SANS Studies of Polymers and Colloids: Past Highlights and Future Directions

George D. Wignall

Center for Neutron Scattering

Condensed matter Sciences Division

Oak Ridge National Laboratory* Oak Ridge TN 37831-6393

SNS/HFIR User Meeting, October 11-13, 2005

*Supported by the U.S. DOE under Contract DE-AC05-96OR22464 with UT-Battelle LLC

Why So Much Time and Money for Small Angle Neutron Scattering?

- Structures on length scales 5 2000Å
- Colloidal aggregates in solution (e.g., micelles, microemulsions)*
- Polymer chain configurations
- Polymer blend (alloy) thermodynamics*
- High-temperature superconductivity
- Structure of bone
- Voids in metals
- Composite materials and "filled" polymers*
- Biological structures
- Supercritical fluids*
- Block co-polymers*

Powder Diffractometer Polarized/fixed Triple Axis, WAND, etc.)

Biology SANS

ORNL 2005-01734/jcn

Melt Compatibility of Polymer Blends

Schematic Representation of Different Types of Polyethylenes

- Blends (alloys) of linear and branched polyolefins (saturated hydrocarbon polymers such as polyethylene) have achieved widespread commercial applications (~10¹¹ lbs./yr.) despite the fact that there has been disagreement on the state of mixing in the molten and solid states.
- SANS is an ideal technique to probe thermodynamic interactions in blends and indicates that mixtures of high density (HD) and low density (LD) polyethylenes are compatible in the liquid state. Mixtures of HD and linear low density polyethylenes (LLDPE) are homogenous in the melt when the branch content is low, but the phases separate when the branch content is high.

O-Z PLOTS FOR 50/50 BLENDS OF MODEL POLYETHYLENES (MW ~ 10⁵) AS A FUNCTION OF THE BRANCHING DIFFERENCE BETWEEN COMPONENTS (A) 2.5 BRANCHES/100 CARBON ATOMS (B) 7.4 BRANCHES/100 CARBON ATOMS

Alamo et al., *Macromolecules*, <u>30</u>, 561 (1997).

Schematic Representation of Oil-in-Water or Water-in-Oil Colloidal Aggregates

MICELLE (SPHERICAL OR CYLINDRICAL)

Applications

- Detergents, lubricants, emulsions, oil spills, and enhanced oil recovery
- Solubilizing and decontaminating toxic materials
- Microencapsulation of drugs in pharmaceuticals

ORNL-DWG 89M-17194

Does Water Penetrate into the Hydrocarbon Core of a Micelle?

RADIAL CHAIN MICELLE INTERPHASE LATTICE MODEL (DILL AND FLORY)

ORNL-DWG 89M-17196

- NMR indicates contact between hydrocarbon segments and H₂O
- The chain end-groups are concentrated in the center, or spread out over the whole volume for the two proposed structures

Label End Groups to Observe Distribution of Terminal Methyls

Difference amplitude between LDS with protonated and deuterated end groups for various models of micelle structure assuming no water penetration of core.

Chen, Koehler J. Phys. Chem., (1983); Dill, Flory, Nature, (1984)

Configuration of 38 Chain Decanoate Micelle [Dill et al. Nature 309, 42 (1984)]

ORNL-DWG 89-17193

Schematic Representation of Colloidal Aggregates in Water and Supercritical Carbon Dioxide

MODEL OF POLY(FOA-b-STYRENE) MICELLE IN SUPERCRITICAL CO2

SANS Characterization of Block Copolymer Micelle in Supercritical CO₂

McClain et al., Science, <u>274</u>, 2049 (1996)

 $\frac{d\Sigma}{d\Omega} (Q) \text{ FOR 6\% (W/V) POLYVINYL ACETATE-b-PFOA BLOCK COPOLYMERS IN CO₂. AT HIGH PRESSURES, THE SCATTERING ARISES FROM SINGLE MOLECULES; AS THE PRESSURE IS LOWERED, MICELLES FORM BELOW A CRITICAL CO₂ DENSITY.$

A fourth generation dendrimer with CO_2 -soluble (fluorinated) chains forms unimolecular micelles and extracts a CO_2 -insoluble (orange) dye from the aqueous phase (below) to the CO_2 phase (above), thus demonstrating its potential in cleanup applications

Nature, 389, 368 (1997)

$d\Sigma/d\Omega$ for 7.5 wt. % Phosphate Ester Surfactants Swollen with H₂O & D₂O

[Keiper et al., *JACS*, <u>124</u> 1834 (2002); *Langmuir*, <u>20</u>, 1065 (2004); Xu et al., *J. Chem. Phys.*, <u>109</u>, 10261 (2005)]

WATER NANODROPLETS IN CO₂-MICROEMULSIONS FORMED BY SELF-ASSEMBLED GRAFT COPOLYMERS AND SURFACTANTS

- Possible Applications:
- extraction of hydrophilic substances [proteins, heavy metals] into CO2
- heterogeneous reactions
- dry cleaning [commercialized]
- Examples:
- polyethylene oxide-PFOA graft copolymers [Fulton (PNWL), McClain (UNC), Triolo (Palermo)] ~ 0.3 vol% H₂O
- Ammonium carboxylate perfluoroethers
 [Johnston (UTEX), Heitz and Bright (SUNY)]
- _ phosphate esters [Keiper, DeSimone (UNC)]
- perfluoroethers [Lee, Johnston (UTEX)]

- ~ 0.4 vol% H₂O
- ~ 5 vol% H_2O
- 5 –10 vol% H₂O

Debye Bueche Model for Two-Phase System, Each with Random Shape, Uniform Electron or Scattering Length Density and Sharp Boundaries

Mean Chord Intercepts:

$$L_1 = \frac{a}{\phi}$$
$$L_2 = \frac{a}{(1 - \phi)}$$

Physical Concept of the Mean Chord or Inhomogeneity Length

The fluctuations in scattering power at two points A and B, distance r apart, can be characterized by $\gamma(r) < \eta^2 >_{AV} = < \eta_A \eta_B >_{AV}$. For random two phase system: $\gamma(r) = e^{-r/a}$

$$\frac{\mathrm{d}\Sigma}{\mathrm{d}\Omega} \left(\mathbf{Q} \right) = \frac{\mathbf{A}}{\left[1 + \mathbf{Q}^2 \mathbf{a}^2 \right]^2}$$

J. Appl.Cryst., 28, 679 (1957)

ORNL-DWG 92M-9485

Debye-Bueche Plot for Phase Separated Blend of Deuterated High Density and Protonated Low Density Polyethylenes Slow Cooled from the Melt at 0.75°C/min

R. G. Alamo et al., Macromolecules, 27, 411 (1994)

Contrast Factors for SAXS and SANS in Carbon Black Filled Polyethylenes

	Electron Density (10 ²³ cm ⁻³) (SAXS)	Scattering Length Density (10 ¹⁰ cm ⁻²) (SANS)	
Carbon Black	5.8	6.4	
Void	0	0	
Polyethylene-H	3.5	-0.36	
Polyethylene-D	3.5	8.8	

ORNL 97-3941/arb

Contrast Options for SAXS and SANS Studies of Carbon-Polyethylene Composite Materials

SAXS contains contributions from all three phases

SANS from carbon in H-PE gives structure of carbon alone

SANS from carbon in D-PE gives structure of voids alone

ORNL 97-3942/arb

D. W. Marr et al., *Macromolecules*, <u>30</u>, 2120 (1997)

Volume Fraction of Voids and Mean Chords of Carbon and Polythylene Phases

	Volume of	Mean Chords (Å)	
Temperature	Fraction of Voids	Carbon	Polyethylene
25°C (solid)	2.1%	580	770
150°C (melt)	0.2%	570	850

Use methodology of W. L. Wu [*Polymer*, <u>23</u>, 1907 (1982)] to estimate volume fraction of third phase (voids)

Macromolecules, <u>30</u>, 2120 (1997)

Physical Concept of the Mean Chord Length

POROUS SYSTEM WITH QUENCHED CORRELATED DISORDER: AEROGELS (see talk by Y. B. Melnichenko; Thursday am)

BASE-CATALYZED AEROGELS ARE DILUTE NETWORKS OF RANDOMLY INTERCONNECTED SiO_2 STRANDS, WITH $\rho_{SiO2}\sim~0.1$ g/cc, PORE VOLUME \sim 96% AND DIAMETER 60-70 Å

In CO₂-saturated aerogels, the correlation length of the density fluctuations (ζ) saturates at the pore radius (R_p). SANS reveals the existence of a compressed adsorbed phase with density > 1 g/cc and the methodology of Wu (1982) may again be used to give the volume fraction (submitted to *J. Chem Phys.*)

Diblock Copolymers

•two polymer segments, covalently joined

•self-assemble on nm length scales

•three parameters govern self-assembly

- total polymer length N
- interaction parameter χ
- relative block length f

•phase separate ($N\chi \sim 10$)

•four stable morphologies

- short/long: spheres in matrix
- -~20%: cylinders
- ~33%: gyroid
- equal lengths: lamellae

ORNL 2002-02996/vlc

Contrast Variation via Isotopic Substitution

- The neutron refractive index or scattering length density (SLD) difference between protonated polystyrene (PSH) and polybutadiene is larger when the latter is deuterated
- Thus the intensity scattered by PSH-PBD is much higher (30x) that from PSH-PBH
- Both SANS patterns reflect the blockcopolymer morphology of spheres (radius ~ 10 nm) on a Bragg lattice (spacing ~ 60nm)
- Blending 84% PBH and 16% PBD matches the SLD of the PS matrix and thus "washes out" the sphere scattering [Polymer, 24, 519 (1983)]

SANS FROM POLYSTYRENE-POLYBUTADIENE (PS-PB) DI-BLOCK COPOLYMERS. A BLEND OF PS-PBH AND PS-PBD MATCHES THE NEUTRON REFRACTIVE INDEX OF THE MATRIX AND "WASHES OUT" THE SPHERE SCATTERING

ORNL 2002-02997/vlc

Morphology from SANS

- In the ordered state, the polymer molecules are stretched, due to total reflection at the domain interface
- In the disordered state they may be expected to have unperturbed (random) configurations
- SANS reveals a transition between Gaussian coils and stretched coils in the disordered state
- The dimensions are probed by SANS via the peak in the scattering curve [Almdal et al., Phys. Rev. Lett., <u>65</u>, 1112 (1990)].

Unique Characteristics of Triblocks

- 280+ morphologies greatly enhanced parameter space
- tailor properties of each phase with polymer block
- selection precise control of feature size with block lengths (1-100 nm)

Core-shell cylinder structure

Some morphologies for linear ABC triblock copolymers. A combination of block sequence, composition and molecular weights provides enormous parameter space for new morphologies.

Shear Alignment of Cylindrical Morphology

- Shear orientation of quenched SIS results in macroscopically anisotropic stiffness
- SIS: poly(styrene-b-isoprene-b-styrene), "Kraton"
- processing is important

Cylinders parallel to fingers

Cylinders normal to fingers

In-situ SANS Shear Cell

ORNL 2002-03003/vlc

Shear quench + shear, $T = 183^{\circ}$ C

Koppi et al., *Macromolecules* <u>34</u>, 951 (2001); *J. Phys. II (France)* <u>2</u>, 1941 (2002)

An Extruder on a SANS Machine

- processing effects properties
- place extruder in SANS beam
- study evolution of morphology as a function of position and time under industrially relevant conditions

OVERLAP OF ORNL/ILL DATA FROM SEDIMENTARY ROCK SHOWING THAT THE PORE-ROCK INTERFACE IS A SURFACE FRACTAL ($D_s = 2.82$) OVER TEN ORDERS OF MAGNITUDE IN $d\Sigma/d\Omega$ [RADLINSKI ET AL., PHYS. REV. LETT., <u>82</u>, 3078 (1999)]

New Small Angle Scattering Instruments

[see talks by Lynn (HFIR-SANS), Zhao (SNS-SANS), Agamalian (USANS)]

- The High Flux Isotope Reactor is one of two worldwide with a core flux exceeding 10¹⁵ n sec⁻¹ cm⁻²
- The SANS facilities on the HB4 cold source will have fluxes similar to the ILL
- They will also have larger (100 x 100 cm2) area detectors, thus allowing measurements over a wider solid angle range
- The CG4 reflectometer will measure down to R ~ 10⁻⁸

 A focusing monochromator on CG4 would provide a flux ~ 10⁵ n/(cm² sec) for a USANS to extend the resolution to Q_{min} ~ 10⁻⁵ Å⁻¹, at a cost ~ 300 k\$. Such upgrades will permit new classes of experiments to be performed.

ORNL Small Angle Neutron Scattering: Future Directions

Flux increases, larger detectors and extended Q-range should make it possible to:

- Explore new directions in soft materials such as *in-situ* processing using a neutron beam to follow structure evolution in industrially relevant equipment (e.g., extruders)
- Study weakly scattering biological materials (cross sections 10⁻¹-10⁻³ cm⁻¹)
- Use much smaller samples (1mg vs. 100mg)
 - Pharmaceuticals and developmental polymers available only in small amounts
 - Biological materials, which are often difficult to prepare in bulk
 - Small (~ 1mm^3) crystals of high-T_c superconductors for flux line lattice melting
- Undertake kinetic studies (e.g., phase separation in polymer blends or metallic alloys)
- Use polarized neutrons to explore magnetic materials, spin-glasses, etc.
- Quantify inelastic effects in SANS (currently assumed to be an elastic process)
- Study complicated polydisperse hierarchical structures extended over 4 orders of magnitude in length scale (1 nm < D < 10 μ m) by combining SANS & USANS
- ???

Back-up Slides

Schematic Representation of Reverse Micelle Formed by Self-Assembly of Polyethylene Oxide-PFOA Graft Copolymer in CO₂ [Fulton et al., Langmuir, <u>11</u> 4241 (1995)]

Differential Scattering Cross Section for PEP-PEE Block Copolymers as a Function of the Degree of Polymerization, N

CRNL-DWG 90M-12740

Gaussian-Stretched Coil Transition for PEP-PEE Block Copolymers as a Function of Polymerization Index

Processing Effects Morphology

- poly(cyclohexylethylene-bethylene) pentablock co-polymer extruded sheets
- two different molecular architectures result in two lamellar orientations

INELASTIC SPECTRUM FROM Bi-Zn SOLUTIONS (646°C) NEAR THE PHASE BOUNDARY FOR DE-MIXING [J. Phys. C. <u>1</u>, 1088 (1968)]

ORNL-DWG 84-16324/rra

COMPARISON OF MICELLE DIMENSIONS AND AGGREGATION NUMBER (N_{AGG}) BY SAXS AND SANS

REFERENCE		RADIATION	R _{CORE} (Å)	R _{SHELL} (Å)	N _{AGG}
	UNSWOLLEN	SANS	25	39	3
THIS WORK	D ₂ O-SWOLLEN	SANS	86	130	83
	H ₂ O-SWOLLEN	SANS	86	126	83
FULTON <i>et al.</i> LANGMUIR, 1995	H ₂ O-SWOLLEN	SAXS	105	125	120

Add Gaussian Term to Describe Long Range Fluctuations

$$\gamma(r) = f \exp(-r/a_1) + (1-f) \exp(-r^2/a_2^2)$$

$$\frac{d\Sigma}{d\Omega} (Q) = \frac{A_1}{(1 + Q^2 a_1^2)^2} + A_2 \exp\left(\frac{-Q^2/a_2^2}{4}\right)$$

$$A_1 = 8\pi a_1^3 f \phi (1-\phi) (\rho_1 - \rho_2)^2$$
$$A_2 = \pi a^{3/2} a_2^3 (1-f) \phi (1-\phi) (\rho_1 - \rho_2)^2$$

These parameters may be used to calculate surface areas, correlation volume, Porod lengths, etc.

ORNL-WSM 14844/rra

SANS Studies of Polymer Latex Particles in H₂O/D₂O Mixtures

SANS FROM H-LATEXES IN D₂O GIVES THE CORE MORPHOLOGY VIA THE THEORETICAL SPHERE SCATTERING (BESSEL) FUNCTION

$$P(Q) = \frac{9}{(QR)^6} [sin QR - QR cos QR]$$

SANS FROM H-LATEXES POLYMERIZED WITH A D-SECOND MONOMER AND EXAMINED IN A D_2O/H_2O MIXTURE CHOSEN TO MATCH THE CORE SLD SHOWS HOLLOW SHELL SCATTERING FUNCTION

$$P(Q) = \frac{9}{QR^6 (I-L^3)^2} [sin QR - QR cos QR - sin QRL - QRL cos QRL]^2$$

$$L = \frac{R_1}{R} = \frac{INNER RADIUS}{OUTER RADIUS}$$

ORNL-DWG 90M-12748R

Comparison of experimental Sans data and theoretical scattering function for PS-PMMA-H core latex with PMMA-D3 shell. Core contrast matched in 25:75 % solution of $D_2 O/H_2 O$.

M.P Wai et al. Polymer 28, 919, 1987

RESISTANCE AS FUNCTION OF TEMPERATURE FOR CARBON – POLYETHYLENE COMPOSITE MATERIALS (IEE TRANSACTIONS CHMT4, <u>372</u>, 1981)

$\frac{d\Sigma}{d\Omega} (Q) FOR PFOA_g - PEO GRAFT COPOLYMER IN CO_2$ $BEFORE AND AFTER SWELLING WITH H_2O$ $AND D_2O$

SCHEMATIC REPRESENTATION OF VARIOUS MODELS FOR POLYMER CHAIN CONFORMATION IN AMORPHOUS POLYMERS

FOLD-CHAIN FRINGED-MICELLAR GRAIN MODEL (YEH, 1972)

MEANDER MODEL (PECHOLD, 1968) CHAINS HAVE QUASI-PARALLEL PACKING

RANDOM COIL MODEL (FLORY, 1951) CHAIN HAS SAME CONFIGURATION AS IN THETA SOLVENT ($A_2 = 0$); $R_g/M_w^{0.5} = 0.27$ Å FOR PS IN CYCLOHEXANE (T = 38°C) <u>AND</u> IN CONDENSED STATE!

ORNL-DWG 96M-6152/rra

Molecular Dimensions in Bulk Amorphous Polymers

		R _g /M _w	Rg/Mw ^{1/2} (gm ^{-1/2})	
Polymer	State	Bulk	θ Solvent	
Polystyrene	Glass	0.275	0.275	
Polystyrene	Melt	0.280	0.275	
Polyethylene	Melt	0.46	0.45	
Polyvinyl chloride	Glass	0.40	0.37	
Poly-butylene	Glass	0.31	0.30	
Polymethyl-Methacrylate	Glass			
	(Atactic)	0.275	0.275	
	(Syndio)	0.289	0.243	
	(Isotactic)	0.297	0.28	
Polyethylene-Terepthalate	Glass	0.385	0.39-0.42	
	Melt	0.35	0.34-0.42	
Polybutadiene	Melt	0.35	0.34-0.42	
Polyethylene Oxide	Melt	0.35	0.34	

Gaussian (Random) Coils, $R_g \sim M_w^{1/2} \sim N^{1/2}$ (N = Number of units on chain)

ORNL-DWG 93M-16024

ORNL-DWG 96M-5385

(a) "HAIRY" MICELLE

(b) "CREWCUT" MICELLE

POSSIBLE STRUCTURES OF BLOCK COPOLYMER MICELLES

[HALPERIN et al., Advances in Polymer Science, 100 31 (1992)]

THE AGGREGATION NUMBER IS INDEPENDENT OF THE CORONA BLOCK LENGTH FOR BOTH LIMITING STRUCTURES

AGGREGATION NUMBER (N_{agg}) FOR PS–PFOA BLOCK COPOLYMER MICELLES AS A FUNCTION OF THE CORONA BLOCK LENGTH

N _{agg}	R _{core} (Å)	R _{total} (Å)	N _{CO2}	Z _{core}
7	27	85	40	10
11	30	80	10	8
7	27	89	16	8
6	26	100	17	8
	N _{agg} 7 11 7 6	Nagg Rcore (Å) 7 27 11 30 7 27 6 26	Nagg Rcore (Å) Rtotal (Å) 7 27 85 11 30 80 7 27 89 6 26 100	Nagg Rcore (Å) Rtotal (Å) NCO2 7 27 85 40 11 30 80 10 7 27 89 16 6 26 100 17

SCF Polymerization Cell Mounted Directly in SANS Beam is Virtually Transparent to Neutrons

Supercritical Fluids in Colloidal Science

Schematic Phase Diagram

Advantages of CO_2 :

- nontoxic
- nonflammable
- environmentally benign
- tunable solvent

Phase	Density (g/cm ³)	Diffusion coeff. (cm²/s)	Viscosity (g/cm/s)
gas(STP)	10 ⁻³	10 ⁻¹	10 ⁻⁴
SCF	0.3–0.8	10 ⁻³ –10 ⁻⁴	10 ⁻⁴ –10 ⁻³
liquid	1	<10 ⁻⁵	10 ⁻²

