
Species
Fossil fuel /
Industrial

Biomass
burning

Biogenic /
Soil

Oceans Total

NO (TgN/y) 23.1 8.7 6.6 0 38.4

CO (Tg/y) 306.9 711.2 181.0 10.0 1209.1

C2H6 (TgC/y) 6.4 4.5 0.8 0.1 11.7

C3H8 (TgC/y) 10.0 2.2 1.6 0.1 14.00

C2H4 (TgC/y) 2.0 12.3 4.3 2.1 20.7

C3H6 (TgC/y) 0.9 5.6 0.9 2.5 9.8

C4H10 (TgC/y) 22.2 23.0 21.4 6.3 72.9

CH3COCH3 (Tg/y) 1.0 10.0 20.0 19.8 50.8

Isoprene (TgC/y) 0 0 411.6 0 411.6

C10H16 (TgC/y) 0 0 129.1 0 129.1

Global Simulation of Tropospheric Ozone and Related Tracers:
Description and Evaluation of MOZART, Version 2

Abstract
We have developed a global three-dimensional chemical 
transport model to simulate tropospheric ozone and its 
precursors. The model, called MOZART-2 (Model for OZone 
and Related chemical Tracers, version 2), includes a detailed 
representation of ozone-NOx-NMHC chemistry. The model is 
built on the framework of the NCAR MATCH transport model, 
and can be run using a variety meteorogical input datasets. 
Surface emissions are based on recent emission inventories. 
We have extensively evaluated the results of MOZART-2 by 
comparison with observations. MOZART-2 successfully 
simulates most features of the observed distributions of 
ozone, carbon monoxide, nitrogen oxides, and other related 
species. We present an analysis of the global budget of 
tropospheric ozone in MOZART-2, including estimates of the 
in situ chemistry, transport from the stratosphere, and surface 
deposition.
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Model Description
Resolution: 2.8º lat x 2.8º long; 34 hybrid vertical levels (surface-5 mb)
Timestep: 20 minutes for all processes
Meteorology: From MACCM3, every 6 hours
Photochemistry: 58 chemical species, 132 kinetic + 31 photolysis rxns
Surface emissions: Anthropogenic emissions, EDGAR [Olivier et al., 1996]
      Biomass burning [Hao and Liu, 1994; Müller, 1992; Granier et al., 1999]
      Biogenic emissions GEIA [Guenther et al., 1995]
      Soil emissions [Yienger and Levy, 1995]
      Oceanic emissions [Brasseur et al., 1998]
Lightning: NOx source in convective clouds (4 TgN/y)
                   [Price et al., 1997; Pickering et al., 1998]
Advection: Flux-form semi-Lagrangian scheme [Lin and Rood, 1996]
Convection: Rediagnosed using Zhang & MacFarlane [1995] and Hack [1994]
Dry deposition: Velocities calculated using Gao and Wesely [1995], based on
                           10 years of 6-hourly NCEP meteorological data
Wet deposition: Based on Giorgi and Chameides [1985]
Boundary layer diffusion: Based on Holtslag and Boville [1993]
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Conclusions
• MOZART-2 successfully simulates the major features of the observed distributions of ozone, CO, NOx, PAN, 

and related species (including peroxides and carbonyls, not shown). Horizontal and vertical gradients and 
seasonality generally agree well with observations.

• Discrepancies with observations include an underestimate of CO at tropical surface sites, and an overestimate 
of PAN in the upper troposphere at some sites. In addition, nitric acid (not shown) is overestimated by the model 
at many locations.

• The calculated budget of tropospheric ozone is within the range found in previous global chemical transport 
model studies. The photochemical production and loss rates of ozone in the troposphere are higher than found 
in many earlier modelling studies.

• The net influx of ozone from the stratosphere is at the low end of the range found in recent chemical transport 
modelling studies. This influx shows significant hemispheric asymmetry, especially in the extratropics.

• The large source of ozone due to the mass consistency correction in the advection scheme (88 Tg/y in the 
troposphere) indicates a significant problem for offline chemical transport models.
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Tropospheric ozone budget

Annual mean NOx source from fossil fuel combustion and industrial 
activities, biomass burning, soil emissions, and lightning (above). 
Summary of surface emission sources in MOZART-2 (below).

Mixing ratios of ozone (ppbv), CO (ppbv), and NOx (pptv) at approximately 500 mb and the surface.

Comparison of simulated ozone (in ppbv) from MOZART-2 (solid red) with ozonesonde observations (dotted blue) [Logan, 1999]. Plots show 
vertical profiles of seasonal means (left) and monthly means at three pressure levels (right).

Comparison of simulated monthly mean CO (ppbv) 
from MOZART-2 (solid red) with observations from 
CMDL (dotted blue) [Novelli et al., 1998].

Mean observed (blue bars) and simulated (red lines) regional vertical profiles of 
NOx (left) and PAN (right) (pptv). Observations are from NASA aircraft campaigns.
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Budget of ozone in the troposphere 
calculated by MOZART-2, in units of 
Tg O3/y. Terms included are: 
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mass consistency correction in the 
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