

MOZART Photochemistry and Transport Modeling for ICARTT

Larry W. Horowitz (larry.horowitz@noaa.gov), Arlene M. Fiore, George Milly, GFDL/NOAA, and the ICARTT Science Team

MOZART Chemical Transport Model

Chemistry

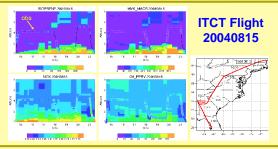
-~100 gas and aerosol species, ~200 reactions •Tagged fossil fuel and biomass CO from 9 continental source regions •Output every 3 hours, sampled along flight tracks Meteorology NCEP Reanalysis

•NCEP Global Forecast System (GFS) Resolution

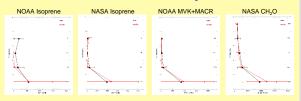
•1.9º latitude x1.9º longitude x 28 vertical levels'

•1.4° latitude x1.4° longitude x 64 vertical levels

Fossil Fuel Emissions

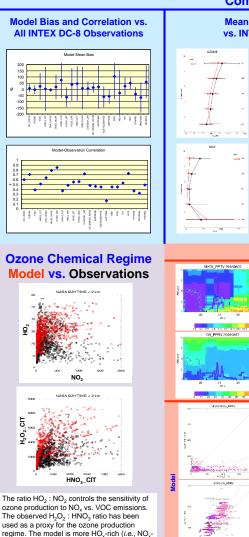

·ICARTT surface emissions (N. America), EDGAR (elsewhere) **Biomass Burning Emissions**

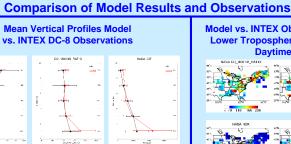
Climatological

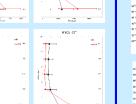

•Daily observed burning from MODIS and NICC (Turquety and Hudman, Harvard)

Default values used in this poster unless otherwise indicated

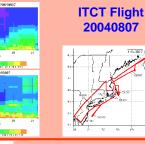
Isoprene Chemistry in the Southeast US


Mission Summary




Hydrocarbon reactivity in the southeastern U.S. is dominated by isoprene. We plan to use the suite of measurements available from ICARTT to help constrain uncertainties in isoprene emissions (currently a factor of 2-3) and its oxidation chemistry (e.g. isoprene nitrates, formaldehyde, ozone). Our initial evaluation shows:

· Good agreement of isoprene and oxidation products (MVK+MACR, CH₂O) with observations


•Discrepancies in HO, radical concentrations (OH and HO₂ too high by 30-50%). which affect the sensitivity of ozone to isoprene

Nighttime Chemistry

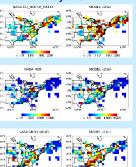
All

20040711

20040731

2004080

20040807


20040809

20040811

 Typical concentrations ITCT of N₂O₅ and NO₃ Night captured to within 50%

Flights •Errors in N₂O₅ are related to errors in NO_x, likely associated with poor representation of subgrid-scale urban plumes

Model vs. INTEX Observations Lower Troposphere (< 2km), **Davtime**

SUMMARY

 Model captures O₃, CO, NO_x, PAN, H₂O₂ observations in free troposphere, but is biased high in continental boundary layer

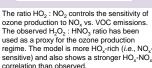
 Underestimate of hydrocarbons (ethane by ~40%, propane by ~60%) and oxidation products (acetaldehyde by ~100 pptv, acetone by ~1 ppbv)

•HNO₃ biased high in boundary layer, but low in free troposphere

Future Work

 Analyze impacts of biomass burning on background chemistry

(Using observed biomass burning)


 Investigate source of continental boundary layer biases

Intercontinental transport

 $-Asia \rightarrow North America$

-North America \rightarrow Europe

•MOZART output fields available by request from Larry Horowitz or **Arlene Fiore**

