Small-Angle Scattering from Flux Line Lattices

M. Yethiraj

Superconductivity - type I

Phenomenon:

the existence of a by zero resistance at critical temperature T_c

Type-I

Surface currents exclude applied magnetic field upto a critical field - then becomes normal

Superconductivity - type II

Abrikosov predicted the existence of a "mixed" phase where lines of flux penetrate the material above H_{c1} Type-II

Quantized vortices each flux quantum has 2.07x10⁻⁷ Gauss-cm²

A single flux line

- Magnetic field modulation
- Normal core
- Supercurrents around this core
- Length scales of interest λ and ξ

Vortices repel each other - repulsion causes them to form arrays to maximize the distance between the vortices

alignment - vortex lattices or Abrikosov lattices => Bragg diffraction!

Bragg Scattering

For periodic arrays of nuclei, coherent scattering is reinforced only in specific directions corresponding to the Bragg condition:

 $2d \sin \theta = n \lambda$

How to measure this...

- At a field of 1Tesla, vortices are roughly 450Å apart
- d² = Φ₀/B since each flux line carries one quantum of flux Φ₀ is the flux quantum B is the applied field d=lattice spacing (square arrangement)
- Bragg's law 2d Sin θ = λ
 (θ = Bragg angle; λ=neutron wavelength)
- Bragg scattering observed at small angles SANS!
- PS Neutrons can see magnetic contrast

SANS instrument schematic

Field parallel to neutrons

detector

Observed flux lattice with B (=2T) parallel to 110 in V_3 Si

Long flux lines => no width to the bragg spot in q_z

Why do square flux lattices exist? The lattice symmetry can change as a function of field (and hence distance between vortices)

0.02

In LuBi₂B₂C, a possible broadening was observed -Eskildsen et. al, PRL 86, 5148 (2001)

Phase Diagram with B//001

- At low fields, the FLL has 6fold symmetry. As the field is increased the lattice transforms to a square one.
- As the temperature (hence coherence length) is increased, the square symmetry reverts back to hexagonal.

Gurevich and Kogan PRL 87 177009 (2001) - Thermal vortex fluctuations

Conclusions

- SANS is the best way to study bulk properties of a vortex lattice μ SR; STM, decoration surface probes
- Flux Lattice Symmetry always reflects underlying lattice symmetry
- Mass Anisotropy
 - Temperature-independent
 - Field-independent
- Fermi Surface Anisotropy Temperature-dependent Field-dependent

Field and Temperature Dependence

The opening angle departs from 60° as the field is increased till the lattice transforms to one with square symmetry. The region of coexistence and lack of any continuous structural evolution suggests a first order transition.

Nonlocal case: equal field contours are not circular around the core of the flux line

Nonlocality: Effects of the finite spatial extent of a Cooper pair ξ (coherence length)

Coherence length and Penetration depth diverge as temperature approaches T_c