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 I. INTRODUCTION 
 
Neutron scattering has found wide use for the characterization of polymers owing to the partial 
deuteration method. Use of deuterated macromolecules in a non-deuterated environment is 
comparable to the staining method used in electron microscopy in order to enhance contrast. 
Polymer science and neutron scattering have been recognized at the highest level, through the 
award of the Nobel Prize in Physics to P.G. de Gennes in 1991 and to C. Schull and B. 
Brockhouse in 1994. 
 
Small-angle neutron scattering (SANS) is a well-established characterization method for 
microstructure investigations in various materials. It can probe inhomogeneities from the near 
atomic scale (1nm) to the near micron scale (600nm). Since the construction of the first SANS 
instrument over 25 years ago, this technique has experienced a steady growth with over 20 
instruments constructed worldwide. These are either reactor-based instruments using 
monochromated neutron beams or time-of-flight instruments at pulsed neutron sources. SANS 
has had major impact on the understanding of polymer conformations, morphology, rheology, 
thermodynamics, etc. This technique has actually become a "routine" analytic characterization 
method even for the non-experts.  
 
These notes are intended to help first time users of neutron scattering acquire (or brush up on) 
basic knowledge on the technique, and on its applications to polymer systems. Because the 
focus will be on small-angle neutron scattering, quasielastic/inelastic scattering and the dynamics 
of polymers will not be discussed. Neutron production, SANS instrumentation and structure factor 
calculations have been included along with elementary modeling methods for homogeneous 
polymer mixtures as well as phase separated systems (domain scattering). Readers of these 
notes need not be experts in nuclear physics, statistical mechanics or advanced mathematics; 
basic knowledge in such areas is, of course, useful. Also knowledge of the Fourier transform 
method is essential for understanding reciprocal space. 
 
After a brief review of basic neutron properties, we will introduce the major processes used to 
produce neutrons as well as list the major neutron sources in the United States and in the world. 
Production of cold neutrons (essential for SANS applications) is discussed along with description 
of cold neutron remoderators. SANS instrumentation is then examined in no great detail 
focussing on the major components and pointing out differences between reactor-based and 
spallation source-based instruments. Elements of neutron scattering in general will follow; 
including advantages and disadvantages of the technique, scattering lengths and cross sections, 
coherent/incoherent scattering contributions, and example calculations. Because "most SANS 
spectra look alike", SANS is a heavily model-dependent method. Models of single-particle 
structure factors are discussed with no attempt at completeness. Interparticle contributions are 
introduced for both homogeneous polymer mixtures (solutions, blends, etc) and phase separated 
systems (microphase separated copolymers for example) using two simple models (random 
phase approximation and Ornstein-Zernike equation). The first few chapters (I-VII) are general 
enough to benefit everyone interested in the SANS technique, the remaining chapters focus on 
SANS from polymers. Those interested in biopolymers and microemulsions would also benefit 
from these last chapters. The last few chapters (VIII-XII) concentrate on polymer systems. Data 
borrowed from research projects of this author are included. Because this is a tutorial and not an 
extensive review article, the focus is on simple issues and only representative data are 
discussed. 
 
References to published material in the subject (especially review articles and books) are 
included along with "Questions" that are meant to help the reader think about some extra issues. 
 
Even though the focus of the notes is on polymer materials, knowledge acquired can be useful to 
understand scattering from other systems. The field of polymers is at the top of the users list for 
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SANS (40% of the users at NIST), followed by complex fluids (24% at NIST) and biology (14%). 
Modeling of these systems, for instance, involves two main parts to the scattering function 
describing intra-"particle" and interparticle contributions. The word "particle" is often used to refer 
to scattering inhomogeneities such as deuterated polymer chains, domains in microphase 
separated copolymers, micelles in microemulsions, latex spheres in colloidal suspensions, etc. 
The modeling will be kept at its basic level for the sake of simplicity; structure factors for many 
particle shapes (spherical, rodlike, etc) and many chain architectures are available. Interparticle 
structure factors based on the Ornstein-Zernike equation for uniform density objects or the mean 
field random phase approximation for polymer mixtures are also briefly described.  
 
Because polarized neutron beams have not found applications in polymer research, polarization 
capabilities on SANS instruments will not be discussed. Deuterium is known to effect changes in 
sample properties (documented shifts of phase transition lines by a few degrees in polymer 
systems for example); Because they are small, these effects will also not be discussed. 
 

II. BASIC PROPERTIES OF THE NEUTRON 
 
The neutron was discovered by Chadwick in 1932.  It has zero charge, a mass of 1.0087 atomic 
mass unit, a spin of 1/2 and a magnetic moment of -1.9132 nuclear magnetons. It has a half life 
of 894 seconds and decays into a proton, an electron and an antineutrino. Its interactions with 
matter are confined to the short-range nuclear and magnetic interactions. Since its interaction 
probability is small, the neutron usually penetrates well through matter making it a unique probe 
for investigating bulk condensed matter. Since the neutron can be reflected by some surfaces 
when incident at glancing angles, it can also be used as a surface probe. Neutrons are scattered 
by nuclei in samples or by the magnetic moments associated with unpaired electron spins 
(dipoles) in magnetic samples.  Because the nuclear scattering potential is short range, neutron 
scattering can be described by "s wave" scattering so that the scattering cross section can be 
described by the first Born approximation. 
 
Some useful relations follow: 
 
Mass: m = 1.675x10-24 gm 
Magnetic Moment: µn = 6.031x10-12eV/gauss 

Energy: E[meV] = 2.072 k2 [A-2] = 4.135 f [THz]  = 0.658 ω [THz] 
    = 81.787/λ2 [A-2] = 5.228x10-6 v2 [m2/sec2] 
     = 0.0862 T [oK] 
Wavelength: λ [A] = 3955/v [m/sec]; Velocity: v = 1m/msec (at λ=4A) 
          k: wavenumber 
          f: frequency 
          ω: pulsation (=f/2π) 
          T: temperature. 
 

III. NEUTRON SOURCES 
 
Since the early days of neutron scattering, there has been an insatiable demand for higher and 
higher neutron fluxes. Neutron sources are based on various processes that liberate excess 
neutrons in neutron rich nuclei such as Be, W, U, Ta or Pb. Presently, the highest fluxes available 
are around a few x1015 n/cm2sec. Even though various neutron sources exist, only a few are 
actually useful for scattering purposes.  These are: 
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 -- continuous reactors 
 -- spallation sources 
 -- pulsed reactors and fission boosters. 
 -- photoneutron sources 
 
Emphasis will be put here on continuous reactors and spallation sources. Only minor 
improvements in flux increase of continuous reactors are expected because of the saturation of 
the technology (i.e., limit of heat removal rate and operating safety considerations). Pulsed 
sources are expected to go to higher fluxes (non-continuous operation allows for a better heat 
removal rate). Nuclear weapons are ultimate neutron sources delivering 1029 neutrons/kiloton in 
1 μsec but are unpractical to use for scattering purposes (!). 
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Figure III.1: The two main neutron sources: continuous reactors and pulsed sources. Using 
continuous reactors, one measures "some of the neutrons all of the time" while with pulsed 
sources, one measures "all of the neutrons some of the time".  
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III. 1. Nuclear Fission Reactions 
 
Some heavy nuclides fission into lighter ones (called fission products) upon absorption of a 
neutron. Known fissile nuclides are U-233, U-235, Pu-239 and Pu-241, but the most used ones 
are U-235 and Pu-239.  Each fission event releases huge energies (200MeV) in the form of 
kinetic energy of the fission fragments, gamma rays and several fast neutrons.  Fission fragments 
are heavy and remain inside the fuel elements therefore producing the major source of heat while 
energetic gammas and fast neutrons penetrate most everything and are carefully shielded 
against.  Gamma rays and fast neutrons are a nuisance to neutron scatterers and are not allowed 
to reach the detectors as much as possible. After being slowed down by the moderator material 
(usually light or heavy water) neutrons are used to sustain the fission  reaction as well as in beam 
tubes for low energy neutron scattering. 
 

 
Figure III. 2:  Typical fission chain reaction. 
 

III. 2. Nuclear Reactors 
 
Nuclear reactors are based on the fission reaction of U-235 (mainly) to yield 2-3  neutrons/fission 
at 2MeV kinetic energies.  Moderators (D2O, H2O) are used to slow down the neutrons to 
thermal (0.025eV) energies.  Reflectors (D2O, Be, graphite) are used to maintain the core critical. 
Whereas electrical power producing reactors use wide core sizes and low fuel enrichment (2-3% 
U-235), research reactors use compact cores and highly enriched fuel (over 90%) in order to 
achieve high neutron fluences. Regulatory agencies encourage the use of intermediate 
enrichment (20-50%) fuel in order to avoid proliferation of weapon-grade material. 
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Nuclear research reactors have benefited from technological advances from power producing 
reactors as well as nuclear submarines (compact cores operating with highly enriched fuel and 
foolproof safety control systems). The most popular of the present  generation of reactors, the 
pressurized water reactor (PWR), operates at high pressure (70 to 150 bars) in order to achieve 
high operating temperatures while maintaining the water in its liquid phase.  
 
Neutrons that are produced by fission (2MeV) can either slow down to epithermal then thermal 
energies, be absorbed by radiative capture, or leak out of the system. The slowing down process 
is maintained through collisions with low Z material (mostly water is used both as moderator and 
coolant) while neutron leakage is minimized by surrounding the core by a reflector (also low Z 
material) blanket. Most of the fission neutrons appear instantaneously (within 10-14 sec of the 
fission event); these are called prompt neutrons.  However, less than 1% of the neutrons appear 
with an appreciable delay time from the subsequent decay of radioactive fission products.  
Although the delayed neutrons are a very small fraction of the neutron population, these are vital 
to the operation of nuclear reactors and to the effective control of the nuclear chain reaction by 
"slowing" the transient kinetics. Without them, a nuclear reactor would respond so quickly that it 
could not be controlled. 
 
A short list of research reactors in the USA used for neutron scattering follows: HFIR-Oak Ridge 
National Laboratory (100 MW), HFBR-Brookhaven National Laboratory  (60 MW), NIST-The 
National Institute of Standards and Technology (20 MW), MURR-The University of Missouri (10 
MW). These reactors were built during the1960's. The next generation reactor (the Advanced 
Neutron Source) under planning for ten years at Oak Ridge National Laboratory has been 
cancelled due to lack of funds. 
 
A short list of research reactors in the world follows: CRNL-Chalk River, Canada (135 MW), IAE-
Beijing, China (125 MW), DRHUVA-Bombay, India (100 MW), ILL-Grenoble, France (57 MW), 
NLHEP-Tsukuba, Japan (50 MW), NERF-Petten, The Netherlands (45 MW), Bhabha ARC-
Bombay, India (40 MW), IFF-Julich, Germany (23 MW), JRR3-Tokai Mura, Japan (20 MW), 
KFKI-Budapest, Hungary (15 MW), HWRR-Chengdo, China (15 MW), LLB-Saclay, France (14 
MW), HMI-Berlin, Germany (10 MW), Riso-Roskilde, Denmark (10 MW), VVR-M Leningrad, 
Russia (10 MW). The ILL-Grenoble facility is the world leader in neutron scattering after two 
major upgrades over the last 20 years.  
 
Most of these facilities either have or are planning to add a cold source in order to enhance the 
population of slow neutrons and therefore allow effective use of SANS instruments. 
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Figure III.3: Schematics of the NIST reactor and guide hall. Note the two 30 m SANS instruments 
on the NG3 and NG7 guides and the 8 m instrument on the NG1 guide. 
 

III. 3. Spallation Sources 
 
Beams of high kinetic energy (typically 70MeV) H- ions are produced (linear accelerator) and 
injected into a synchrotron ring to reach much higher energies (500-800MeV) and then steered to 
hit a high Z (neutron rich) target (W-183 or U-238) and produce about 10-30 neutrons/proton with 
energies about 1MeV.  These neutrons are then moderated, reflected, contained, etc., as is 
usually done in  a nuclear reactor.  Most spallation sources operate in a pulsed mode. The 
spallation process produces relatively few gamma rays but the spectrum is rich in high energy 
neutrons.  Typical fast neutron fluxes are 1015-1016 n/sec with a 50MeV energy 
deposition/neutron produced.  Booster targets (enriched in U-235) give even higher neutron 
fluxes. 
 

 
Figure III.4: Spallation Nuclear Reaction. 
 
Major Spallation Sources in the world: 
 
-- IPNS (Argonne): 500MeV protons, U target, 12 µA (30 Hz), pulse width = 0.1µsec, flux = 1.5 x 
1015 n/sec, operating since 1981. 
 
-- SNS (Rutherford, UK): 800MeV protons, U target, 200 µA (50 Hz), pulse width = 0.27µsec, flux 
= 4 x 1016 n/sec, operating since 1984. 
 
-- WNR/PSR LANSCE (Los Alamos): 800MeV protons, W target, 100 µA (12 Hz), pulse width = 
0.27µsec, flux = 1.5 x1016 n/sec, operating since 1986. 
 
-- KENS (Tsukuba, Japan): 500MeV protons, U target,100 µA (12 Hz), pulse width = 0.07µsec, 
flux = 3 x 1014 n/sec,  operating since 1980. 
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Figure III.5: Schematic of the IPNS spallation source and instruments hall. Note the two SANS 
instruments (SAD and SADII). 
 

III. 4. Pulsed Reactors 
 
Pulsed reactors include a moving element of fuel (or reflector material which periodically passes 
near the core), causing brief variation of the reactivity.  A fast rising burst of neutrons occurs 
when the reactivity exceeds prompt critical. One such reactors exists at IBR-30 (Dubna, USSR), 
with 0.03 MW power, pulse width of 50µsec, repetition rate of 5 Hz.  Neutron fluxes are of order 5 
x  1015 n/cm2sec. 
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III. 5. Photoneutron Sources 
 
Photoneutron sources are based on the production of evaporation neutrons by photonuclear 
reactions or by photofission.  The photons used (gammas) are produced by electron  
Bremsstrahlung (photons emitted when electrons are decelerated) in high Z targets (W, U or Ta).  
The high Z target (W, U or Ta) acts as both the medium that slows down the electrons (therefore 
producing gammas) and the  neutron emitting element (through photonuclear reactions). One 
such neutron source existed at the Linac I at Harwell (not operating anymore) with 140MeV e- on 
Ta target which produced 1013 n/sec.  Energy deposition is about 2000MeV/neutron produced. 
This source was characterized by a high gamma-ray background. 
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III. 6. Questions 
 
1. Find out when was the first research reactor built? 
2. Name a few applications of nuclear research reactors besides neutron scattering. 
3. Do research reactors produce electrical power? 
4. What is the origin of delayed neutrons? 
5. Are there nuclear reactors that use non-enriched Uranium? 
6. Name the research reactor and the spallation source closest to your home institution. 
7. Instruments at pulsed sources use a range of wavelengths whereas reactor-based instruments 
use single wavelength. How could the same scattering information be obtained from these two 
different types of instruments? 
8. Why are most SANS instruments installed in neutron guide halls? 
9. What is the cost of running a research reactor? a spallation source? 
10. What is a dosimeter? 
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IV. COLD NEUTRON REMODERATORS 
 

IV. 1. Cold Neutron Source 
 
"Cold" (slow) neutrons are often needed for better spatial resolution in scattering applications 
(long wavelength scattering). Atoms with low Z (such as H or D) are good moderators making 
them ideal as cold source material. Cold neutrons are generated in a neutron remoderator also 
called "cold source" using either hydrogen or deuterium in the liquid form, supercooled gas form, 
or solid form (methane or ice). The Maxwellian neutron spectral distribution (peaking at 1.8 A for 
thermal neutrons) is shifted to lower energies by neutron slowing down (through inelastic 
scattering) processes. The mean free path (average distance between collisions) of neutrons in 
hydrogen (0.43 cm) is smaller than in deuterium (2.52 cm).  
 

 
Figure IV.1: Cold neutrons are needed for structural and dynamics studies. 
 
Liquid cold sources (hydrogen or deuterium) operate at low temperature (around 20 K) and 2 bar 
pressure.  Vacuum and helium jackets isolate the remoderating liquid from the surrounding. 
Supercritical gas cold sources (hydrogen or deuterium) operate at 40 K and 15 bars of pressure 
(one phase system); thicker walls are necessary for the containment of the higher gas pressure. 
Solid methane at 50 K and solid ice at 35 K have been used as cold source material. Radiation 
damage in solid state cold sources produces stored (so called "Wigner") energy due to ionization. 
In order to avoid sudden release of this energy (explosion!), a recombination of radiolysis 
products is induced in the cold source material by warming it up on a regular basis (once every a 
couple of days).  
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Use of a cold source yields high gains (one to two orders of magnitude) at high wavelengths.  
 

 
Figure IV. 2: The NIST liquid hydrogen cold source and guide system. 
 
Table IV.1: Cold Neutron Sources in the World 
___________________________________________________________________________ 
Place   Source   Power  Moderator Dates 
____________  ___________  _________ _________ ______ 
Bombay, India  DHRUVA  100 MW liq CH4  1986 
Brookhaven, USA HFBR   60 MW  liq H2  1977 
Grenoble, France RHF/ILL  57 MW  liquid D  1972,85,87 
Julich, Germany FRJ 2   23 MW   liq H2  1972,85,87 
Gaithersburg, USA NIST   20 MW  sol D2O, liq H2 1987,95 
Tokai Mura, Japan JRR-3   20 MW  liq H2  1988 
Budapest, Hungary KFKI   15 MW  liq H2   1989 
Chengdo, China  HWRR   15 MW  liq H2  1988 
Saclay, France  ORPHEE/LLB  14 MW  liq H2   1980 
Leningrad, Russia VVR-M   10 MW  liq H2+liq D2 1985 
Berlin, Germany  BER 2    10 MW   gas H2  1988 
Riso, Denmark  Pluto   10 MW  gas H2  1975 
Rutherford, GB  ISIS   Pulsed   gas H2,liq CH4 1985 
Argonne, USA  IPNS   Pulsed  sol, liq CH4 1986 
Los Alamos, USA LANSCE  Pulsed  liq H2  1986 
Tsukuba, Japan  KENS-1  Pulsed   sol CH4  1987 
__________________________________________________________________________ 
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IV. 2. Cold Neutron Spectrum 
 
Neutrons are produced by fission with energies around 2MeV, then they slow down to form a 
Maxwellian spectrum distribution which is peaked around the moderator temperature kBT (in 
energy units). 
 
The neutron flux φ(E) is the number of neutrons crossing a unit area (1cm2) per second in all 
directions and with energies E. 
 
 .  T)exp(-E/k E ]T)/(k[  (E) B

2
Boφ=φ

 
Its integral is the total flux: 
 

 . ∫
∞

φ=φ
0

(E) dE o

 
φ(E) can also be expressed in terms of the neutron wavelength λ = h/(2mE)

1/2 as: 
 
  φ(λ) = φo [h4/2(kBTm)2](1/λ5) exp[(-h2/2mkBT)(1/λ2)] 
 
where h is Planck's constant. For high λ, the flux decreases as 1/λ5.  A cold source effectively 
shifts the Maxwellian peak to higher wavelengths therefore increasing the population of cold 
neutrons and yielding better small-angle neutron scattering resolution. For elastic scattering, this 
means the ability to resolve larger macromolecular structures (close to micron size).  
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Figure IV. 3: Spectral neutron distributions with and without cold source. 
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V. SMALL ANGLE NEUTRON SCATTERING INSTRUMENT 
 
The first SANS instruments utilizing long flight paths, long wavelength neutrons from a reactor 
cold source and position sensitive detectors were developed in Europe (Julich, Grenoble, Pisa).  
Small angle neutron scattering instruments should really be called low-Q instruments (Q being 
the momentum transfer which for low scattering angles θ is given in terms of the neutron 
wavelength λ as Q=2πθ/λ). Low Q can be realized either through the use of small angles or high 
wavelengths. In order to obtain small angles, good collimation and good area detector resolution 
are needed. Good collimation is achieved through the use of long neutron flight paths before and 
after the sample. SANS instruments on continuous neutron sources use velocity selectors to 
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select a slice of the (often cold) neutron spectrum while time of flight SANS instruments use the 
whole spectral distribution with careful timing between the source chopper and the detector to 
separate out the various wavelength frames. In this last case (TOF instruments) the maximum 
length of an instrument is determined by the pulse frequency so as to avoid frame overlap 
problems (the slowest neutrons of a pulse should not interfere with the fastest neutrons of the 
next pulse). 
 

V. 1. Continuous SANS Instrument Components 
 
A brief description of the main components of reactor-based SANS instruments follows: 
 
-- Cold neutrons are transported through total internal reflection at glancing angles inside neutron 
guides. These transmit neutrons from the cold source to the entrance of scattering instruments 
with little loss. 
 
-- Beam filters (for example, Be for neutrons and Bi for gammas) are used to clean up the beam 
from unwanted epithermal neutrons (Be transmits neutrons with wavelengths > 4 A) and gamma 
radiation (stopped by high-Z materials as Bi). Note that if a curved guide is used, no filter is 
needed because there is no direct line-of-sight from the reactor core (no gammas in the beam) 
and curved guides transmit only wavelengths above a cutoff wavelength (no epithermal neutrons 
in the beam). Typical filter thickness is between 15 cm and 20 cm. For better effectiveness, filters 
are cooled down to liquid nitrogen temperature. 
 
-- A velocity selector yields a monochromatic beam (with wavelengths λ between 4 A and 20 A 
and wavelength spreads from Δλ/λ=10% to 30%). Some SANS instruments that need sharp 
wavelength resolution use crystal monochromators (with wide mosaic spreads to give Δλ/λ<10%) 
instead. Because Δλ/λ is constant, the neutron spectrum transmitted by the velocity selector falls 
off as 1/λ4 (instead of the 1/λ5 coming from the moderator Maxwellian distribution). 
 
-- An evacuated pre-sample flight path contains a beam collimation system. Typical adjustable 
flight path distances are from 1 m to 20 m depending on resolution and intensity design 
considerations. The collimation usually consists of a set of pinholes (source and sample 
apertures) that converge on the detector. Inside the pre-sample flight path, more neutron guides 
(with reflecting inner surfaces) are sometime included in parallel with the collimation system for 
easy insertion into the beam. This allows a useful way to adjust the desired flux on sample along 
with the desired instrumental resolution by varying the effective source-to-sample distance. 
 
-- A sample chamber usually contains a translation frame that can hold many samples (measured 
in sequence). Heating and cooling of samples (-150oC to 200oC) as well as other sample 
environments (cryostats, electromagnets, ovens, shearing devices, etc) are often accomodated. 
 
-- The post sample flight path is usually an evacuated cylindrical tube (to avoid scattering from 
nitrogen in air) that permits the translation of an area detector along rails in order to change to 
sample-to-detector distance.  
 
-- The area detector is often a gas detector with 0.5 cm to 1cm resolution and typically 128x128 
cells. The detection electronics chain starts with preamplifiers on the back of the detector and 
comprises amplifiers, coincidence and timing units, plus encoding modules and a means of 
histogramming the data and mapping them onto computer memory. In order to avoid extensive 
use of vacuum feedthroughs, the high count rate ILL-type area detector design incorporates most 
electronics modules (amplification, coincidence, encoding, etc) inside an electronics chamber 
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that is located on the back of the detector. In this design, flexible hoses are, however, needed to 
ventilate the electronics and to carry the HV cable in and the encoded signal out. 
 
-- A set of beam stops is used to prevent the main beam from reaching the detector and therefore 
damaging it due to overexposure. Use of Li-6 glass as neutron absorber avoids the gamma-ray 
background obtained with Cd, B or Gd containing materials. For easy alignment, motion of the 
beam stops should be independent of that of the area detector. 
 
-- A low-efficiency fission chamber detector located right after the velocity selector is used to 
monitor the neutron beam during data acquisition and a He-3 thin pencil detector is mounted on 
one of the beam stops (that can be moved in or out of the beam) for transmission measurements. 
 
-- Gamma radiation produced by neutron capture in various neutron absorbing materials (Cd, Gd, 
B) is stopped using high-Z shield materials (Fe, Pb, concrete). Shields surround the velocity 
selector and beam defining apertures. The scattering vessel is also shielded in order to minimize 
background reaching the detector. 
 
-- Data acquisition is computer controlled within menu-driven screen management environments 
and on-line imaging of the data is usually available.  
 

 18



 
Figure V. 1: Schematics of a 30m SANS instrument at NIST. 
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Table V. 1: 30 m NIST-SANS Instruments Characteristics. 
_____________________________________________________________________________ 
Source:    neutron guide (NG3), 6 x 6 cm2 
    neutron guide (NG7), 5 x 5 cm2 
Monochromator:  mechanical velocity selector with variable speed and pitch 
Wavelength Range:  variable from 0.5 to 2.0nm 
Wavelength Resol.:  10 to 30% for Δλ/λ (FWHM) 
Source-to-Sample   
Distance:   3.5 to 15m in 1.5m steps via insertion of 
    neutron guide segments  
Sample-to-Det. Dist.:  1.3 to 13.2m continuously variable for NG3 
    1.3 to 15.3m continuously variable for NG7 
Collimation:   circular pinhole collimation 
Sample Size:   0.5 to 2.5cm diameter 
Q-range:   0.01 to 6nm-1 
Size Regime:   1 to 600nm 
Detector:   64 x 64 cm2 He-3 position-sensitive  
    proportional counter (1 cm2 resolution), ILL type 
Ancillary   -automatic multi-specimen sample changer with Equipment: 
    temperature control from -10 to 200 oC 
    -electromagnet (0 to 9Tesla) 
    -Couette flow shearing cell 
    -cryostats and vacuum furnace (10 to 1800 K) 
    -pressure cell (0 to 1x108 Pa, 25oC to 160oC) 
 
Neutrons on   Qmin (nm-1)  Isa (n/sec)  Isb (n/sec) 

Sample vs. Qmin    0.015   3x103    2x104  

     0.02   2x104    9x104  
     0.04   2x105    9x105  
     0.10   1x106    5x106  
_____________________________________________________________________________
_ 
afor 1.5 cm diameter sample, Δλ/λ=0.25, 15 MW reactor power and D2O-ice cold source 
bfor 1.5 cm diameter sample, Δλ/λ=0.15, 20 MW reactor power and liquid hydrogen cold source 
 

V. 2 . Time of Flight SANS Instrument Components 
 
A time of flight SANS instrument comprises some of the main features described above 
(collimation, sample chamber, flight paths, area detector, etc) as well as some other features 
described here: 
 
-- A source chopper to define the starting neutron pulse. 
 
-- The area detector is synchronized to the source chopper so that a number of wavelength 
frames (for example 128) are recorded for each pulse. No monochromator is necessary with the 
time of flight method. 
 
-- A supermirror bender can be used (as on the LOQ instrument at ISIS for example) to remove 
short wavelengths and let the instrument get out of the direct line of sight from the source. Note 
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that curved guides have a cutoff wavelength below which neutrons are not transmitted. This 
bender replaces the filter. 
 
-- High wavelengths (say above 14A) have to be eliminated in order to avoid frame overlap. This 
can be done by gating the detector or through the use of frame overlap mirrors (as on the LOQ 
instrument at ISIS). Reflecting mirrors are set at a slight angle (1o) from the beam direction so as 
to reflect only long wavelength neutrons (note that the reflection critical angle varies linearly with 
wavelength).  
 
Because of the wide wavelength range used in time of flight instruments, materials that display a 
Bragg cutoff (such as sapphire windows) cannot be used. Data reduction becomes more complex 
with time of flight instruments because most corrections (transmission, monitor normalization, 
detector efficiency, linearity, uniformity, etc) become wavelength dependent. Time of flight 
instruments have the advantage, on the other hand, of measuring a wide Q range at once. Also 
the large number of wavelength frames can be kept separate therefore yielding very high 
wavelength resolution (Δλ/λ<1%) which is useful for highly ordered samples (some fibers are 
crystalline in one direction with essentially "perfect" mosaic spread). 
 

V. 2. Sample Environments 
 
Typical sample thickness for SANS measurements is of order of 1 mm. Liquid samples (polymer 
solutions, microemulsions) are often contained in quartz cells into which syringes can be 
inserted. Solid polymer samples are usually melt pressed above their softening (glass-rubber) 
temperature, then confined in special cells between quartz windows.  
 
Flexibility of design for some instruments allows the use of typical size samples under 
temperature control or bulky sample environments. Temperature is easily varied between 
ambient temperature and 200oC using heating cartridges or between -10oC and room 
temperature using a circulating bath. Other sample environment equipment such as low-
temperature cryostats (4 to 350 K) and electromagnets (1-10Teslas) are sometime made 
available to users. Various shear cells (Couette, plate-and-plate, etc) are helping probe "soft" 
materials at the molecular level in order to better understand their rheology. A few pressure cells 
are also finding wide use for investigations of compressibility effects on the thermodynamics of 
phase separation as well as on structure and morphology. 
 

V. 3. SANS Measurements 
 
SANS measurements using cold neutrons take from a few minutes to an hour when measuring 
typical polymer samples. The process starts by sample preparation, which consists in weighing 
the right amounts of polymers and solvents and mixing them to form homogeneous mixtures. If 
polymer blends are the desired outcome, solvent is evaporated, sample is dried then hot pressed 
to yield the right size and thickness sample.  
 
A reasonable instrument configuration is chosen at first by setting a low wavelength and varying 
the sample-to-detector distance so as to optimize the desired Q-range. If the maximum available 
sample-to-detector distance is reached, wavelength is then increased. Choice of the source-to-
sample distance, wavelength spread, and aperture sizes are dictated by the desired instrumental 
resolution (sharp scattering features require good resolution) and flux on sample. Scattered 
intensity is proportional to many factors that have to be optimized: I(Q)=φATd[dΣ/dΩ]ΔΩεt (φ: flux, 
A: sample area, T: transmission, d: sample thickness, ε: detector efficiency, t: counting time). 
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Transmission measurements are usually performed at the beginning of an experiment. In order to 
avoid complicated multiple scattering corrections, sample transmissions are kept high (>60%). 
 
A complete set of data involves measurements from the sample, from an incoherent (usually 
nondeuterated) scatterer that yields flat signal, from the empty cell and a blocked beam and from 
a calibrated (absolute standard) sample. SANS data are corrected, rescaled to give a 
macroscopic cross section (units of cm-1) then averaged (circularly for isotropic scattering or 
sector-wise for anisotropic scattering). Reduced data are finally plotted using standard linear 
plots (Guinier, Zimm, Kratky, etc) in order to extract qualitative trends for sample characteristics 
(radius of gyration, correlation length, persistence length, etc) or fitted to models for more 
detailed data analysis.  
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V. 4. Questions 
 
1. Why are small-angle neutron scattering instruments bigger than small-angle x-ray scattering 
instruments? 
2. Why aren't crystal monochromators used instead of velocity selectors in SANS instruments? 
3. Could one perform SANS measurements without using an area detector? 
4. What is the useful range of cold neutron wavelengths? 
5. When is it necessary to use wide wavelength spread Δλ/λ? 
6. Find out how does a velocity selector work? 
7. How does a He-3 area detector work? 
8. What is the cost of building a SANS instrument? 
9. Name some materials used for neutron windows. 
10. Do cold neutrons destroy samples? 
 

VI. THE NEUTRON SCATTERING TECHNIQUE 
 

VI. 1. Various Radiation Used for Scattering 
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Many forms of radiation can be used for scattering purposes: X-rays, neutrons, electrons, laser 
light, gamma rays, etc.  These have different characteristics and are used for different purposes. 
Table VI.1 summarizes various scattering methods. 
 
Table VI. 1:  Various radiations used in scattering 
_______________________________________________________________________ 
Type of 
Radiation          X-Rays        Neutrons    Electrons    Laser Light 
__________ _________________ __________ __________ ______ 
Wavelength      0.1-5A:X-rays    1 A-15 A    0.1 A        1 μm 
Range:          5A-1μm:VUV               
 
Sensitive to       Electron      Density     Electron  Polarizabil. 
inhomogeneities:  Density       of Nuclei   Cloud       (Refractive 
                                                         Index) 
Scatt. Methods    SAXS,WAXS    SANS,WANS   LEED       SLS 
 
Samples Thickness:   < 1 mm      1-2 mm     100 μm        1-5 mm 
 
Problems with:    Absorption    Low Fluxes        Low          Dust Scatt. 
       Penetration 
________________________________________________________________________ 
 
The small-angle neutron and X-ray scattering methods (SANS, SAXS) are useful for polymer 
research because they probe size scales from the near atomic to the near micron. Static light 
scattering (SLS) complements these techniques by focussing on the micron length scale. Other 
methods such as wide-angle neutron and X-ray scattering (WANS, WAXS) and low-energy 
electron diffraction (LEED) probe very local (atomic) structures. 
 
Neutron scattering is the technique of choice for condensed matter investigations in general 
because thermal/cold neutrons do not deposit energy in the scattering specimen. For instance,  
neutrons of 1 A wavelength have much lower kinetic energy (82meV) than x-rays and electrons 
of the same wavelength (12keV and 150eV respectively).  
 

VI. 2. Characteristics of Neutron Scattering 
 
A few advantages of neutron scattering follow: 
 
-- Neutron scattering lengths vary "randomly" with atomic number and are independent of 
momentum transfer Q. This is used to advantage in deuterium labeling using the fact that the 
scattering lengths of hydrogen and deuterium are widely different (-0.3741 and 0.6674 x10-12 cm 
respectively). The negative sign in front of bH means that the phase of the wavefunction is 
inverted during scattering. 
 
-- Neutrons have high penetration (low absorption) for most elements making neutron scattering 
a bulk probe.  Sample environments can be designed with high Z materials (aluminum, quartz, 
sapphire, etc). 
 
-- Neutrons have the right momentum transfer and right energy transfer for investigation of both 
structures and dynamics in condensed matter. The neutron-spin-echo method has found wide 
use in polymer dynamics studies; this method falls outside of our scope. 
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-- A wide range of wavelengths can be achieved by the use of cold sources. One can reach very 
low Q's and overlap with static light scattering (SLS) using a double crystal monochromator (so 
called Bonse Hart) instrument.  
 
-- Since neutron detection is through nuclear reactions (rather than direct ionization for example) 
the detection signal-to-noise ratio is high (MeV energies released as kinetic energy of reaction 
products). 
 
A few disadvantages of neutron scattering follow: 
 
-- Neutron sources are very expensive to build and to maintain.  It costs millions of dollars 
annually to operate a nuclear research reactor and it costs that much in electrical bills alone to 
run a pulsed neutron source. High cost (billions of US$) was a major factor in the cancellation of 
the Advanced Neutron Source project. 
 
-- Neutron sources are characterized by relatively low fluxes compared to X-ray sources 
(synchrotrons) and have limited use in investigations of rapid time dependent processes. 
 
-- Relatively large amounts of samples are needed: 1 mm-thickness and 1 cm diameter samples 
are needed for SANS measurements. This is a difficulty when using expensive deuterated 
samples or precious (hard to make) biology specimens. 
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Figure VI. 1:  Neutrons are scattered from nuclei while X-rays are scattered from electrons. 
Scattering lengths for a few elements relevant to polymers are compared. Ti and U have also 
been included. Negative neutron scattering lengths are represented by dark circles. 
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D.L Price and K. Skold, "Introduction to Neutron Scattering" Methods of Experimental Physics 
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Research, 98, Issue No 1 (1993). 
 

VII. NEUTRON SCATTERING LENGTHS AND CROSS SECTIONS 
 
Scattered intensity is proportional to the so called "contrast factor" which contains the scattering 
lengths. This and other terminology is introduced here along with elements of scattering theory.  
 

VII.1. Scattering Lengths 
 
Consider a plane wave (well collimated neutron beam) incident on a nucleus.  The scattered 
wave is spherical and the wavefunction (at large distances) is of the form: 
 
 exp(iki.r) + f(θ)exp(iks|r-r'|)/|r-r'|     (Eq. VII.1) 
 
where f(θ) is the scattering amplitude. The scattering vector Q=ki-ks characterizes the probed 
length scale and its magnitude is given for elastic scattering in terms of the neutron wavelength λ 
and scattering angle θ as Q=4πsin(θ/2)/λ. For small angles (SANS), it is simply approximated by 
Q=2πθ/λ. Because Q is the Fourier variable (in reciprocal space) conjugate to scatterer positions 
(in direct space), investigating low-Q probes large length scales in direct space. 
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Figure VII.1: Incident and scattered waves. 
 
An orbital angular momentum characterizes each neutron incident on the scattering nucleus. For 
thermal/cold neutrons, only "s wave" scattering (corresponding to a zero orbital angular quantum 
number) is important, "p wave" scattering becomes important only above neutron energies of 200 
keV, which has no contribution in scattering applications. In this case (s-wave scattering) a phase 
shift δ0, and a scattering length a can be defined (Sears, 1992): 
 
 f(θ) = (1/2iQ) [exp(iδ0) - 1] ≅ -a + iQ a2 + . . .    (Eq. VII.2) 
 
where Q is the neutron wavenumber. The scattering length itself can be complex if absorption is 
non negligible: a = aR - iaI, although neutron absorption is small for typical polymer samples.  
 
Moreover, since no nucleus is completely free, bound scattering lengths should be used instead: 
b = a (A + 1)/A, where A is the atomic number. Free and bound scattering lengths are 
substantially different only for low mass elements such as hydrogen.  
 
The differential scattering cross section dσ/dΩ depends on two quantities: (1) a technique-
dependent factor which for neutron scattering is called the contrast factor and (2) a sample-
dependent term which is called the static structure factor and represents the structure of the 
scattering environment in the sample. 
 

VII. 2. Scattering Cross Sections 
 
The microscopic differential scattering cross section is given by: dσ(θ)/dΩ = |f(θ)|2. It is also 
defined more practically as: 
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           number of scattered neutrons inside a solid angle dΩ 
   with scattering angle θ per nucleus per sec 
   dσ(θ)/dΩ = __________________________________________ 
          number of incident neutrons per cm2 per sec 
 
This cross section contains information about what inhomogeneities are scattering and how they 
are distributed in the sample (chain conformations, morphology, etc). The microscopic scattering 
cross section is its integral over solid angles:  σs=∫[dσs/dΩ] dΩ and is given by: σs = 4π|b|2 (units 

of barn=10-24 cm2). Bound scattering lengths b and cross sections σs are tabulated (Sears, 
1992; Koester et al, 1991).  
 
Given the number density N (number of scattering nuclei/cm3) in a material, a macroscopic cross 
section is also defined as: Σ = Nσ (units of cm-1). SANS data are often presented on an 
"absolute" macroscopic cross section scale independent on instrumental conditions and on 
sample volume; this is: dΣ/dΩ = Ndσ/dΩ. 
 

VII. 3. Estimation of Neutron Scattering Lengths 
 
A simple argument is used here in order to appreciate the origin of the scattering length. 
Consider a neutron of thermal/cold incident energy Ei being scattered from a nucleus displaying 
an attractive square well -Vo (simplest model) potential (Note that Vo>>Ei). The Schroedinger 
equation: 
 
 [-(h2/8π2m)∇2 + V(r)] ψ = E ψ      (Eq. VII.3) 
 
can be solved in 2 regions (inside and outside of the well region). 
 

 
Figure VII. 2: Neutron scattering from the quantum well of a nucleus. 
 
Outside of the well region (i.e., for r>R) where V(r) = 0, the solution has the form: 
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 ψsOut = [sin(kr)/kr] - [b exp(ikr)/r]   (s-wave scattering)   (Eq. VII.4a) 
 
and k=[2mEi]1/22π/h; whereas inside of the well (R >r>-R) where V(r) = -V0 the solution  is of the 
form: 
 
       ψsIn = A [sin(qr)/qr]   with q=[2m(Ei+V0)]1/22π/h.   (Eq. VII.4b) 
 
The continuity boundary conditions are applied at the surface (r=R):  
 
         ψsIn(r=R) = ψsOut(r=R)       (Eq. VII.5a) 
 
           d[rψsIn(r=R)]/dr = d[rψsOut(r=R)]/dr     (Eq. VII.5b) 
 
with kR = (2mEi)1/2R2π/h << 1 and therefore ψsOut ~ 1 - b/r. Thus: 
                                   
           ⎧ A sin(qR)/q = R-b              ⎧ A = 1/cos(qR)   (Eq. VII.6a) 
              ⎨               =>       ⎨                                         
  ⎩  A cos(qR) = 1                      ⎩ b/R = 1-tan(qR)/qR.   (Eq. VII.6b) 
                                                 
The solution of this equation: 
 
         b/R = 1 - tan(qR)/qR       (Eq. VII.7) 
 
gives a first order estimate of the scattering length b if the radius of the spherical nucleus R and 
the depth of the potential well V0 are known.  
 

 
Figure VII. 3: Solution of the Schroedinger equation subject to the boundary conditions. 
 
Because of the steep variation of the solution to the above equation, adding only one nucleon (for 
example, going from H to D) gives a very large (seemingly random) variation in b. The scattering 
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length can be negative (case where the wavelength has a phase change of 180o during 
scattering) like for H-1, Li-7, Ti-48, Ni-62, etc. Note that absorption has been neglected in this 
simple model since it is negligible for polymer systems. 
 
Table VII.1: Coherent and incoherent neutron scattering lengths (bc and bi) and cross sections 
(σc and σi) as well as absorption cross section (σa) for atoms commonly found in polymers. 
________________________________________________________________________ 
Element bc  bi  σc  σi  σa 
  fermi  fermi  barn  barn  barn 
_______ ________ ________ ________ ________ ______ 
H-1  -3.739  25.274  1.757  80.26  0.333 
D-2  6.671  4.04  5.592  2.05  0.000 
C-14  6.646  0  5.550  0.001  0.003 
N-14  9.36  2.0  11.01  0.50  1.90 
0-16  5.803  0  4.232  0.000  0.000 
F-19  5.654  0  4.232  0.001  0.000 
Na-23  3.63  3.59  1.66  1.62  0.530 
Si-28  4.149  0  2.163  0.004  0.171 
P-31  5.13  0.2  3.307  0.005  0.172 
S-32  2.847  0  1.017  0.007  0.53 
Cl-35  9.577  0.65  11.526  5.3  33.5 
_______________________________________________________________________ 
1 fermi=10-13 cm 
1 barn=10-24cm2  
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VIII. COHERENT/INCOHERENT NEUTRON SCATTERING 
 
Neutron scattering is characterized by coherent and incoherent contributions at the same time. 
Whereas coherent scattering depends on Q and is therefore the part that contains information 
about scattering structures, incoherent scattering does not.  
 

VIII. 1. Separate the Coherent and Incoherent Parts 
 
Here, the coherent and incoherent parts of the elastic scattering cross section are separated. 
Consider a set of N nuclei with scattering lengths bi in the sample. The scattering cross section is 
given by: 
 
 dσ(θ)/dΩ = |f(θ)|2 = (2πm/h2)2  |∫ dr exp(-iQ.r) V(r)|2   (Eq. VIII.1) 
 
where Q = ki-ks and V(r) is the Fermi pseudopotential describing neutron-nuclear interactions: 
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 V(r) =  (h2/2πm)      (Eq. VIII.2) ∑
=

N

1i
);r -(r  b  ii δ

 
where ri is the position and bi the scattering length of nucleus i. Therefore, the differential 
scattering cross section is the sum of the various scattering phases from all of the nuclei in the 
sample properly weighed by their scattering lengths: 
 

 dσ(θ)/dΩ =    bibj <exp[iQ.(ri-rj)]>    (Eq. VIII.3) ∑
=

N

1i
∑
=

N

1j
 
where <...> represents an ensemble average (average over scatterers positions). 
 
Consider an average over a "blob" consisting of a number m of nuclei in the sample: 
 

 {...} =  (1/m) ...        (Eq. VIII.4) ∑
=

m

1i
 
This average could be over 1 cm3 of material for multicomponent atomic samples, it could be 
over one monomeric unit for macromolecular systems or over all atoms in one molecule for single 
component molecular systems. 
 
Define average and fluctuating parts: bi={b}+ δbi and ri=Rα+Sai as well as: 
 
Rα: position of the center of mass of blob α 
Sαi: relative position of scatterer i inside blob α 
m:  number of nuclei per blob (think "per monomer") 
M:  number of blobs (think "monomers") in the sample (Note that N = mM). 
 

 
Figure VIII. 1: Parametrization of a scattering molecule. 
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The various terms of the scattering cross section can be separated as: 
 

 dσ(θ)/dΩ = ∑ [{b} + δbi][{b} + δbj]<exp(iQ.(ri-rj))>   (Eq. VIII.5) 
N

ij

 = {b}2 ∑ <exp(iQ.rij)> + δbiδbj <exp(iQ.rij)> + 2{b}  δbi <exp(iQ.rij)> 
N

ij
∑
N

ij
∑
N

ij
 
where rij = ri-rj. If rij is approximated by Rαβ which is equivalent to Sαi << Rα (all nuclei of one 
blob are located very close to each other) the term: 
 

  ∑  δbi <exp(iQ.rij)> ≅ [ δbi] <exp(iQ.Rαβ)> = 0         (Eq. VIII.6) 
N

i
∑
N

i
can be neglected (because {δbi}=0 by definition) and the term: 
 

 δbiδbj <exp(iQ.rij)>  ∑
N

ij
 
contributes only when i=j. In that case, the scattering cross section can be written simply as the 
sum of two contributions: 

 dσ(θ)/dΩ = {b}2  <exp(iQ.rij)> +  δbi2     (Eq. VIII.7) ∑
N

ij
∑
N

ij
 
    = (dσ(θ)/dΩ)coh + (dσ/dΩ)incoh. 
 
The last term is the incoherent cross section for the whole sample: 
 
 (dσ/dΩ)incoh=N{δb2}=N{b2}-N{b}2.     (Eq. VIII.8) 
 
Usually incoherent scattering cross sections are defined for each monomer instead as m{δb2} 
where m is the number of atoms per monomer.  
 

VIII. 2. Isotopic Incoherence 
 
Even homonuclear systems have different components (different isotopes) mixed according to 
their natural abundances. Scattering length tables contain values for the isotopes as well as their 
natural mixtures. For a mixture, the following average should be performed: 
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 {b} =  Ai bi        (Eq. VIII.9) ∑
N

i
 
where bi is the scattering length of isotope i and Ai is its  abundance (in weight %). Note that in 
multiple component systems, an averaging is to be performed also over all components. The 
incoherent cross section involves the average deviation from the square: {δb2} = {b2} - {b}2  
 

where:     {b2} = Ai bi2. ∑
N

i
 

VIII. 3. Spin Incoherence 
 
Nuclei with nonzero spins contribute to spin incoherence since they yield a specific number of 
neutron-nucleus spin states during the scattering process. The neutron spin of 1/2 couples to the 
nuclear spin I to give:   
 
-- 2I+2 states (noted b+) corresponding to parallel spins  
-- 2I states (noted b-) corresponding to antiparallel spins   
 
so that there is a total of 2(2I+1) states with weighing factors  
 
 W+ = (2I+2)/2(2I+1) and W- = 2I/2(2I+1).    (Eq. VIII.10) 
 
The averages over spin states are calculated as 
 
 {b} = W+b+ + W-b- = [(I+1)b+ + Ib-]/(2I+1)    (Eq. VIII.11) 

 {b2} = W+b+2 + W-b-2 = [(I+1)b+2 + Ib-2]/(2I+1) 
 
using tabulated values of either b+ and b- or: 
 
 bcoh = W+b+ + W-b-       (Eq. VIII.12) 

 bincoh = (W+W-)1/2(b+ - b-) 
 
(most tables contain bcoh and bincoh instead of b+ and b-). The spin-dependent scattering 
length can therefore be written as: 
 
 b = bcoh + 2bincohs.I/[I(I+1)]1/2      (Eq. VIII.13) 
 
The coherent part is separated from the incoherent one experimentally using deuterium labeling.  
 

VIII. 5. Coherent Scattering Lengths for a Few Monomers and a Few Solvents 
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The following two tables summarize scattering lengths for a few monomers and a few commonly 
used solvents. These have been calculated using tabulated values for the scattering lengths of 
the various elements and their relative amounts.  
 
Table VIII.1: Coherent Scattering Lengths for a Few Synthetic Monomers (in units of 10-12 cm) 
_________________________________________________________________________ 
Polymer Name   Formula              Hydrogenated    Deuterated                     
_______________  _______________  ___________ ________ 
Polystyrene              [CH2-CH(C6H5)]             2.330     10.662 
Polymethylmethacrylate  [CH2-C(CH3)(CO2CH3)]     1.495     9.827         
Polymethylacrylate       [CH2-CH(CO2CH3)]         1.578     7.827 
Polyvinylchloride        [CH2CH(Cl)]                1.378     4.503 
Polyethylene             [CH2-CH2]                 -0.166     4.00 
Polycarbonate            [C6H4-C(CH3)2C6H4-O-CO2]  7.150     21.730 
Polyvinylmethylether    [CH2OH(OCH3)]        0.332     6.581 
Polytetrahydrofuran      [C4OH6]                0.997     7.246 
Poly α Chlorostyrene     [CH2-CH(C6H4Cl)]          3.874     11.164 
Polyurethane             [NH-CO2-CH2-CH2]          2.223     7.431 
(Ethylcarbonate)       
___________________________________________________________________________ 
 
Table VIII. 2:  Coherent Scattering Lengths for some Solvents (in units of 10-12 cm) 
____________________________________________________________________________ 
Solvent Name   Formula           Hydrogenated     Deuterated       
_______________  ____________  ___________  __________ 
Toluene               C6H5CH3          1.664         9.996 
Benzene               C6H6              1.747         7.996 
Cyclohexane         C6H12            -0.497        12.001 
Acetone               CH3-COCH3        0.332         6.5821 
Chloroform           CHCl3             3.160         4.205 
Methylene Chloride       CH2Cl2         2.257         4.340       
Carbon Disulfide   CS2               1.226 
Tetrahydrofurane         C4OH8             0.247         8.581 
Tri-m-Tolylphosphate   CH3-C6H2P3       4.326         9.553 
Trimethylbenzene         C6H3(CH3)3        1.498        13.996    
_____________________________________________________________________________
_ 
 

VIII. 6. A Few Neutron Contrast Factors for Polymer Mixtures 
 
Consider a two-component polymer system (say polymer1 homogeneously mixed in polymer 2). 
The neutron contrast is defined as the square of the difference between two scattering length 
densities (b1/V1 - b2/V2)2 where b1 and b2 are the scattering lengths for monomers 1 and 2 and 
V1 and V2 are the monomer molar volumes for the two components. Component 2 could 
represent a solvent for polymer solutions. A few contrast factors have been calculated for the 
following polymer mixtures. 
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Deuterated Polystyrene/Polyvinylmethyether (dPS/PVME) Blend: 
PSD: C8D8, bPSD=1.06x10-11 cm, VPSD=100 cm3/mole 

PVME: C3H6O, bPVME=3.30x10-13 cm, VPVME=55.4 cm3/mole 

(bPSD/VPSD - bPVME/VPVME)2Nav = 6.03x10-3 mole/cm4 , Nav: Avogadro's No 
 
Deuterated Polystyrene/Hydrogenated Polystyrene (dPS/hPS) Blend: 
PSD: C8D8, bPSD=1.06x10-11 cm, VPSD=100 cm3/mole 

PSH: C8H8, bPSH=0.23x10-11 cm, VPSH=100 cm3/mole 

(bPSD/VPSD - bPSH/VPSH)2Nav = 4.15x10-3 mole/cm4    
 
Deuterated Polystyrene/Polybutylmethacrylate (dPS/PBMA) Blend: 
PSD: C8D8, bPSD=1.06x10-11 cm, VPSD=100 cm3/mole 

PBMA: C8H14O2, bPBMA=1.24x10-12 cm, VPBMA=133 cm3/mol 

(bPSD/VPSD - bPBMA/VPBMA)2Nav = 5.61x10-3 mole/cm4    
 
Polystyrene/Polyisoprene (PS/PI) Blend:  
PSH: C8H8, bPSH=0.23x10-11 cm, VPSH=100 cm3/mole 

PSD: C8D8, bPSD=1.06x10-11 cm, VPSD=100 cm3/mole 

PIH: C5H8,  bPIH=0.33x10-12 cm, VPIH=76 cm3/mole 

(bPSH/VPSH - bPIH/VPIH)2Nav = 2.09x10-4 mole/cm4    

(bPSD/VPSD - bPIH/VPIH)2Nav = 6.20x10-3 mole/cm4    
 
Deuterated Polystyrene/Dioctylphthalate (dPS/DOP) Solution: 
PSD: C8D8, bPSD=1.06x10-11 cm, VPSD=100 cm3/mole 

DOP: C24H38O4, bDOP=4.07x10-12 cm, VDOP=390 cm3/mole 

(bPSD/VPSD - bDOP/VDOP)2Nav = 5.48x10-3 mole/cm4    
 
References 
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VIII. 7. Questions 
 
1. Whereas x-rays are scattered by the atomic electron cloud, neutrons are scattered by what 
part of the atom? 
2. Are higher fluxes achieved in research reactors (neutron sources) or in synchrotron x-ray 
sources? 
3. Is partial deuteration always needed for neutron scattering from polymers? 
4. What is the origin of the name for neutron cross sections (barn)? 
5. Why aren't x-rays characterized by spin-incoherence as neutrons do? 
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6. Work out the relative composition of an H2O/D2O mixture that would have zero average 
coherent cross section (so called semi-transparent mixture).  
7. Comparing the coherent scattering cross sections for a deuterated polymer in hydrogenated 
solvent and a hydrogenated polymer in deuterated solvent, which one has the highest signal-to-
noise ratio? 
8. Why does carbon have a negligible incoherent scattering cross section? 
9. What is the meaning of a negative scattering length? 
10. Work out the scattering contrast for a polymer mixture of your choice (research interest).  
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IX. SINGLE-PARTICLE STRUCTURE FACTORS 
 

IX. 1. Definitions 
 
Consider a sample consisting of N scatterers (think monomers) of coherent scattering length {b} 
each occupying a sample volume V. The scatterer density (and its Fourier transform) are defined 
as:  
 

  n(r) =  ∑ δ(r-ri) and n(Q) = exp[iQ.ri].   (Eq. IX.1) 
N

i
∑
N

i
 
Note that these quantities vary randomly with position r and momentum Q. The average density 
being constant (<n(r)>=n=N/V), a fluctuating density (and its Fourier transform) are: 
 

  Δn(r) =  δ(r-ri) - n and Δn(Q) =  exp[iQ.ri] - (2π)3nδ(Q) (Eq. IX.2) ∑
N

i
∑
N

i
 
where δ(Q) is the Dirac delta function which does not contribute except at Q=0 (along the very 
forward direction) which is experimentally irrelevant. The static structure factor for the system is 
defined as the density-density correlation function: 
 

S(Q) = <n(-Q)n(Q)> = <exp[iQ.(ri-rj)]> = ∫dr ∫dr' <n(r)n(r')> exp[iQ.(r-r')] ∑
N

ij
 
where summations or integrations are taken over all scatterers. The coherent scattering cross 
section is (as mentioned before): 
 
 dσc(Q)/dΩ = {b}2 S(Q).       (Eq. IX.4) 
 
Note that because coherent scattering is the only relevant part in our discussions, the subscript 
"c" will be dropped and the curly brackets around the coherent scattering length {b} will be 
omitted. Given these definitions, the various summations or integrations are usually split into two 
parts: one over scatterers that belong to the same macromolecule (intramolecular) and one that 
involves scatterer pairs belonging to different macromolecules (intermolecular). In the case of 
phase separated systems, the intra- and intermolecular pieces are replaced by intra- and 
interdomain contributions. The intramolecular part is often also referred to as single-"particle" as 
described in what follows for Gaussian coils and a few particle shapes. 
 

IX. 2. Structure Factor for a Gaussian Coil 
 
Consider a flexible polymer coil where each monomer pair located a distance rij apart obeys the 
Gaussian distribution: 
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 P(rij) = (3/2π<rij2>)3/2 exp[-3rij/2<rij2>].     (Eq. IX.5) 
 

 
Figure IX.1: Schematic representation of a Gaussian coil. 
 
The monomer pair is always correlated through chain connectivity so that the simplifying 
approximation P(Q)={F(Q)}2 (that will be made for uniform density objects) is not valid. The 
configuration average is taken over the probability distribution: <...> = ∫ drij P(rij) ... and the static 
structure factor is given by: 

 P(Q) = (1/N2) ∑ <exp[-iQ.rij]> = (1/N2) exp[-Q2<rij2>/6]   (Eq. IX.6) 
N

ij
∑
N

ij
 
where a property of the Gaussian distribution has been used: 
 
 <exp[iQxxij]> = exp[-Qx2<xij2>/2] = exp[-Qx2<rij2>/6].   (Eq. IX.7) 
 
For a random walk chain, a further simplifying assumption is made: <rij2> = a2|i-j| where a is the 
so called statistical segment length and represents monomer size. To simplify the double 
summation, the following identity is used:   
 

 (1/N2) F(|i-j|) = (1/N)F(0) + (2/N2) (N-k)F(k).   (Eq. IX.8) ∑
N

ij
∑
N

k
 
Furthermore, assuming that the degree of polymerization N (number of monomers per chain) is 
large compared to unity, P(Q) can be put into the form: 
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 P(Q) = (2/N2) dk (N-k) exp(-Q2a2k/6) = 2 dx (1-x) exp(-Q2a2Nx/6). ∫
N

1
∫
1

0
 
The result is the well-known Debye function (Debye, 1947):  
 
 P(Q) = 2 [exp(-Q2Rg2)-1+Q2Rg2]/Q4Rg4    (Eq. IX.10) 
 
where the radius of gyration is given by Rg = (a2N/6)1/2 and (a2N)1/2 represents the end-to-end 

distance. Small-Q and high-Q expansions of the Debye function are P(QRg<<1)=1-Q2Rg2/3 and 

P(QRg>>1)=2/Q2Rg2 respectively. 
 

 
Figure IX.2. Variation of the Debye function 2[exp(-X2)-1+X2]/X4 (bottom curve) and of a crude 
approximation to it 1/[1+X2/3] (top curve) with the variable X=Q2Rg2. 
 
Polymer chains follow Gaussian random walk statistics in polymer blends and in polymer 
solutions at the so-called theta temperature condition (where interactions between monomers 
and solvent are equivalent). Other structure factors are available for swollen chains (self-avoiding 
walk) or collapsed chains (self-attracting walk) in polymer solutions (for an overview, see for 
example Hammouda, 1993). 
 

IX. 3. Other Polymer Chain Architectures 
 
Many polymer chain architectures exist: "stars" consist of many equal size branches connected 
to a central core, "combs" consist of side branches grafted onto a main chain, "rings" consist of 
looped chains, "gels" consist of highly branched structures that are grown outwardly (dendrimers 
are the most regular gels), "networks" consist of crosslinked systems that contain a large number 
of interconnected structures, etc. These various polymer systems are made in the homopolymer 
form (all monomers are chemically identical) or copolymer form (each chain portion consists of 
blocks of monomers that are chemically different). Single-chain structure factors for such 
architectures have been worked out and are summarized elsewhere [Burchard, 1983; 
Hammouda, 1993]. In the remainder of this section, a systematic method based on multivariate 
Gaussian distributions used to calculate partial correlations for arbitrary architectures is 
described.  
 

 38



A simple case involving correlations between 2 blocks (n monomers each) separated by 3 linear 
chain portions (n1, n2 and n3 monomers respectively) that are joined at the extremities of the 2 
blocks (see Figure IX.3) is considered here. This structure can be constructed using a long linear 
chain (with 2n+n1+n2+n3 monomers) that comprises 2 crosslinks (corresponding to r2=0 and 
r3=0 in Figure IX.3). All segment lengths are assumed to be equal to a. A trivariate Gaussian 
distribution describing this structure is given by: 
 

 P(r1,r2,r3) = (3/2πa2)9/2 Δ-3/2 exp[-(3/2a2) rμ.Dμν.rν]  (Eq. IX.11) ∑
=

3

1,νμ
 
where r1=rij, Δ is the determinant of the correlation matrix C, D is the inverse (D=C-1) and the 9 

elements of C are given by: Cμν = <rμ.rν>/a2 with {μ,ν=1,3}. The formation of the two crosslinks 
(by setting r2=r3=0) leaves a univariate Gaussian distribution: 
 
 P(r1) = P(r1,0,0) /∫ d3r1 P(r1,0,0)      (Eq. IX.12) 
 
  = (3/2πa2)3/2 D113/2 exp[-(3/2a2) D11 r12]. 
 
The average mean square distance between 2 monomers i and j that belong to the blocks of 
length n is therefore given by: 
 
 <rij2>/a2 = 1/D11.       (Eq. IX.14) 
 
More specifically: 
 
 C11 = (n-i+j+n1+n2+n3)       (Eq. IX.15) 
 C12 = C21 = (n2+n3) 
 C13 = C31 = (n1+n2) 
 C22 = (n2+n3) 
 C23 = C32 = n2 
 C33 = (n1+n2) 
 
and therefore: 
 
 <rij2> = a2{(-i+j+n)(n1n2+n1n3+n2n3)+n1n2n3}/(n1n2+n1n3+n2n3). (Eq. IX.16) 
 

 39



 
Figure IX.3: Correlations between two (outer) blocks in a particular polymer chain architecture. 
 
The partial structure factor describing correlations between the two outside blocks is given by: 
 

 P(Q) = (1/n2)  exp[-Q2<rij2>/6]     (Eq. IX.17) ∑
n

ij
 
which can be written simply as: 
 
 P(Q) = exp[-Q2a2/6(1/n1+1/n2+1/n3)]{1-exp[-Q2a2n/6]}2/[Q2a2n/6]2. (Eq. IX.18) 
 
In summary, this method consists in forming the correlation diagram using one single chain and 
choosing judiciously the location of crosslinks. All elements of the correlation matrix C need to be 
calculated so that the first element (recall that r1=rij) of its inverse, D11=Δ11/Δ (where Δ11 is the 
cofactor of element C11 and Δ is the determinant of C) is obtained therefore yielding 

<rij2>/a2=Δ/Δ11. This procedure is useful for the calculation of correlations in many "lattice 
animals" needed in the modeling of complicated architectures (rings, "olympic rings", regular 
networks, etc). 
 

IX. 4. Structure Factor for a Uniform Sphere 
 
Consider a sphere of radius R and uniform density (this could be a spherical domain in a 
microphase separated block copolymer or a latex particle in a colloidal suspension). The single 
particle structure factor P(Q) involves integrations over the volume V of the sphere (in spherical 
coordinates): 
 
 P(Q) = <n(-Q)n(Q)>/N2 =  ∫dr ∫dr' exp[iQ.(r-r')] <n(r)n(r')>/N2.  (Eq. IX.19) 
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Because the scattering elements are not correlated, the average of the product <n(r)n(r')> is 
equal to the product of the averages <n(r)><n(r')> and therefore: 
 
 P(Q) = |F(Q)|2        (Eq. IX.20) 
 
where the form factor is: F(Q) = ∫dr exp[iQ.r] <n(r)>/N. For uniform density, the average over 
configurations <n(r)> becomes trivial: 
 
  <n(r)> = N/V = n    if r≤R    (Eq. IX.21) 
  <n(r)> = 0    if r>R 
 
so that:  

   F(Q) =  (3/4πR3) r2dr ∫
R

0
∫

−

1

1
 dμ exp[iQrμ]  ∫

π2

0
 dφ   (Eq. IX.22) 

 

  = (3/R3) ∫  r2dr [sin(Qr)/(Qr)] = 3j1(QR)/(QR)   (Eq. IX.23) 
R

0
 
where the spherical Bessel function j1(x):  
 
 j1(x) = sin(x)/x2-cos(x)/x = (π/2x)1/2 J3/2(x)    (Eq. IX.24) 
 
has been used. The structure factor for the sphere is therefore: 
 
 P(Q) = [3j1(QR)/(QR)]2 = {3[sin(QR)/(QR)2 - cos(QR)/(QR)]/(QR)}2 . (Eq. IX.25) 
 
Note that by normalization P(Q=0)=1. Similarly to the calculation of the single-particle structure 
factor, one can calculate a radius of gyration (squared): 
 

 Rg2 = ∫dr ∫dr' <(r-r')2> = (3/4πR3) dr 4πr4= 3R2/5   (Eq. IX.26) ∫
R

0
 
The Guinier (Q->0) expansion gives: P(Q) -> 1 - Q2Rg2/3 + Q4Rg4/12 +...  (Eq. IX.27) 
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Figure IX.4: Plot of Log(P(Q)) vs QR for a uniform sphere showing many order oscillations. 
 

IX. 5. Structure Factors for Other Spheroid Shapes 
 
Following the same procedure, the form factor and structure factor for a spherical shell between 
radii R1 and R2 (and hollow for r<R1) can be calculated as follows: 
 

   F(Q) =  {3/4π(R23-R13)}  r2dr ∫
2R

R1

∫
−

1

1
dμ exp[iQrμ]  ∫

π2

0
 dφ  (Eq. IX.28 ) 

 
 P(q) = {3j1(QR2)R23/(QR2)-3j1(QR1)R13/(QR1)}2/{R23-R13}2.  (Eq. IX.29) 
 
The radius of gyration (squared) for the spherical shell is 
 

 Rg2 = {3/4π(R23-R13)} dr 4πr4= 3(R25-R15)/5(R23-R13)  (Eq. IX.30) ∫
2R

R1
 
For an ellipsoid of half axes a, b, c oriented so that its axes make angles α, β, γ with the Q 
direction, an effective radius Re is defined as:  
 
 Re2=a2cos2(α)+b2cos2(β)+c2cos2(γ).     (Eq. IX.31) 
 
The form factor is the same as the one for a sphere of radius Re:  
 
 F(Q) = 3j1(QRe)/(QRe)       (Eq. IX.32) 
 
and the structure factor (for a randomly oriented sample) is an average over all possible 
orientations of the ellipsoid.: 
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 P(q) = ∫
/2π

0
dγ sin(γ) {F(Q)}2      (Eq. IX.33) 

 
where γ is the angle between the major axis of the ellipsoid and the Q direction. It is 
straightforward to extend these results to an ellipsoidal shell. 
 

IX. 6. Structure Factors for Cylindrical Shapes 
 
The form factor F(Q) for a uniform cylinder (rod) of radius R and length L oriented at an angle γ 
from the Q direction is the product of a longitudinal (⇑ along the rod) and a transverse (⊥ 
perpendicular to the rod) contributions in cylindrical coordinates: 
 

 F(Q,γ) = [1/πR2L] dr⇑ exp[iQr⇑ cos(γ)] dr⊥ r⊥∫
L/2

L/2-
∫
R

0
∫
π2

0
dφ exp[iQr⊥cos(φ)sin(γ)] . 

 
The r� integral can be written as: 
 
 

 [1/πR2] dr⊥ r⊥  ∫
R

0
∫
π

0
dφ cos[Qr⊥ cos(φ)sin(γ)] .    (Eq. IX.35) 

 
and can be reduced to give the result: 
 
 F(Q,γ) = {sin[QLcos(γ)/2]/[QLcos(γ)/2]} {2J1[QRsin(γ)]/[QRsin(γ)]}  (Eq. IX.36) 
 
where: 
 

 J1(x) = [1/π] ∫
π

0
dφ cos(φ) exp[ixcos(φ)]      (Eq. IX.37) 

 
is the cylindrical Bessel function of first order. Note that the first term j0(QLcos(γ)/2) = 
{sin[QLcos(γ)/2]/[QLcos(γ)/2]} is the spherical Bessel function of order zero (lower case j's 
represent spherical and capital J's represent cylindrical Bessel functions). The structure factor 
involves the final orientational averaging for randomly oriented rods: 
 

 P(Q) =  ∫
/2π

0
dγ sin γ {F(Q,γ)}2.      (Eq. IX.38) 

 
In order to model the scattering from very dilute solutions of rods (for example lyotropic liquid 
crystal polymers in the low-concentration isotropic phase), the remaining integral (over γ) is 
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performed numerically. For oriented samples (for example in a shear or magnetic field) this 
averaging over γ's is not necessary. 
 
The radius of gyration (squared) is given by similar integrals where the phase factor exp[iQ.r] is 
replaced by r2=r⇑2+ r⊥2. The result is: Rg2 = L2/12+R2/2. 

 
Figure IX.5.Geometry of the uniform rod. 
 

 
Figure IX.6. Plots of the two functions [2J1(X)/X]2 and [sin(X)/X]2 that give the variations of the 
structure factor perpendicular to the rod axis and along its direction. 
 
For a disk of radius R and negligible thickness, the L->0 limit in the general result is taken so that: 
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   F(Q,γ) =  (1/πR2) rdr  ∫
R

0
∫
π2

0

dφ exp[iQr sin(γ)cos(φ)]    (Eq. IX.39) 

 
and the final result is: 
         
 P(Q) = (2/Q2R2)[1-J1(2QR)/QR].     (Eq. IX.40) 
        
The radius of gyration of a disk is: Rg=R/(2)1/2. 
 
To obtain the structure factor for an infinitely thin rod of length L, we take the R->0 limit instead, 
and obtain: 
 

 P(Q) = ∫
/2

0

π
 dγ sin(γ) {sin[QLcos(γ)/2]/[QLcos(γ)/2]}2   (Eq. IX.41) 

 
  = (2/QL) Si(QL) - sin2(QL/2)/(QL/2)2 
 
where Si(x) is the sine integral defined as: 
 

 Si(x) = ∫ du sin(u)/u       (Eq. IX.42) 
x

0
 
The radius of gyration for an infinitely thin rod is: Rg=L/(12)1/2. 
 

IX. 7. Pair Correlation Functions 
 
The structure factor S(Q) is the Fourier transform of the probability distribution function P(r): 
 
 S(Q) = ∫ dr exp[iQ.r] P(r) .      (Eq. IX.43) 
 
Given an infinitesimal scattering volume chosen randomly in the considered "particle", P(r) 
represents the probability of finding another scatterer within the particle a distance r apart. 
Usually, a one-dimensional probability distribution p(r) (also referred to as "distance distribution 
function") is defined instead: 
 

 S(Q) = (1/R) dr [sin(Qr)/(Qr)] p(r).     (Eq. IX.44) ∫
R

0
 
p(r) is available for some of the shapes discussed before. For a sphere of radius R: 
  
 p(r) = 12(r/2R)2[1-r/2R]2(2+r/2R) 
          = 3(r/R)2[1-3r/4R+r3/16R3]     (Eq. IX.45) 
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For a disk of radius R: 
 
 p(r) = (8r/πR){arccos(r/2R)-(r/2R)[1-(r/2R)2]1/2}    (Eq. IX.46) 
 
For an infinitely thin rod of length L, the integration is performed from 0 to L instead, the 
normalization constant is 1/L and: 
 
 p(r) = 2[1-r/L].        (Eq. IX.47) 
 
Note that the probability distribution function P(r) is better known when defined for "interparticle" 
contributions (correlations in a "liquid" of point particles)  and is often referred to as pair 
correlation function g(r)=VP(r) (where V is the sample volume): 
 
 S(Q) = (1/V) ∫ dr exp[iQ.r] [g(r)-1] .     (Eq. IX.48) 
 
where a constant term that has no contribution except in the forward direction (∫dr exp[iQ.r] = 
(2π)3δ(Q)) has been added.  
 

IX. 8. Structure Factor for a Parallelepipedon 
 
Even though this is not a realistic shape to describe material microstructures in the nanometer 
scale, it is included here for completeness. Consider a rectangular parallelepipedon of sides a, b, 
c. In cartesian coordinates, the form factor can be split into the product of three pieces that 
depend on the three coordinates respectively: 
 

F(Qx,Qy,Qz) = [1/abc] dx exp[iQxx] dy exp[iQyy] dz exp[iQzz] (Eq. IX.49) ∫
a/2

a/2-
∫
b/2

b/2-
∫
c/2

c/2-
 
  = [sin(Qxa/2)/(Qxa/2)] [sin(Qyb/2)/(Qyb/2)] [sin(Qzc/2)/(Qzc/2)] 
 
and the structure factor is, here also, an average over orientations: 
 

 P(Qx,Qy,Qz) =  dγ sinγ {F(Qx,Qy,Qz)}2.    (Eq. IX.50) ∫
/2

0

π

 
where γ is the orientation angle between Q and one of the symmetry axes of the 
parallelepipedon. 
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IX. 9. Questions 
 
1. What is the high-Q expansion of the Debye function (structure factor for Gaussian coil)? 
2. What standard plot is used to obtain the radius of gyration? the correlation length? the 
persistence length? 
3. Look up the spherical and cylindrical Bessel functions in a Math book (Abromowitz and Stegun 
for example). How are they related? 
4. Look up the structure factor for star branched polymers (Higgins and Benoit, 1994, for 
example). What is its high Q expansion? 
5. SANS from isolated spherical objects (dilute solution of latex particles for example) is 
characterized by oscillation. Are these oscillations always observed experimentally? 
6. Could one obtain a peak from single-particle scattering? 
7. Derive the probability distribution function p(r) = 12(r/2R)2[1-r/2R]2(2+r/2R) for a sphere (look 
up Kratky-Porod, 1949).  
8. Rederive the structure factor for a sphere on your own. 
9. Familiarize yourself with the procedure to calculate partial structure factors for block 
copolymers (look up Hammouda, 1993 for example) for example. 
10. Using the multivariate method described in these notes, work out the structure factor for a 
Gaussian ring.  
 

X. INTERCHAIN AND INTERPARTICLE STRUCTURE FACTORS 
 
Except at the infinite dilution limit, interchain and interparticle contributions have to be included in 
any description of the scattering from polymer systems.  
 

X. 1. Case of a Polymer Melt 
 
Consider a homopolymer melt consisting of M chains of degree of polymerization N each. The 
structure factor S(Q) can be split into an intrachain part and an interchain part: 
 

 S(Q) = ∑
M

α
∑ <exp[iQ.rαiαj]> +  <exp[iQ.rαiβj]>  (Eq.X.1) 
N

ij
∑

≠

M

αβα ,
∑
N

ij
 
  = MN2P(Q) + M(M-1)N2R(Q) 
 
where rαiβj is the interdistance between a pair of monomers i and j belonging to two polymer 
chains α and β, P(Q) is the single-chain structure factor and R(Q) is the inter-chain structure 
factor: 
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 P(Q) = (1/N2) ∑ <exp[iQ.r1i1j]>     (Eq. X.2a) 
N

ij
 

 R(Q) = (1/N2) <exp[iQ.r1i2j]>      (Eq. X.2b) ∑
N

ij
 
where we have chosen a pair of chains 1 and 2 and summed over the M(M-1) possible pairs. 
Because M>>1, M(M-1) can be approximated by M2.  
 

X. 2. Case of a Homogeneous Mixture of Deuterated and Nondeuterated Polymers 
 
In the case of a homogeneous mixture of deuterated and nondeuterated polymers that are 
identical except for deuteration, the intrachain structure factor P(Q) and interchain structure factor 
R(Q) are assumed to be independent of isotope (deuteration) effect; this assumes that 
deuteration does not change chain conformations and monomer interactions. For incompressible 
homogeneous mixtures, the fluctuating densities compensate each other (ΔnH(Q) + ΔnB(Q) =0) 
so that the various partial structure factors are related: 
 
 SDD(Q) = <nD(-Q)nD(Q)> = -SDH(Q) = SHH(Q).   (Eq. X.3) 
 
They can be expressed as: 
 
 SDD(Q) = MDN2P(Q) + MD2N2R(Q)     (Eq. X.4) 

 SHH(Q) = MHN2P(Q) + MH2N2R(Q) 

 SDH(Q) = MDMHN2R(Q) 
 
where MD and MH are the number of deuterated and undeuterated chains respectively and N is 
the degree of polymerization of all chains. Setting SDD(Q) + SDH(Q) = 0 (incompressibility) 

yields: MDN2P(Q) + MD(MD+MH)N2R(Q) = 0. This example shows one method of expressing 
the interchain contribution R(Q) in terms of the intrachain part P(Q) as:   
 
 R(Q)=-P(Q)/(MD+MH).        (Eq. X.5) 
 
Using this expression, one obtains: 
 
 SDD(Q) = [MDMH/(MD+MH)] N2P(Q)     (Eq. X.6) 
 
and the cross section (for the whole sample) is given by: 
 
 dσ(Q)/dΩ = bD2 SDD(Q) + bH2 SHH(Q) + 2bDbH SDH(Q)  (Eq. X.7) 
 
   = (bD-bH)2 SDD(Q) 
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where the coherent scattering lengths for the deuterated and nondeuterated monomers bD and 

bH have been used to form the contrast factor (bD-bH)2.  
 

 
Figure X.1: Schematic representation for a mixture of deuterated and nondeuterated polymers 
(deuteration is assumed not to affect chain conformations and monomer interactions). 
 

X. 3. Case of a Dilute Polymer Solution 
 
Another well known mean field approximation used to express the interchain part R(Q) in terms 
of the single chain part P(Q) is called Zimm's single-contact approximation (Zimm, 1946) which 
assumes that two polymer chains in dilute solution can interact only through one effective 
contact. Consider two monomers (call them i and j) on two neighboring chains (say chains 1 and 
2) and write their interdistance vector as: r1i2j = r1i1k + r1k2m + r2m2j where k-m is the single-
contact between the two chains. With this approximation, the interchain structure factor can be 
simplified: 
 

∑
N

ij
<exp[iQ.r1i2j]> = ∑ <exp[iQ.r1i1k]> <exp[iQ.r1k2m]> <exp[iQ.r2m2j]> . (Eq. X.8) 

N

ij
 
This decoupling of the three terms is possible only because the probability densities can be 
written as products: 
 
 P(r1i,r1k,r2m) = P(r1i,r1k)P(r1k,r2m)P(r2m,r2j).    (Eq. X.9) 
 
The <exp[iQ.r1k2m]> term is the excluded volume between the two polymer chains and is 
defined as v (normalized to the sample volume V): 
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 v/V = -∫ dr1k2m [g(r1k2m)-1] exp[iQ.r1k2m] = -<exp[iQ.r1k2m]>   (Eq. X.10) 
 
so that R(Q) becomes: 
 
 N2R(Q) = -(v/V) [N2P(Q)]2       (Eq. X.11) 
 
This formula: 
 
 S(Q) = MN2P(Q) - (v/V) [MN2P(Q)]2      (Eq. X.12) 
 
is valid for very dilute solutions whereby interchain contributions are weak (equivalent to keeping 
only the second virial coefficient in a virial expansion).  
 
Higher order contributions (see Higgins-Benoit, 1994 for example) describing interactions 
between two chains through a third chain are taken into account by adding (v/V)2[MN2P(Q)]3, or 
in general through n intermediate chains by adding (v/V)n-1[MN2P(Q)]n: 
 
S(Q) = MN2P(Q) - (v/V)[MN2P(Q)]2 + (v/V)2[MN2P(Q)]3 + (v/V)3[MN2P(Q)]4 + ... 
          (Eq. X.13) 
This series can actually be re-summed (1-x+x2-x3+...=1/1+x) to give: 
 
S(Q) = MN2P(Q)/[1 + (v/V)MN2P(Q)] or S-1(Q) = 1/MN2P(Q) + v/V  (Eq. X.14) 
 
which is the basis for the Zimm plot. This mean field result applies for non-dilute solutions as well. 
In fact, it works better for semidilute and concentrated solutions because the types of interactions 
that are not included (loop interactions within a chain and multiple contact interactions) become 
smaller when the polymer concentration increases. When such interactions are important (in 
dilute solutions), renormalization group theories do a better job at describing polymer solutions. 
 
Defining a more practical variable for the polymer volume fraction φ=MNv0/V where v0 is the 
monomer molar volume, MN is the total number of monomers in the solution and V is the sample 
volume and redefining the structure factor as S(Q)=S(Q)v02/V (the reason for this normalization 
will become apparent in the next section), we obtain: 
 
 φ/S(Q) = 1/Nv0P(Q) + (v/v0)φ      (Eq. X.15) 
 
Using the small-Q expansion (1/P(Q)->1+Q2Rg2/3), one can see that a plot of φ/S(Q) vs Q2 

yields Rg2/3 as slope and (1/N)+(v/v0)φ (degree of polymerization and excluded volume) as 
intercept. The excluded volume v is related to the second virial coefficient A2 as: 
 
 v = 2 A2 mw2/Nav       (Eq. X.16) 
 
where mw is the monomer molar mass and Nav is Avogadro's number. 
 
The macroscopic cross section is given by:  
 
 dΣ(Q)/dΩ = (bp/vp-bs/vs)2S(Q)      (Eq. X.17) 
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where the contrast factor contains the monomer and solvent scattering lengths bp and bs 
respectively and molar volumes vp and vs. Note that the macroscopic cross section dΣ(Q)/dΩ is 
obtained by multiplying the monomer number density MN/V by the microscopic cross section per 
monomer (1/MN) dσ(Q)/dΩ. 
 

X. 4. Case of a Homopolymer Blend Mixture (the Random Phase Approximation 
formula) 
 
Consider an incompressible mixture consisting of two different polymers A and B with degrees of 
polymerization NA and NB, radii of gyration RgA and RgB, compositions φA and φB and molar 
volumes vA and vB. The random phase approximation (RPA also called the de Gennes formula) 
has been discussed extensively elsewhere and will be summarized here only (de Gennes, 1979): 
The structure factor for the fully interacting blend is given by: 
 
 1/SAA(Q) = 1/SAA0(Q) + 1/SBB0(Q) - 2 χAB/v0    (Eq. X.18) 
 
where the "bare" (noninteracting) system structure factors have been defined: 
 
 SAAo(Q) = NAφAvAPA(Q)      (Eq. X.19) 

 SBBo(Q) = NBφBvBPB(Q)  

 PJ(Q) = 2 [exp(-Q2RgJ2)-1+Q2RgJ2]/(Q4RgJ4], J=(A,B)  
 
PA(Q) and PB(Q) are the single-chain structure factors (Debye function) discussed previously 

and v0 is a "reference" volume (taken to be v0=(vAvB)1/2). The Flory-Huggins interaction "chi" 
parameter, χAB, is given in terms of the monomer-monomer interaction potentials WAA, WBB, 
WAB and the sample temperature kBT as: 
 
 χAB = [WAB-(WAA+WBB)]/kBT.     (Eq. X.20) 
 
The coherent scattering (macroscopic) cross section is given by: 
 
 dΣ(Q)/dΩ = (bA/vA)2SAA(Q) + (bB/vB)2SBB(Q) + 2(bAbB/vAvB)SAB(Q)  
          (Eq. X.21) 
which can be reduced to: 
 
 dΣ(Q)/dΩ = (bA/vA-bB/vB)2 SAA(Q)      (Eq. X.22) 
 
for incompressible systems (where SAA(Q)=-SAB(Q)=SBB(Q)). Here also, we find that the 
scattered intensity is the product of a contrast factor and a structure factor, but this time, the 
structure factor contains interparticle contributions.  
 

X. 5. Multicomponent Homogeneous Polymer Mixture 
 
Consider a mixture of homopolymers and block copolymers with an arbitrary number n of 
components (note that here a diblock copolymer is referred to as a two-component system). 
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Each component (say A) is characterized by an "ideal" structure factor SAA0(Q); block 

copolymers (say B-C) are even characterized by cross structure factors SBC0(Q); and monomer-
monomer interactions (say A/B) are described by Flory-Huggins interaction parameters χAB. 
Following a standard method, one chooses one of the homopolymers as a reference component 
(say A) so that the incompressible multicomponent random phase approximation result 
(generalization of the de Gennes formula) can be presented in a generalized matrix form 
(Akcasu, 1992): 
 
 S-1(Q) = S0-1(Q) + v/v02      (Eq. X.23) 
 
where the (n-1)x(n-1) components of matrix S0(Q) are the various ideal structure factors 

SBC0(Q), etc, and the various excluded volumes are: 
 
 vBB/v02 = 1/SAA0(Q) - 2χBA      (Eq. X.24) 
 vCC/v02 = 1/SAA0(Q) - 2χCA 
 vBC/v02 = 1/SAA0(Q) + χBC - χBA - χCA . 
 
Note that for notation convenience, we will redefine the excluded volumes as: VBB=vBB/v02. 
 
This method is implemented here for an incompressible ternary blend mixture (A/B/C) in the 
homogeneous phase region. The three independent structure factors are given by: 
 
 SAA(Q) = SAAo[1+VBBSBBo]/Den     (Eq. X.25) 

 SBB(Q) = SBBo[1+VAASAAo]/Den 

 SAB(Q) = -SAAoVABSBBo/Den 
 
and the denominator is: Den = [(1+VAASAAo)(1+VBBSBBo)-VAB2SAAoSBBo]. The spinodal line 
is obtained by setting Den=0.  
 

X. 6. The Ornstein-Zernike Equation 
 
Interparticle interferences for various sample morphologies (in phase separated block 
copolymers or in colloidal suspensions for example) are modeled using an equation that found 
wide use in another area of research (wide-angle scattering from liquids and liquid mixtures). The 
Ornstein-Zernike equation (Ornstein-Zernike, 1918) relates the total correlation function h(r) = 
g(r) - 1 to the direct correlation function c(r) through an integral equation, which for structureless 
particles can be written as: 
 
 h(r) = c(r) + m ∫ dr' c(r-r')h(r').      (Eq. X.26) 
 
where m is the particle number density. The first term on the RHS represents direct binary 
interactions between two particles whereas the second term represents three-body and higher 
order interactions. The pair correlation function g(r) is related to the interparticle interaction 
potential U(r) as: 
 
 g(r) = exp[-U(r)/kBT]       (Eq. X.27) 
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where kBT is the sample temperature in energy units. Because the potential of mean-force U(r) 
contains contributions from many-body interactions, it is expanded in terms of binary (wij), ternary 
(wijk), and higher order interactions: 
 

 U(r) = ∑ wij(r) + ∑ wijk(r) + etc.     (Eq. X.28) 
ij ijk

 
Our dilemma is that we have one integral equation (Ornstein-Zernike) with two unknowns (h(r) 
and c(r)); this can be solved only if another (so called "closure") relation is introduced. Many of 
these closure relations have been discussed (hypernetted chains, Born-Green, Percus-Yevick, 
mean spherical approximation, etc). Using these closure relations, numerical solutions of the 
Ornstein-Zernike equation yield realistic interparticle structure factors (Schweizer-Curro, 1989) . 
The last two closure relations (Percus-Yevick and mean spherical approximations) are discussed 
here because they allow simple analytical solutions to the integral equation.  
 

X. 7. The Percus-Yevick Approximation 
 
This approximation gives another relation in order to "close" the integral equation: 
 
 c(r) = g(r)[1-exp[-w(r)/kBT]      (Eq. X.29) 
 
which, for a hard sphere interaction potential between particles: 
 
 w(r) = 0 for r>σ         (Eq. X.30) 
 w(r) = ∞ for r<σ  
 
gives the solution: 
 
 c(r) = 0 for r>σ         (Eq. X.31) 
 c(r) = -λ1-6φλ2r/σ-(φ/2) λ1r3/σ3 for r<σ  
 
where: 
 
 λ1 = (1+2φ)2/(1-φ)4 and λ2 = -(1+φ/2)2/(1-φ)4    (Eq. X.32) 
 
φ is the packing fraction (=πmσ3/6), m is the density of scattering particles and σ is the "effective" 
particle diameter. 
 
The Fourier transform of the direct correlation function can be calculated as: 
 
 C(Q) = -24φ {λ1 [sin(Qσ)-(Qσ)cos(Qσ)]/(Qσ)3 -  

  6φ λ2 [(Qσ)2cos(Qσ)-2(Qσ)sin(Qσ)-2cos(Qσ)+2]/(Qσ)4 -  

  (φλ2/2) [(Qσ)4cos(Qσ)-4(Qσ)3sin(Qσ)- 

 12(Qσ)2cos(Qσ)+24(Qσ)sin(Qσ)+24cos(Qσ)-24]/(Qσ)6}   (Eq. X.33) 
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and the structure factor for a liquid of structureless particles is given by: 
 
 S-1(Q) = 1 - C(Q)       (Eq. X.34) 
 

 
Figure X.2: Pure interparticle structure factor S(QR) vs QR prediction from the Percus-Yevick 
model (with hard sphere potential) for φ=0.30 (note that R=σ/2). 
 
In order to include intraparticle structure, the following form is used instead: 
 
 S-1(Q) = S0-1(Q) - C(Q)      (Eq. X.35) 
 
where S0(Q) is the single particle structure factor (S0(Q)=φv0P(Q)). 
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Figure X.3: Structure factors for isolated spheres (infinite dilution limit), and for a concentrated 
sphere mixture containing both interparticle (Percus-Yevick with hard sphere potential) and 
intraparticle (uniform density sphere) for φ=0.30. 
 

X. 8. The Mean Spherical Approximation 
 
This simple approximation assumes that: c(r) = -w(r)/kBT. Because (as will be shown here) this 
approximation is the mean field approximation for polymer systems described previously, 
intraparticle contributions are included in the Ornstein-Zernike equation (from the outset) which 
becomes (in Fourier space): 
 
 H(Q) = -S0(Q)W(Q)S0(Q)/kBT - [M/V]S0(Q)W(Q)H(Q)/kBT   (Eq. X.36) 
 
where M/V is the total number of "particles" (think polymer chains) per unit volume. After 
recognizing that S(Q) =S0(Q) + [M(M-1)/V]H(Q), one obtains: 
 
 S-1(Q) = S0-1(Q) + W(Q)/kBT      (Eq. X.37) 
 
which is the random phase approximation result obtained for polymer solutions (where  the 
intermonomer potential W/kBT is replaced by the excluded volume v/V) and for polymer blends 

(where W/kBT is replaced by 1/SBB0(Q) - 2 χAB/v0). 
 
Note that because the mean field approximation does not model the local interactions (for 
interparticle interdistances smaller than particle sizes) properly, packing effects (on 
thermodynamics and phase separation for example) are neglected. For this reason, the g(r) 
obtained from such mean field theories does not show realistic oscillations for the neighboring 
coordination shells. The appeal of this approach is the fact that it gives simple analytical results. 
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X. 9. Questions 
 
1. Does the interchain structure factor (with excluded volume) for dilute polymer solution tend to 
increase or decrease the scattering? 
2. If an incompressible binary polymer mixture is characterized by one (independent) structure 
factor, by how many structure factors can a compressible binary mixture be described? 
3. What is the origin of monomer/monomer interactions in polymer mixtures? 
4. How to determine the spinodal line in incompressible polymer blends? 
5. Does a numerical solution of the integral equation (with a realistic closure relation) describe 
local packing adequately? How about a mean field analytical solution (using the mean spherical 
approximation)? 
6. Can the scattering from a concentrated solution of spheres (colloidal suspension for example) 
be described as the product of a single-particle and an interparticle structure factors? 
7. What is the origin of the sharp "diffraction spots" observed from oriented block copolymers with 
spherical morphology? 
8. What would be the scattering pattern from an unoriented lamellar morphology? 
9. Stiff (rod-like) polymers are characterized by orientational phase transitions beside the 
spinodal and binodal lines. Name the two best known transitions 
10. Using the random phase approximation, work out the three structure factors for an 
incompressible mixture of a diblock copolymer A-B and a homopolymer C (see Hammouda, 1993 
for example). 
 

XI. TYPICAL SANS DATA FROM POLYMER SYSTEMS 
 
There are two main areas of SANS research on polymers: homogeneous mixtures and phase 
separated systems. Whereas sophisticated theories (mean field RPA for example) exist for the 
interpretation of data from homogeneous polymers, most data analysis from multiphase systems 
is based on following trends from size and scaling information. Nonlinear least-squares fitting of 
the scattering data to models as well as standard plots are the main tools. Standard plots consist 
in assessing linear behaviors (when plotting functions of the intensity as functions of Q) in order 
to extract characteristic slopes and intercepts.  
 

XI.1. Standard Plots 
 
The Guinier plot involves Ln(I) vs Q2 in order to obtain Rg2/3 (Rg is the radius of gyration of the 

inhomogeneity) as slope (Ln(I)=Ln(I0)-Q2Rg2/3+...). The radius of gyration represents the 
effective size of the scattering "particle" whether it is a domain or a polymer chain. Interparticle 
effects always contribute to Rg except at the infinite dilution limit (case of an isolated particle). 
The usefulness of this plot stems from the fact that the obtained particle size (Rg) is independent 
of the absolute intensity (I0). Instrumental smearing as well as polydispersity and multiple 
scattering appear to decrease the effective Rg.  
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Figure XI.1: Guinier plot for a seventh-generation PAMAM dendrimer solution in heavy water at 
the concentrations noted on the figure and without neutralization (no added acid or salt). 
Dendrimers are highly regular gels that are grown outwardly from a central core; at each 
generation, the number of branches doubles. The obtained radius of gyration (extrapolation to 
zero concentration) is around 33A, which agrees well with the one provided by the supplier. 
 
Another well known plot is the Zimm plot (1/I vs Q2) which found wide use in light scattering from 
dilute polymer solutions where extrapolation to zero Q and zero concentration yields the 
molecular weight and the second virial coefficient. The Zimm plot is also useful in polymer blends 
(in the single-phase region) where the slope is proportional to the correlation length, which is 
proportional to the Flory-Huggins interaction parameter (incompressible RPA model). Assuming a 
Lorentzian form for the Q-dependence of the intensity: I=I0/(1+Q2ξ2) where ξ is the correlation 

length, a plot of 1/I vs Q2 yields 1/I0 as intercept (call it A) and ξ2/I0 as slope (call it B). The 

correlation length is obtained as (B/A)1/2. In the low-Q region, one can also expand I=I0(1-

Q2Rg2/3+...) = I0/(1+Q2Rg2/3+...), so that ξ=Rg/(3)1/2. The Zimm plot is, however, useful 

beyond the low-Q region. In high-Q region, Q2ξ2<1 so that 1/I=Q2ξ2/I0. In this region, the single 

chain structure factor behaves as 2/Q2Rg2 (high-Q expansion of the Debye function) so that 

ξ=Rg/(2)1/2 is identified. In the case of polymer solutions with excluded volume interactions, the 

high-Q expansion is, instead, 2/(QRg)1/ν where ν is the excluded volume exponent (ν=3/5 for 
fully swollen chains, ν=1/2 for theta chains and ν=1/3 for collapsed chains). Low-Q departure 
from linear behavior of the Zimm plot is a signature of non-homogeneity in the sample or of chain-
branching. 
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Figure XI.2: Standard Zimm plot for a deuterated polystyrene/polyvinylmethylether blend 
(Mw=1.88x105 and 3.98x105 g/mole respectively) mixture for four dilute polystyrene volume 

fractions of 1%, 1.8%, 3.8% and 5.4% at a temperature of 140oC. Extrapolation to zero volume 
fraction yielded a slope and intercept which gave the degree of polymerization for polystyrene 
and the radius of gyration respectively. 
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Figure XI.3: Zimm plot for a deuterated polystyrene/polyvinylmethylether blend mixture 
(Mw=1.88x105 and 2.01x105 g/mole respectively) at fixed composition (50%) and for various 
temperatures. The slope and intercept give a measure of the correlation length ξ. 
 
The Kratky plot (Q2I vs Q) emphasizes the Gaussian nature of polymer chains. Because at high-
Q, the structure factor for Gaussian chains goes as 2/Q2Rg2, this plot tends to a horizontal 

asymptote. Interchain contributions affect only the constant multiplying this term and not the 1/Q2 
scaling behavior. Deviation from a horizontal asymptotic behavior indicates a non-Gaussian 
characteristic for the scattering objects. For instance for rigid rods, this plot would go to a linearly 
increasing asymptote Q2I = A+BQ because the structure factor for a rod goes like 1/Q at high Q 
and one has to use a more natural Kratky plot for a rod (QI vs Q) in order to recover the 
horizontal asymptote.  
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Figure XI.4: Kratky plot for a 50%/50% mixture of deuterated polystyrene and protonated 
polystyrene (Mw=174,000 and 195,000 g/mole respectively). 
 
The manner in which the asymptote of a Kratky plot is reached yields information about chain 
branching. For instance, in a plot of  Q2I vs Q-2 (Q2I=A+B/Q2) the intercept B is related to the 
crosslink density in branched gels and networks (see Benoit et al, 1994). 
 
The Porod plot (Ln(I) vs Ln(Q)) yields information about the so-called "fractal dimension" of the 
scattering objects. At high-Q, a slope of -2 is a signature of Gaussian chains in a dilute 
environment, whereas a slope of -1 points to rigid rods. A slope of -4 represents a smooth 
interface between domains in a multiphase system (Porod, 1951). Slopes between -3 and -4 
characterize rough interfaces of fractal dimension D (Schmidt, 1988). Scattering from such a 
rough interface drops as 1/Q6-D. In the case of smooth interfaces, the scattered intensity at high 
Q goes like:  
 
 I(Q)≈(CF)φ(1-φ)(2πS/VQ4)  
 
where S/V is the surface-to-volume ratio, φ is the inhomogeneities' volume fraction and (CF) is 
the contrast factor (CF)=(bA/vA-bB/vB)2. This is a general result independent of the actual shape 
of the scattering particles (spheres, rods, etc). The origin of this result goes back to the form of 
the pair correlation function which can be written (for low interdistances r) as (see eqs. IX. 45-47 
for example): 
 
 p(r) = p0(r)[1-Sr/4V+...] 
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where p0(r) is the value at r=0. The structure factor is the Fourier transform: 
 

 I(Q) = (CF) φ(1-φ)V (1/R) ∫ dr p(r) ∫
∞

0

sin(Qr)/Qr] 

 
which, at high-Q, goes to the limit mentioned above.  
 

 
Figure XI.5: Porod plot for a blend of 50%/50% deuterated polystyrene and protonated 
polystyrene (Mw=174,000 and 195,000 g/mole respectively) measured at room temperature. The 
-2 slope is characteristic of Gaussian chains. 
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Figure XI.6: Porod plot for a solution of polybutyl-L-glutamate in deuterated dimethyl formamide 
solution (4% polymer). Because this is a liquid crystal polymer, scattering at high Q tends that of 
a rigid-rod with a -1 Porod slope. 
 

XI.2. Typical Isotropic SANS Spectra from Polymer Systems 
 
A number of SANS spectra will be described here in order to show the variety of possibilities and 
to give a "taste" of what typical scattering is encountered in polymer research. 
 
The majority of SANS spectra follow a monotonic decreasing function of Q; for this reason these 
"all look alike". The Fourier transform is also a monotonically decreasing function of Q which is 
characteristic of correlation decay beyond a "correlation length". In the example of Figure XI.7, 
scattering intensity is seen to increase as composition fluctuations build up close to the spinodal 
transition temperature. Because the polystyrene/polyvinylmethylether blend system has a Lower 
Critical Spinodal Temperature (LCST), the scattered intensity increases upon heating of the 
sample.  
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Figure XI.7: Typical SANS spectrum from a 50%/50% deuterated polystyrene/ 
polyvinylmethylether blend (Mw=1.95x105 and 1.59x105 g/mole respectively) for a number of 
temperatures approaching the spinodal decomposition temperature. Fits to the incompressible 
RPA formula and its extrapolation to zero-Q are also shown. 
 
Diblock copolymers form various microstructures depending on the relative amount of one block 
with respect to the other. The three main morphologies consist of spherical, cylindrical or lamellar 
domains for block compositions between 0% and 17%, 17% and 32% or 32% and 50% 
respectively. Scattering models involving single-particle and interparticle contributions are useful 
for the interpretation of scattering data (domain sizes and interdistances). Other morphologies 
(double diamond, gyroid, etc) have also been discussed in the literature. Because of this 
microphase separation, scattering from block copolymers is characterized by a peak (a ring for 
isotropic scattering). The peak position (Qmax) gives an estimate of the average distance 
between domains (d=2π/Qmax). 
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Figure XI.8: Scattering from two separate polystyrene/polyisoprene diblock copolymers of 
different compositions (7.5x103-7.5x103 and 11x103-17x103 g/mole respectively). Both diblocks 
correspond to lamellar morphology with interdomain spacings of d=157 A and 217 A respectively. 
 
Scattering from diblock copolymers is characterized by a peak even in the homogeneous one-
phase region; the so-called correlation hole peak. Because the polystyrene-polyisoprene diblocks 
considered here are characterized by an upper order-disorder transition (ODT) temperature, the 
one-phase region is reached upon heating (note that for copolymers, the spinodal line is referred 
to as ODT). As the sample is heated through the ODT, the scattering peak becomes broader and 
moves slightly to higher Q values. Precise monitoring of the peak position and height give an 
estimate of the ODT temperature. 
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Figure XI.9: Scattering from a  polystyrene/polyisoprene diblock copolymer (Mw=8x103-22x103 
corresponding to cylindrical morphology) below and above the order-disorder temperature 
(TODT=160oC).  
 
Another example of diblock copolymer scattering corresponds to the scattering from a diblock in 
the spherical morphology. The first and second peaks can be clearly observed along with the hint 
of another higher order feature. For spherical morphology, if the first order peak occurs at Qmax, 

the second, third, etc., order peaks occur at (2)1/2Qmax, (3)1/2Qmax, (4)1/2Qmax, etc. Note that 

for highly ordered cylindrical morphologies, these ratios are 1, (3)1/2, (4)1/2, etc., whereas for 
lamellar morphology, they are simply 1, 2, 3, etc. 
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Figure XI.10: Scattering from a polystyrene-polyisoprene diblock copolymer with Mw=18 K-114 K 
dissolved in decane (10% copolymer) at room temperature. 
 
The next example (polystyrene latex spheres in heavy water solution) is usually classified as a 
colloid (not a polymer) but is included here as an interesting example of sphere scattering. The 
Log(Intensity) vs Q variation shows the characteristic oscillatory behavior; the dips are not as 
sharp as predicted (see Figure IX.4) due to instrumental smearing. 
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Figure XI.11: Scattering from a dilute (0.625% by weight) solution of polystyrene latex spheres in 
heavy water. From the first dip (minimum), a spheres radius can be measured (R=470 A); this 
value is seen to agree with the supplier estimate (480 A). 
 

XI.3. Some Interesting Anisotropic Patterns from Oriented Polymer Systems 
 
A few examples of anisotropic patterns from oriented polymer systems are presented here in 
order to show the wide diversity of SANS research. 
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Figure XI.12: Scattering pattern from a polystyrene-polyisoprene diblock copolymer (Mw=11 K-17 

K) dissolved in dioctyl phthlate (65% copolymer) and Couette sheared at a shear rate of 0.2 s-1. 
The lamellar morphology is seen to orient under shear (scattering ring weakens and bright spots 
show up) 
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Figure XI.13: Scattering pattern from polybutyl-L-glutamate (a liquid crystal polymer) in 
deuterated dimethyl formamide solution (16% polymer) oriented in a 1 Tesla horizontal magnetic 
field. This is referred to as the "hourglass" pattern. 
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Figure XI.14: Scattering from a network of short (Mn=3,000) deuterated polydimethyl siloxane 
chains and long (Mn=25,000) protonated polydimethyl siloxane chains with relative compositions 
25%/75% and stretched to a stretch ratio of 1.84. Note that the anisotropic pattern axis of 
symmetry is along the stretch direction (horizontal). This is referred to as the "butterfly pattern" 
because of its shape. 
 

 
Figure XI.15: Polystyrene-polyisoprene diblock copolymer (Mw=44 K-22 K) in decane (17.5% 
polymer) under Couette shear at a shear rate of 3900 s-1. Because decane is a specific solvent 
for polyisoprene, polymer micelles are formed. These form a regular lattice which orders into a 
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"perfect single-crystal" characterized by hexagonal symmetry. This is referred to as the "bright 
night sky" pattern.  
 

 
Figure XI.16: Scattering pattern from highly ordered biopolymer (collagen from a kangaroo tail 
tendon) showing the strong first and third reflection peaks as well as the weak fourth and fifth 
reflection peaks; the second reflection peak is not allowed. The ordered structure is along the 
fibers and has a d-spacing of 667 A. 
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XI.4. Questions 
 
1. Do scattering inhomogeneities have to be spherical for a radius of gyration to be defined and 
measured through a Guinier plot? 
2. Why are Zimm plots linear? 
3. What is the use of a Kratky plot? 
4. What information could be obtained by using a Porod plot for smooth interfaces? 
5. Why does scattering increase when a phase transition line is approached? 
6. What is the correlation hole effect in block copolymers? 
7. Why does the block copolymer peak broaden when the one-phase region is entered? 
8. Why is the axis of symmetry of a scattering pattern perpendicular to the orientation direction of 
the sample (except in the case of the butterfly pattern)? 
9. When scattering contains bright peaks, why are peaks at high Q broader than peaks at low Q? 
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10. Thinks whether you could learn more about a sample of your research interests by aligning it 
(either though shear, rubbery stretch, or by applying a magnetic field). 
 

XII. FINAL COMMENTS 
 
The SANS technique has gained maturity in polymer research. In the words of one of the 
founders of polymer science  "neutron scattering is among the four greatest developments 
(lasers, NMR, computers and neutron scattering) that made polymer science what it is today" 
(Prof. W.H. Stockmayer, Polymer Physics Gordon Conference, 1994). This technique has 
managed to grow steadily over the past twenty-five years from a "follow the trends" technique to 
a sophisticated characterization method in polymer morphology, thermodynamics, and rheology. 
Advances in the use of judicious sample environments (shear cells, magnets, pressure cells, 
temperature quench apparatuses, etc) have instilled new momentum. However, because neutron 
scattering is based at a few facilities only in the world, SANS is not as easily accessible as other 
method (NMR, light scattering, etc). Moreover, because SANS measurements are made in 
reciprocal space, other complementary techniques (such as microscopy) are often essential in 
order to obtain a "complete picture". Future prospects look as bright as in the past. 
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