Stress Testing of Semiconductor Switches for PV Inverter Applications at Sandia National Laboratories

> Utility-Scale Grid-Tied PV Inverter Reliability Workshop

Robert Kaplar, Matthew Marinella, Reinhard Brock January 27, 2011

Sandia National Laboratories is a multi-program laboratory managed and operated by Sandia Corporation, a wholly owned subsidiary of Lockheed Martin Corporation, for the U.S. Department of Energy's National Nuclear Security Administration under contract DE-AC04-94AL85000.

This work was performed under funding from the DOE Solar Energy Technologies Program and the DOE Office of Electricity Energy Program.

Kaplar, Marinella, Brock; 27-Jan-2011

Is the inverter the least reliable component of the PV system?

Source: Photovoltaics International pp. 173-179 PV International Edition 5 (Sep. 16, 2009)

Other critical components?

Kaplar, Marinella, Brock; 27-Jan-2011

Semiconductor switch: Insulated-Gate Bipolar Transistor (IGBT)

- Hybrid MOS-bipolar structure
- Main conduction is through the bipolar device with the base current controlled by the MOS device
- Allows for very high collector currents coupled with high gate impedance
- Switching tends to be slower than power MOSFET due to minority carrier storage in base region
- Unlike power MOSFET, minimal reverse current

Drawings from Advanced Power Technology Application Note APT0201 (July 2002)

IGBT Device Reliability

• IGBT is repeatedly subjected to alternating cycles of ON state (high current / low voltage) and OFF state (low current / high voltage)

• During switching, the device is briefly (few μ s) subjected to a transition during which it experiences very high power (high current / high voltage)

• High power generates lots of heat; improper heat-sinking may degrade device lifetime and / or cause catastrophic failure

• Inverter may need to operate in hot environments, and may also be subject to wide swings in operating temperature

• Si- based IGBT is a fairly mature but is subject to degradation mechanisms that are common to all Si-based devices (e.g. SiO₂ gate breakdown)

• Our initial testing has been focused on high current / low voltage stress condition

Experimental set-up

Heating / cooling plate

Heating / cooling plate power supply and control

Sample mounting

Stress / measure equipment

3200 W power supply (400 A, 8 V)

Curve tracer

Bias configuration for IGBT stress-measure experiments

Experiment #1 (25°C stress)

600 V, 60 A device found in several inverters that we examined

Fast initial degradation in sub-threshold region, appears to saturate; not much degradation in on-state characteristics

Degradation not observed on all samples tested (a few samples measured so far)

- 1. Measure I_{C} - V_{GE} curve for fixed V_{CE} = 1 V at 25°C
- 2. Stress device using V_{GE} = 20 V, V_{CE} = 2 V at 25°C; $I_C \approx 38$ A
- 3. Repeat

Experiment #2 (100°C stress)

Use the same device as the previous experiment

- 1. Measure $I_{C}-V_{GE}$ curve for fixed $V_{CE} = 1 V$ at 25°C
- 2. Stress device using V_{GE} = 20 V, V_{CE} = 2 V at 100°C; I_C \approx 38 A
- 3. Repeat

Experiment #3 (100°C stress)

Use a fresh device

- 1. Measure I_{c} - V_{GE} curve for fixed V_{CE} = 1 V at 25°C
- 2. Stress device using V_{GE} = 20 V, V_{CE} = 2 V at 100°C; I_C \approx 38 A
- 3. Repeat

Sandia Vational

boratories

Possible impact on inverter performance

- OFF-state leakage current may result in loss of power delivered to load
- \bullet Need to evaluate devices at much higher $V_{\rm CE}$
- Planning SPICE modeling to determine impact on inverter efficiency

Same concept applies to three-phase inverter

IGBT monitoring inside inverter

• Plan is to monitor IGBT properties inside working inverter to compare degradation to device-level testing

• Several inverters have been purchased, currently setting up (planning to use solar simulator as DC source)

"Post-Silicon" device reliability for power electronics

 Record-efficiency inverter has been demonstrated using SiC MOSFETs

• We have done reliability testing on the same MOSFET used in the inverter

SiC power MOSFET

Gate Voltage

15

"Power MOSFET Basics"

- SiC has many intrinsic material advantages over Si for power devices
 - Large bandgap (low intrinsic carrier concentration at high T)
 - High breakdown field strength (avalanche breakdown)
 - High thermal conductivity
- But it is a much less mature technology and is thus less reliable
 - SiO₂ gate oxide reliability
 - SiC material defects (μ -pipes), stacking faults

n-channel SiC MOSFET BTS experiment #1

- Measured $I_D V_G (V_D = +1 \text{ V})$ and $I_D V_D (V_G = +4 \text{ V})$ curves at room T
- Heated sample to temperature indicated and applied +20 V gate voltage for 7 minutes
- Cooled back to room temperature and $I_D V_G$, $I_D V_D$ curves were re-measured
- Process was repeated for various stress temperatures
- \bullet Positive V_{T} shift suggests presence of negative charge in oxide, perhaps injected from n-channel during stress
- Decrease in current for fixed bias degrades ON-state performance of device

n-channel SiC MOSFET BTS experiment #2

- Sample heated to 225°C and I_D-V_G curve measured ($V_D = +1 V$)
- Gate stress of +20 V applied for time indicated
- I_D - V_G curve re-measured at 225°C
- Process was repeated for various additional stress times
- Increase in V_T is again observed and will degrade ON-state performance of switch, resulting in less power delivered to load

Continuing work

- Stressing of Si-based IGBTs under various conditions
 - High current, high voltage, transient high power
- Monitoring of IGBTs in actual inverters and comparison to device-level testing
- Modeling of device lifetime and failure mechanisms for inclusion in inverter and system reliability models
- "Post-Si" device studies (SiC, GaN) for future power electronics needs
 - Basic defect studies and reliability physics
 - Device modeling
- Stress testing of electrolytic bus capacitors
- Goal is to establish unbiased, standardized test procedures and reliability / efficiency models for industry

