Photovoltaic DC Arc Fault Detector Testing at Sandia National Laboratories

Jay Johnson¹, Birger Pahl², Charles Luebke², Tom Pier², Theodore Miller³, Jason Strauch¹, Scott Kuszmaul¹, and Ward Bower¹

¹ Sandia National Laboratories, Albuquerque, NM

² Eaton Corporation, Milwaukee, WI

³ Eaton Corporation, Pittsburgh, PA

Sandia National Laboratories is a multi-program laboratory managed and operated by Sandia Corporation, a wholly owned subsidiary of Lockheed Martin Corporation, for the U.S. Department of Energy's National Nuclear Security Administration under contract DE-AC04-94AL85000. This work was funded by the US Department of Energy Solar Energy Technologies Program.

Presentation Outline

- PV Arc Fault Background
- Sandia National Labs Overview
- Arc Fault Detection Challenges
- Arc Fault Experiments
 - Inverter noise
 - Arcing noise
 - Arc vs baseline comparison on multiple PV strings
- Conclusions

Sandia Contribution to PV Arc Fault Detection and Mitigation Requirements

Why Test Arc Detection at Sandia National Laboratories?

- Sandia National Labs is a resource for PV companies, technologies, and components.
 - SNL has partnerships with inverter, module, BOS components, AFD, and AFCI manufacturers.
- Distributed Energy Technologies Laboratory (DETL)
 - Test bed for novel renewable energy technologies.
 - Reconfigurable PV arrays with diverse portfolio of PV technologies:
 - Different manufacturers, ages, and I-V characteristics
 - Range of connectors, DC disconnects, combiner boxes, line lengths, and inverters.
- UL Subject 1699B does not cover all testing cases or scenarios.
 - DETL can demonstrate AFCI robustness.

Distributed Energy Technologies Laboratory

24 June, 2011

Arc Fault Detection Challenges

Some AFCIs use the AC frequency content of the string for detection

• Two challenges involved with arc detection using a remote arc fault detector:

- 1. Missed or delayed detection due to arc frequency attenuation in PV components (e.g., modules, connectors, bypass diodes)
- 2. Nuisance tripping due to noise from electromagnetic coupling (crosstalk), inverter switching, and radio frequency (RF) effects

Arc Fault Experiments

Questions

- What is the influence of inverters on string noise?
- Are there frequency bands which are excited with an arc?
- Does crosstalk trip the AFCI?
- Do antenna effects and RF phenomenon influence detection?
- Does arc fault location change the arcing frequency content?
- Do DC/DC converters change the PV string AC spectrum?

Basic Testing Setup

Simulated Arc Fault

String Noise Varies with Inverter Type, PV Module Technology, and Array Topology

120 Hz noise from the inverter compared to a resistive load bank noise.

MPPT effect on current.

String Noise in Frequency Domain

Testing Configurations

DC String Current during an Arc Fault

Sandia National Laboratories

DC String Voltage during an Arc Fault

AC Arc Fault Frequencies on PV Strings

Binned Arc Current and Voltage Frequencies

What's the best way to differentiate arcing and non-arcing strings?

Arc Fault Generation on Arrays

Same 3-phase inverter with 3 different strings:

• 21 90-W c-Si modules, 22 80-W p-Si modules, 22 80-W c-Si modules

Conclusions

- 2011 NEC requires DC arc fault circuit protection on photovoltaic systems with dc source circuits, dc output circuits, or both, on or penetrating a building operating at a PV system maximum system voltage of 80 volts or greater.
- Sandia National Laboratories provides an excellent testing facility for arc fault detectors and arc fault circuit interrupters because of the diversity of PV technologies.
- Experimental work with Eaton has revealed some avenues for robust detection as well as some arc fault detection challenges.
 - Arcing can excite certain frequency bands above the baseline (non-arcing) levels.
 - Inverters generate a lot of baseline noise across the spectrum, but especially at 120 Hz, switching frequencies and harmonics.
- Additional experimentation is recommended to further understand arcing phenomenon and signal propagation in a broad range of PV systems.

Acknowledgements

DETL Technicians

- Armando Fresquez
- Mike Montoya
- Nelson Opell

Engineering Assistance

Sigfredo Gonzalez

US Department of Energy Solar Energy Technologies Program

Slide 17/18

Questions?

Contact Information

Jay Johnson Sandia National Labs Phone: 505-284-9586 jjohns2@sandia.gov Charles Luebke Eaton Corporation Phone: 414-449-7264 CharlesJLuebke@eaton.com

