RENEWABLE ENERGY INTEGRATION CASE STUDIES

Joshua S. Stein Ph.D. Photovoltaics and Grid Integration Department Sandia National Laboratories

Renewable Energy Short Course, Burlington, VT 26 July, 2011

Sandia is a multiprogram laboratory operated by Sandia Corporation, a Lockheed Martin Company, for the United States Department of Energy's National Nuclear Security Administration under contract DE-AC04-94AL85000.

Outline

Ota City, Japan

Basic Concepts

- Why is integration of variable generation (VG) a challenge?
- Bulk System vs. Distribution Issues
- Review of Recent and Current Studies
 Define next stere
- Define next steps

Freiburg, Germany

Sandia National Laboratories

What is the Utility's Role

- Provide high quality, reliable electricity to customers when they demand it.
 - Generate or procure power to meet system load
 - Integrated resource planning (long term planning)
 - Balance system load and generation (near term planning)
 - Transmit this power to the loads using transmission and distribution resources
 - Transmission and distribution planning
 - Transmission and distribution component upgrades
 - Maintenance of transmission and distribution
- Protect staff and public from harm
 - Switching, protection equipment, response to emergency events
- Private utilities must make a return on investment
 - Bill customers for services

What is Variable Generation?

Typically refers to Solar (PV) and Wind

Variable

- Long-term and short-term patterns
- <u>Limited</u> ability to control

Uncertain

- Ability to forecast
- Accuracy depends on how far ahead the forecast covers
- Sound familiar? Many of the same characteristics associated with load

How Does VG Affect Utilities?

- Variable generation (VG) has traditionally been a must-take resource that affects the load utilities must manage (net load)
- At the distribution level
 - The interaction of variable generation and variable load can alter the normal behavior and performance of components on a distribution feeder (voltage regulators, voltage tap changers, capacitors, etc)
 - Examples: (1) frequency of tap changes may increase leading to reliability and service life concerns, (2) flicker, (3) interoperability between VG components (inverters), harmonics.
 - VG may help defer distribution upgrades due to reducing peak loads on a feeder
- At the bulk system level
 - Added variability may increase total variability in load, making it more costly to balance
 - Forecasting VG becomes very important in order to adequately schedule generation and manage resources
 - VG may help defer generation upgrades or addions

PV Generation and Net Load

Net Load = Load – VG

- VG is assumed to be a "must take" generation
- During summer peak, PV helps to reduce the peak load
 - Less fossil generation needed
 - Fewer "peakers" (dirty)
- During low load seasons (spring and winter in SW)
 PV can affect operations and planning
 - Lower temperature, sun position at equinox
 - Affects minimum load
 - Increases the morning ramp
 - Variability increases

Geographic Smoothing

Geographic separation helps reduce variability

- Variability does not increase at the same rate as generation capacity
- At the system level, aggregated variability is what matters

Are There Penetration Limits?

There are no <u>absolute</u> technical limits

- Impact on cost is very system-specific
- Depends on resources, load patterns, weather, markets, regulations

What are the Technical Challenges?

Bulk System Issues

- How to handle added variability and uncertainty
 - Can the system handle? What is the cost?
- How to accommodate more VG
 - Technology (grid and VG)
 - How will the Smart Grid help?
 - Can VG contribute to voltage control?
 - Can VG output be controlled for reliability reasons?
 - Performance standards, frequency, contingency
 - Planning and operations best practices

Distribution System Issues

Voltage, protection

Integration Solutions and Costs

• Most utilities have only explored the first few solution options (flexible generation, markets)

• High cost, uncertainty, and increased complexity are the main hurdles to overcome

How are impacts assessed?

- Integration studies help utilities better understand the impacts of and plan for increasing levels of VG on their systems.
- There have been several major integration studies but the study methodology is still evolving
 - Each utility has a unique system and situation
- Impacts to the distribution system are usually studies separately from impacts to the bulk system (balancing area)

Distribution Operations Issues

Possible impacts depend on factors including...

- Feeder characteristics impedance
- Penetration level, DG location on feeder
- Type of voltage control and protection
- Load characteristics

Most common operations concerns include...

- Customer voltage regulation, power quality
- Excessive operation of voltage control equipment
- Protection

Examples of Very High PV Penetration on Distribution System

Ota City, Japan: 2 MW PV on single feeder (553 homes, 3.85 kW average PV system)

High Penetration on (Small) System

Lanai, Hawaii: 1.2 MW PV system on 4.5 MW island grid supplied by old diesel generators

Sandia National Laboratories

Some Examples of Integration Studies

- Several of these studies are not publically available
- Distribution Studies
 - Distributed Renewable Energy Operating Impacts and Valuation Study (Arizona Public Service, 2009)
 - Distributed Generation Study (NV Energy, 2010)

Bulk System Studies

- Eastern Wind Integration Study (NREL, EnerEx, 2010)
- Western Wind and Solar Integration Study (NREL, GE, 2010
- Operational Requirements and Generation Fleet Capability at 20% RPS (CAISO, GE, 2010)
- NV Energy Solar Grid Integration Study (in process)
- General Overview Studies
 - 20% Wind by 2020 (2009)
 - SunShot Vision Study (in review)

Distributed Renewable Energy Operating Impacts and Valuation Study Results

- Study focus on Value Determination of distributed renewable generation
 - Avoided energy costs (based mainly on reduced fuel and purchased costs as well as reduced losses)
 - Reduced capital investment (Deferral of costs for future distribution, transmission, and generation)
 - Consideration of additional externalities (air quality, reputation, experience)

Results

- For entire distribution system: DG created little value because need to meet peak load when DG is unavailable.
- For specific feeders: DG created value by deferring upgrades but were very location specific.
- Transmission deferrals: Large amount of DG is needed to eliminate need for new transmission. Long lead times for transmission planning make value of DG hard to realize (10 year+ timeframe)
- Generation deferrals: similar to transmission (lots of DG needed to realize value)
 Sandia National Laboratories

Distributed Renewable Energy Operating Impacts and Valuation Study Results

Solar DE Value Buildup

Distributed Renewable Energy Operating Impacts and Valuation Study Results

NV Energy Distributed Distribution Study Results

Sandia National Laboratories

NV Energy Distributed Distribution Study

- Preliminary results presented in this study do not fully reflect the impact DG will have on generation emission output caused by intermittent DG
- Higher emissions may be created by generation operating at lower efficiency level operates at the margin during periods of light loads
- The value of emissions offsets may vary as new legislation is enacted
- PV daytime output corresponds to periods of highest losses at the system level, with attendant savings; however, distribution losses on many NVE feeders is low
- On lightly loaded feeders, modest DG penetration can cause losses to increase, particularly on long, rural feeders
- Most fuel savings occur due to the displacement of natural gas generation operating during daytime hours
- At higher DG penetration levels, generation may operate at less than optimum dispatch levels – this will be analyzed in the Utility-Scale PV Integration Study
- Any DG that is net metered will transfer non-fuel costs to other ratepayers

- There are virtually no generation capacity benefits as PV output at the 8:00pm system peak is zero
- Similarly, most distribution feeder peaks occur during evening or shoulder hours when PV output is low
- The automatic tripping of DG under IEEE 1547 further limits DG capacity benefits at the distribution level

Bulk System Integration Study Steps

- Develop generation and transmission scenarios based on future expectations
 - Economic assumptions (carbon price, RPS, etc.)
- Develop load and RE resource datasets (synchronized)
 - Example from NV Energy Solar integration Study
- Run production cost model to simulate economic dispatch and unit commitment process for scenarios
- Important details include:
 - Locations of loads and generation
 - Size of balancing areas
 - RE forecast availability, frequency, and accuracy
 - Transmission constraints and congestion
 - Additional regulation and contingency required to balance load and generation

Wind Integration and Transmission Studies

- Eastern Wind Integration and Transmission Study
 - <u>http://www.nrel.gov/wind/systemsintegration/ewits.html</u> for details
- Western Wind and Solar Integration Study
 - http://www.nrel.gov/wind/systemsintegration/wwsis.html
- Nebraska Wind Integration Study
 - <u>http://www.nrel.gov/wind/systemsintegration/nebraska_integration_stu</u> <u>dy.html</u>
- Oahu Wind Integration Study
 - <u>http://www.nrel.gov/wind/systemsintegration/owits.html</u>

California ISO Study Results

Goal: Evaluate the operational impacts of a 20% RPS in California for 2010Builds off a 2007 study of impacts of 20% wind integration

CAISO Study Results

Key Results and Findings

- Operational requirements for wind and solar integration is different
- Solar introduces problems during the morning and evening load ramps
- Solar and wind together lessen operational requirements due to the lack of correlation between the two resources.
- Decreases to off- and on-peak use of conventional generation ("thermal units"), which makes them less profitable and more expensive. (29-39% reduction in revenue)
- Load-following ramp rates increase by 30-40 MW/min
- Load-following hourly capacity increases by almost 1 GW (morning) and evenings)

Recommendations

- Improve utilization of existing generation fleet's operational flexibility (minimize self scheduling)
- Wind and solar participation in economic dispatch markets
- Improve/develop day-ahead and real-time operational forecasting (regulation and load following requirements)

CAISO Regulation Capacity Results

Solar ramps in morning and evening

Figure ES-9: Simulated Regulation Up Capacity Requirement by Operating Hour, Summer, 2006 and 2012

www.caiso.com/2811/281176c54d460.pdf

NV Energy Solar Grid Integration Study

- **NV Energy is conducting a Solar PV Grid Integration Study**
 - Define impacts on utility operations (integration costs) of large PV plants in Southern Nevada.
- Navigant Consulting is performing the study.
- Pacific Northwest National Lab (PNNL) is providing estimates of regulation and load following requirements.
- Sandia is contributing the estimates of the PV output profiles for the plants being considered, including power forecasts.
- Study will be completed by the end of the summer 2011
- Next few slides cover Sandia's generation of PV output profiles for study.

PV Plant Locations for Study

Data Sources

- 1- hour satellite irradiance at each of the ten sites from Clean Power Research's SolarAnywhere data
- 1-min irradiance data from six Las Vegas Valley Water District (LVVWD) sites in Las Vegas
- Upper air wind speed from NOAA weather balloon at Desert Rock, NV
- Air temperature and wind speed data from McCarran International Airport, Las Vegas

Solar Output Modeling Approach

- 1. Estimate 1-min irradiance at each site
- 2. Convert point irradiance to 1-min spatial average irradiance over plant
- 3. Calculate 1-min AC power output from plant

from Kuszmaul et al., 2010

1. Estimate 1-Min Irradiance

- A library of 1-min irradiance days was created from LVVWD sites (>5,000 days)
- Hourly averages were calculated for each day
- Least-squares routine identified best fitting days in library to match day at each location
- The same library day was prevented from being assigned to more than one site for each day of the year.

Matching 1-min ground irradiance with 1-hr satellite data

2. Spatial Average Irradiance over PV Plant

- Spatial average of irradiance over plant is estimated as a moving average irradiance (after Longhetto et al., 1989)
- Averaging window = the time for clouds to pass over plant
 - Plant size varies with module technology (efficiency)
 - Cloud speed varies with time, as measured

3. Calculate AC Power from Plant

- Sandia PV Array Performance and Inverter Models were used to calculate system output
 - These models account for:
 - Module technology characteristics (c-SI vs. thin film)
 - Temperature , angle of incidence and spectral effects
 - Inverter efficiency curves
- Irradiance incident on array was estimated using
 - DISC model (Maxwell, 1987) for DNI estimation
 - Perez (1990) model of diffuse irradiance on tilted plane
- Air temperature was estimated using lapse correction for site elevation, wind speed from LAS airport

Example Results: PV Plant Output

S1: 149.5 MW (5 plants)

Output profiles reflect differences between systems

- Module technology
- Plant capacity
- Fixed tilt vs. tracking
- Temperature differences
- Changing cloud speeds

S1: 149.5 MW (5 plants)

S5: 892 MW (10 plants)

General Integration Conclusions

- Integration studies are needed to assess the system impacts of changing the mix of generation on the grid
 - Regional differences are very important
 - Synchronized load and RE generation is important
 - Market design is quite important (flexibility)
 - Large balancing areas are very helpful
 - Accurate forecasts are important for planning
- There are no hard integration limits, just cost and policy constraints
- More technical work needs to be done to develop rigorous methods to assess penetration limits for specific feeders
 - Current approach is ad hoc and very conservative (e.g., 15% rule)
- Increasing flexibility in the way the grid is operated is usually the best first step.
- Demand response (load shifting) offers real benefits, if realized
 - Business models need to be developed and tested
 - Becomes very important if electric vehicles take off (large load growth) possible)

Questions and Discussion

Ferrisburgh Solar Farm, Vermont

