Electrical and Thermal Finite Element Modeling of Arc Faults in Photovoltaic Bypass Diodes

Jay Johnson

Ward Bower Michael Quintana

Sandia National Laboratories, Albuquerque, NM

World Renewable Energy Forum 16 May, 2012 - Denver, Colorado

Outline

- Arc Fault Introduction
- Description of the Model
- Simulations
 - Normal Operation
 - Solder Corrosion
 - Burn Time
- Conclusions

Polycrystalline Module Design

X-ray image of a Junction Box with Two Bypass Diodes

Burned Module after Arc Fault

Junction Box after an Arc Fault

Arc Faults in PV Systems!

- Arc: Luminous discharge of electricity across an insulating medium
- Arc faults ionize the atmosphere to create a high temperature plasma
 - $-5000 + {}^{\circ}C$
 - Melts metals, burns plastics
- Rare but some examples exist:
 - Bakersfield, CA
 - Mount Holly, NC
- Article 690.11 in the 2011 *National Electrical Code* requires arc fault circuit interrupters on rooftop installations

Arc fault video courtesy of John Wohlgemuth at NREL

Selection of Subdomain for Simulations

Series Arcing Locations

Bypass Diode Operation

Material Properties

Material	Electrical Conductivity σ[S/m]	Relative Permittivity $\epsilon_{\rm r}$ [-]	Thermal Conductivity k [W/m-K]
Thermoplastic	0.004	2.25	0.5
Sn-plated Cu	$3.43x10^7$	1.00	234
60Sn-40Pb Solder	6.67x10 ⁶	1.00	50

Normal Bypass Diode Operation

- Diode Heating = Semiconductor Heating + Joule Heating
- High-power Si Schottky diodes
 - Internal Semiconductor Heating = (turn-on voltage) x (module current) = $0.45 \text{ V} \times 5 \text{ A} = 2.25 \text{ W}$ generated by the diode

Warm, but no arcing.

Corrosion in Diode Leads

• What level of corrosion is required to generate the gap voltage required to cause an arc fault?

Location of contact resistance from corrosion

Transition from diode acting as a conducting path to the plastic back sheet.

Dielectric strength of air is 3000 V/mm or 3 V/μm.

Significant reduction in conductivity is required to establish an arc.

Burn Times

Back sheet burn time calculated with radiation model

View factor = % of radiation absorbed by surface = 4.1%

Assuming arc fault power is 100 W, the 1x1 mm surface would experience 4100 kW/m² of incident radiation.

J.K. Hastings, et al., A study of ignition time for materials exposed to dc arcing in PV systems, 37th PVSC, Seattle, WA, June 19-24, 2011.

Back sheet ignition time is less than 0.1 seconds.

Conclusions

- Arc faults in PV systems are rare, but do happen.
- Arc fault circuit protection is now required by the *National Electrical Code*.
- Ignition of arcs at the solder connection of a bypass diode was simulated:
 - Normal operation is warm (68 K above ambient), but will not melt the surrounding materials.
 - With large (6 orders of magnitude) reductions in conductivity from corrosion or solder fractures, micronscale gaps will establish an arc
 - Once the arc fault has initiated, it will take less than 0.1 seconds for a polymeric back sheet to ignite.

