Total neutron scattering to obtain a 'complete' structural finger print of nanoparticles

Thomas Proffen

Manuel Lujan Jr. Neutron Scattering Center Los Alamos National Laboratory tproffen@lanl.gov

Introduction

Total scattering

- Bragg- and Diffuse scattering
- The atomic Pair Distribution Function (PDF)

The instrument NPDF

Applications or work in progress ..

- Domain structures
- Nano-crystalline: Gold nanoparticles
- Summary and outlook

Bragg's world: Structure of crystals

The Nobel Prize in Physics 1915

"for their services in the analysis of crystal structure by means of X-rays"

Sir William Henry Bragg 1/2 of the prize United Kingdom

London University London, United Kingdom

b. 1862 d. 1942

William Lawrence Bragg ① 1/2 of the prize United Kingdom

Victoria University Manchester, United Kingdom

b. 1890 (in Adelaide, Australia) d. 1971

Bragg's law

 $n\lambda = 2d\sin\theta$

Assumes periodicity

Average structure from Bragg peak positions and intensities

unit cell

The repeating unit of a crystal.

The challenge of real materials: Knowing the local structure

- Traditional crystallographic approach to structure determination is insufficient or fails for
 - Non crystalline materials
 - Disordered materials: The interesting properties are often governed by the defects or local structure !
 - Nanostructures: Well defined local structure, but long-range order limited to few nanometers (-> badly defined Bragg peaks)
- A new approach to determine local and nano-scale structures is needed.

Nanostructures: Science (290) 2000

PDF opens the door ...

Total scattering ?

Cross section of 50x50x50 u.c. model crystal consisting of 70% black atoms and 30% vacancies ! Properties might depend on vacancy ordering !!

Bragg peaks are blind ..

Diffuse scattering to the rescue ...

See http://www.totalscattering.org/teaching/

How about powder diffraction ?

Finally the Pair Distribution Function (PDF)

What is a PDF?

Example: C₆₀ - 'Bucky balls'

The PDF (similar to the Patterson) is obtained via Fourier transform of the normalized total scattering S(Q):

 $G(r) = \frac{2}{\pi} \int_{0}^{\infty} Q[S(Q) - 1]\sin(Qr)dQ$ $Q = 4\pi \sin\theta / \lambda$

What is required to obtain high quality PDFs ?

The PDF (similar to the Patterson) is obtained via Fourier transform of the normalized total scattering S(Q):

$$G(r) = \frac{2}{\pi} \int_{0}^{\infty} Q[S(Q) - 1] \sin(Qr) dQ$$

Requirements to obtain 'good' PDF

> High maximum momentum transfer, Q_{max}.
> High Q-resolution.
> Good counting statistics @ high Q.
> Low instrument background

Where ?

Synchrotron sources (high energy X-rays)

or

spallation neutron sources

(reactor neutron energies are too low)

What makes a good PDF: Influence of Q_{max}

What makes a good PDF: Influence of Q resolution ...

Total neutron scattering

Why use neutrons ?

- Sensitive to light atoms (e.g. H)
- Contrast by isotope substitution
- Easy sample environment (T,p,..)
- No 'formfactor' (good for PDF)

Weak ⇒ large samples & long measuring times ..

X-ray and neutron scattering Lengths for selected elements.

Scattering from single atom

The instrument NPDF

NPDF Flightpath 1

Total budget: \$1.1 M PI: Takeshi Egami Sponsors:

Domain structures

Katharine Page

Los Alamos Thomas Proffen

Facilities: Lujan Funding: DOE, NASA

Domain structures : Simulated example

Proffen & Page, Z. Krist. (2004), in press

Los Alamos

Domain structures : Pair Distribution Function

Domain structures : R-dependent refinements

- *Top*: Refinement of single-phase model with blue/red fractional occupancies (O).
- Bottom: Refinement of same model for 5Å wide sections.

Extensions:

- Multi phase models
- Modeling of boundary
- R-dependent refinable mixing parameters

Domain radius

Summary and more information

- Analysis of total scattering gives valuable insight in structure relationship
- High-resolution instruments open the door to medium-range order investigations
- Obtain structural information from disordered crystalline, amorphous of composite materials

os Alamos

Fast powder measurements allow systematic exploration of local structure as function of *T*, *x*, *P*

http://www.totalscattering.org

"Complete" Structure of **Gold Nanoparticles**

Katharine Page

Los Alamos Thomas Proffen

Ram Seshadri Tony Cheetham

> Facilities: Lujan Funding: DOE, NASA

Au nanoparticles : Why PDF ?

- Nanoparticles often show different properties compared to the bulk.
- Difficult to study via Bragg diffraction (broadening of peaks).
- PDF reveals "complete" structural picture – core and surface.

- This study:
 - 5nm monodisperse Au nanoparticles
 - 1.5 grams of material
 - Neutron measurements on NPDF

Au nanoparticles : Nano vs. bulk

• Los Alamos

Au nanoparticles : Structural refinements

- PDF from nano- and bulk gold refined using PDFFIT.
- Nanoparticles show "normal" gold structure.
- No indication of surface relaxations.

Indication of Au-cap distances

K.L. Page, Th. Proffen, H. Terrones, M. Terrones, L. Lee, Y. Yang, S. Stemmer, R. Seshadri and A.K. Cheetham, **Direct Observation of the Structure of Gold Nanoparticles by Total Scattering Powder Neutron Diffraction**, *Chem. Phys. Lett.*, accepted (2004).

Summary and more information

- Analysis of total scattering gives valuable insight in structure \Leftrightarrow properties relationship
- **High-resolution instruments open the door** to medium-range order investigations
- Obtain structural information from disordered crystalline, amorphous of composite materials
 - Fast powder measurements allow systematic exploration of local structure as function of T, x, P

http://www.totalscattering.org

