Satcon Technology Corporation

Inverter Reliability: Design, Availability, Prognostics

Dr. Leo Casey Chief Technology Officer Jim Perkinson Director of Field Engineering

Satcon PowerGate Plus 11 Power Ratings Ranging from 30kW-1MW

PowerGate Plus 30 kW DC Input Range 305-600V

PowerGate Plus 50kW DC Input Range 305-600V

S-Type 50kW DC Input Range 265-600V

PowerGate Plus 75kW DC Input Range 315-600V

PowerGate Plus 100kW DC Input Range 315-600V

110kW DC Input Range 265-600V

PowerGate Plus 150kW **DC Input Range** 420-850V

PowerGate Plus 250kW **DC Input Range** 320-600V; 333-600V; 420-850V

PowerGate Plus 375kW DC Input Range 320-600V

PowerGate Plus 500kW **DC** Input Range 320-600V; 333-600V; 420-850V

PowerGate Plus 1MW DC Input Range 420-850V

Satcon Prism Outdoor Ehouse Enclosure

Two-piece, pre-engineered MV system for grounded or ungrounded (1MW), 1,000V array:

- 2 x 500kW inverters
- Corresponding MV
 transformer
- Switchgear
- Simplifies installation connection to an MV grid
- Controlled Environment

Satcon Prism Inside the Ehouse Enclosure

- Low installed cost
- NEMA 3R cabinet
- Customizable transformer
 - Any MV configuration
 - Inside or outside Ehouse options
- Fully controllable switchgear connection/ disconnection
- Inverter, transformer and switchgear covered by Satcon warranty

Equinox Platform

Covered outdoor Inverter

Higher efficiencies

- 98.5% Peak | 97.5% CEC
- IP54/NEMA-3R Electronics Enclosure
- Operational temp range best in class: -20°C to +50°C (Optional: +55°C)
- Standard with Equinox:
 - DC combiner fuses
 - CCM Gateway
 - Power factor control
 - · Remote start and stop
- Next generation control board
 - · Reduced cost and greater availability
- Real and reactive power control
- Low voltage ride-thru per BDEW (German conformance)
- Dynamic VAR capability (CE/ NA utility solution)
- 1000V-rated model has new materials achieves best in class

Hundreds of Millions of Grid Connected kW Hours

Catron:	3	,	4 B (, ,	· · · ·		; ,	-	
Jacon	2				••			•	•
	1								
RA	1				1			1	1
	1				1				THE
	_	-	_	4		-	4		IIII
	ЙШ			_			_		III
	E			à	-17	-	-		
200	11								

- 400+ megawatts total PowerGate shipped
- 220MW of 500 kW since 2005

Highlighted sites:

- General Motors -12MW
 - Zaragoza Spain
- Southern California Edison 2MW
 - Fontana California
- GCL 20MW
 - Xuzhou, China
 - First Light 9MW
 - Ontario Canada
 - Energy 21 20MW
 - Czech Republic
- CalRENEW 5MW
 - Fresno, California
 - West Pullman 9MW
 - Chicago, Illinois

Satcon Solstice Lower Cost, Faster Return on investment

The new standard for large scale solar power plant production

- Increase system yield by 5-12%
- Deliver more kWh per kW peak of installed capacity
- Reduce installed costs
- Minimize and isolate system downtime
- Prevent, quickly manage and solve energy disruptions over the installation's lifespan

Reliability Design:

Morphs from •Low Volume – skilled assemblers •High Volume – streamlined, Repeatable, manufacturing

Bathtub Curve

Reliability from a Design Perspective

Design: Begins with Component Selection

Squeeze Reliability into Design by Reducing FITs

- Reduce Stresses (derate) [Minimize Dissipation First]
- Reduce Component Count
- Eliminate Components
- Alternative Technology

Total Failure Rate/ Component Failure Rate

Design: Incorporate intelligent system designs to reduce MTBF

Design Enhancements

- Hermetically sealed
- Modular from 50kW-1MW
- Common components
- Redundant cooling
- High efficiency
- Integrated grid interface & control features
- High reliability

Careful Design of Interconnects – High Infant mortality items

- Interconnects
 - especially between dissimilar items
- Wiring Harnesses
 - Reduce cable assemblies to single parts; testable, replaceable
- Moving Parts
 - Fans, Contactor, Cooling, disconnects, hinges

Load Sharing of high stress devices

- Variable Displacement
 - Shutting down power devices under lower load conditions
- Stress sharing
 - Use history to keep stress equal between redundant power systems

Reliability: Availability

Availability

- Combination of MTTF and MTTR
- MTTF: Constant over time in bottom
 of bathtub
- MTTR: Establish good service practices
 - Warehouse stocks of common components (Identification)
 - Modular design allows for quick unskilled field replacement

Availability

- Internet connected devices
 - Quick fault reporting
 - Diagnostic information
 - Logging of system parameters prior to fault
- Remote debugging and repair capabilities
- Redundant systems
- Ability to run 'hobbled'

Availability

- Most Importantly:
 - Able Service Technicians
 - Arrive quickly
 - With knowledge of Exact Problem
 - Parts on Hand

Reliability: Prognostics

Where does this fit? Prognostics/Diagnostics/Health Monitoring/End of Life Prediction Insurance vs Assurance?

Historically, Diagnostics & Prognostics have been particularly valuable for Mechanical &

Electromechanical

Systems (long time scales), based on symptoms, early warning,

- Motors Brush arcing, bearing vibration, HF vibration
- Power Transformers Charge, Vibration, Moisture,

Fundamentally, defects + stress => degradation, our focus is wearout, critical assumptions need to hold

Prognostics

- Relative prediction of critical component usage
- Devices (Thermal): IGBT's, Capacitors, Reactors
- Mechanical Devices (usage): Breakers, Contactors
- Provide a meaningful metric for preventative maintenance.

Thermal Algorithm for IGBT's

- Limit sensing (estimation based on models and reduced sensing)
- Monitor life history of the converter with an awareness of the typical aging and wear out mechanisms.
- Insight into failure mechanisms is critical (e.g. sudden ΔT)
- Diffusion related processes vs thermal cycling (fatigue). Accelerated by temperature T, change in temperature ∆T, and thermal shock dT/dt.

Kenable/Long Lite/Kugged				wearout can be Modeled						
 Inherent Weaknesses Defects Aging (FITs) Wearout 	External Forces • In – Temperature – – Air density – – Humidity – – Ultra-Violet – – Line and Array – • Spikes • Surges • Sags	ternal Forces Power→Temperature dP/dt (thermal shock) V, I dI/dt, dV/dt Aging Mechanisms		Prinsy False Modes In SuGAT Parser Models	 Silcon Falure Wedond Falure Soldvirktuchment Falure Encapsulant Falure Substrate Falure Substrate Falure Substrate Falure 	CHEFEL LIFE VALUET				
 µCracks Metal Migration Diffusion, Filamentation Crystallization 	 Shock/Vibration Examples Trapped Moisture Plasticizers Conductive Condensation Device Stress 	 Fatigue due to Cycling Thermal Shock → Cracks 				$N_f = \frac{10^{24} \times (0.9354)^{T_{abc}}}{(\Delta T_{abc})^{4.696}}$				

Thermal Algorithm for IGBT's

- Temperature is the all important variable!
- Quick, no history storage for embedded processors (cheap)
- All about mismatches and stress
- Three independent thermal factors:
 - Time at Temp
 - Rate of Temp Change
 - Delta Temp (Cycling)

Predicting "real-usage" life acceleration

9

Real Life thermal cycling – Refine Results

Estimation: Where Cannot Measure, Inference

- Given a known device stack up, Junction temperatures can be determined.
- Sensors placed on a Baseplate give an average thermal picture BUT they don't capture fast moving events.
- Transients cause significant degradation but are un-measurable except through inference.

Mechanical Prognostics

- Simple indicators can help provide immense help in maintain product line.
- Contactors:
 - Total Number of cycles
 - Rapid Cycling

- System Usage Information
 - System uptime/cycles
 - System Thermal history

Goal- Comparative Results

- On a single system, comparative results are as effective as absolute results when it comes to PM and system failure analysis
- Given a large enough sample size and intelligent accelerated life testing; comparative results can morph into absolute results.

Environmental Issues- Wild card factors

