the normal to the

boundary, and 
  N N= ±

r
 where N is positive or negative depending on whether the fluid lies above or below the

boundary. Then, according to the model, the following holds as N → 0:
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Here µ = sgn(N) is the sign of N, zσ, is the roughness length of the boundary, Q is the temperature flux, the heat

flux divided by ρ
0
 C

p
, I  is the identity matrix, U σ  

is the velocity at the boundary, and Tσ, is the temperature at

the boundary σ. At the air-sea interface, S  is the bottom stress and zσ, is the sea surface roughness length, while at

the bottom, S  represents the bottom friction and zσ the bottom roughness length.

5. SCALING OF THE EQUATIONS

Let (x
1
, x

2
) denote the horizontal axes, and x

3 
the vertical axis, and let Greek subscripts take on the values 1 or 2.

Also let L denote a characteristic horizontal length scale, D a vertical length scale, U a characteristic horizontal
velocity, Uτ a characteristic friction velocity, T0 a reference temperature, and Q0 a characteristic value of the
surface temperature flux Q. The time it takes a particle with velocity Uτ to travel through distance D is the vertical

penetration time t0 = D/Uτ. To evaluate U and ∆T T T≡ − 0, we balance the time derivative and the vertical

derivative of the Reynolds stress in the horizontal momentum equations, and the time derivative and the vertical
derivative of the temperature flux in the energy equation, taking t0 as a characteristic time scale, (Uτ)2 as a charac-

teristic scale for u ui j
' '  and Q

0
, as a characteristic scale for u Ti

' ' . This yields U =Uτ 
 and ∆∆∆∆∆T = Q

0/
Uτ. Thus, we

scale the variables using the transformations

S q U S q Q Q Q, , ,* * *( ) = 



 =τ 0 (20)
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8

f f f t
D

U
t= =0

* *,
τ

(22)

U U U U U
D

L
Uα τ α τ= =* *, 3 3 (23)

T T
Q

U
T Uij ij= + =0

0 2

τ
ττ τ* *, (24)

ε εT

z
T

B

z

k
D

k
D

B

= =
ln

,
ln

, (25)

h Q h
Q

Ui o i
o= =* *, ϕ ϕ
τ

2

2 (26)

where asterisks denote dimensionless variables, quantities ε
T
 and ε

B
 serve as the square roots of characteristic top-

and bottom-drag coefficients, and H is the bottom profile function.

6. APPROXIMATION FOR NATURAL BASINS

Using the scaling (20) to (26), we arrive at the dimensionless governing equations of the thermal bar circulation in
a lake in temperate regions. No analytical solution of these equations is unknown, and their numerical solution is
tedious. Approximations are needed because computational cost and efficiency are of real concern. The main
approximation to be used here is based on the restriction on the aspect ratio, δ ≡ <<D L/ 1, which is satisfied
for most naturally occurring bodies of water. As a result, the following approximated equations will be valid for
any body of water in temperate regions with a small. We define the functions and constants
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where Ω is the angular rotation of the earth and R
0
, its radius, ϕ

0
 is the latitude angle, λ is the non-dimensionalized

β, and r is the vertical Rossby number. The scaled and approximated continuity, and momentum equations be-
come, with asterisks omitted,
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The scaled approximated turbulence model equations become

∂
∂

+
∂
∂

− =
∂

∂
∂
∂







− −
τ τ τ τ τ13

33
1

3
23 1

3

13

3
13 1t

U

x

f

r
c

x
q

x

q
R T hΛ

Λ
( ) (33)

∂
∂

+
∂
∂

+ =
∂

∂
∂
∂







− −
τ
τ

τ τ τ τ23
33

2

3
3 1

3

23

3
23 2

U

x

f

r
c

x
q

x

q
R T hΛ

Λ
( ) (34)

∂
∂

=
∂

∂
∂
∂







− +






−
τ
τ

τ τ33
1

3

23

3
33

2

4
2 3c

x
q

x

q q
R T hΛ

Λ
( ) (35)

∂
∂

=
∂
∂

+
∂
∂









+
∂

∂
∂
∂







− +
q U

x

U

x
c

x
q

x

q
R T h

2

13
1

3
23

2

3
1

3

2

3

3

32
4

2
τ

τ τ τ
Λ

Λ
( ) (36)

∂
∂

+
∂
∂

+
∂
∂









=
∂

∂
∂
∂







+ −
∂( )

∂













+
Λ Λ

Λ
Λ Λ Λ

t

c

q

U

x

U

x
c

x
q

x
c q

c

q

q

x
c R T

q
h3

2 13
1

3
23

2

3
1

3 3
2

4
2

3
8 2 3τ τ ( ) (37)

∂
∂

− =
∂
∂

−
∂
∂

+
∂

∂
∂
∂







−
h

t

f

r
h

T

x
h

U

x
c

x
q

h

x
c

q
h1

2 13
3

3
1

3
1

3

1

3
6 1τ Λ

Λ
(38)

∂
∂

+ =
∂
∂

−
∂
∂

+
∂

∂
∂
∂







−
h

t

f

r
h

T

x
h

U

x
c

x
q

h

x
c

q
h2

1 23
3

3
2

3
1

3

2

3
6 2τ Λ

Λ
(39)

∂
∂

=
∂
∂

+ +
∂

∂
∂
∂







−
h

t

T

x
R t c

x
q

h

x
c

q
h3

33
3

1
3

3

3
6 3τ ϕ( ) Λ

Λ
(40)

∂
∂

=
∂
∂

+
∂

∂
∂
∂







−
ϕ ϕ ϕ
t

h
T

x
c

x
q

x
c

q
2 3

3
1

3 3
7Λ

Λ
(41)

Here, R(T) is a temperature-dependent thermal expansion function, and B(T) is the buoyancy per unit mass. They

are polynomial functions of T. At the surface boundary x
3
=0, we denote TS as the surace temperature, and S  the

surface wind stress. Using the scaling (20) to (26), the upper boundary conditions become
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At the bottom boundary, x H x3 == ( )α  we donote TB as the bottom temperature, and b the bottom stress. The

scaled lower boundary conditions reduce to
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q b→ 25 4/
(57)

Λ → +c x H5 3 (58)

hi = =ϕ 0 (59)

To complete the formulation of the model, a surface heat balance must be carried out. The surface conditions
involve a temperature flux term Q, an external forcing applied by the atmosphere. The evaluation of the heat flux
exchanged through the atmosphere-air interface is done using radiative transfer equations of the type used by
McCormick (1987) and Ivanoff (1972). Cloud and fog effects may be included if more precision is sought and/or
data are available. In any case, an accurate parameterization of the surface temperature flux is critical to any

accurate description of the thermal bar. The surface currents U Us s
1 2,  and temperature TS are evaluated using

equations (42) and (45) respectively.

7. CONCLUSION

The system of equations (29) to (41) along with the boundary conditions (42) to (59) is closed and constitutes the
mathematical description of the thermal bar. This model uses a secondorder turbulence closure scheme described
in Lewellen (1977), and holds for most naturally occurring bodies of water of small aspect ratio and located in
temperate regions. The equations can be solved numerically for the flow variables and the turbulence characteris-
tics. Numerical results have been obtained and will be presented elsewhere.
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