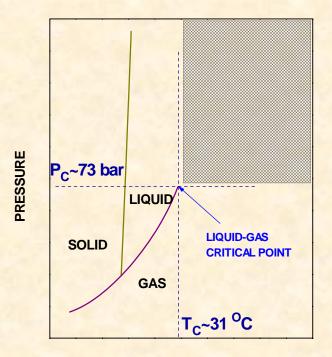
NEW APPLICATION OF SANS: STUDYING ADSORPTION OF SUPERCRITICAL FLUIDS IN NANOPORES

Yuri B. Melnichenko, G. D. Wignall CMSD, ORNL

> D. R. Cole CSD, ORNL

H. Frielinghaus IFF, JÜLICH, GERMANY

OAK RIDGE NATIONAL LABORATORY U. S. DEPARTMENT OF ENERGY



MOTIVATION

SUPERCRITICAL FLUID IS A SUBSTANCE AT (T) AND (P) ABOVE THE GAS-LIQUID CRITICAL POINT

TUNABLE SOLVENT POWER AND ADVANTAGEOUS MASS TRANSFER PROPERTIES MAKE SCF AN ATTRACTIVE ALTERNATIVE TO LIQUID SOLVENTS

HETEROGENEOUS CATALYSIS
ADSORPTIVE SEPARATIONS
REGENERATION OF ADSORBERS
SCF CHROMATOGRAPHY

TEMPERATURE

GENERIC PHASE DIAGRAM OF CARBON DIOXIDE

ADSORPTION IN POROUS MEDIA IS TRADITIONALLY MEASURED BY GRAVIMETRIC, VOLUMETRIC, TOTAL DESORPTION AND SIMILAR METHODS

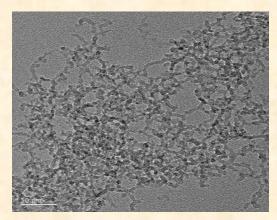
SANS HAS BEEN USUALLY APPLIED TO STUDY GASES AND LIQUIDS IN SMALL PORES:

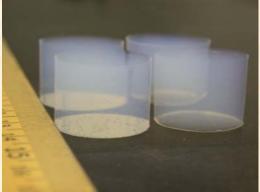
>STRUCTURE OF MULTICOMPONENT POROUS SYSTEMS VIA CONTRAST MATCHING ONE OF THE PHASES WITH H+D LIQUIDS

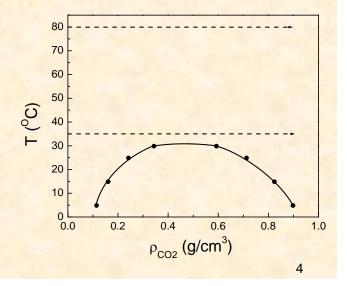
>STRUCTURE OF PORES BY VIA GRADUAL SATURATION OF PORES WITH CONTRAST MATCHING MIXTURE OF H+D GASES

SANS STUDY OF THE ADSORPTION OF A SUPERCRITICAL FLUID IN NANOPORES

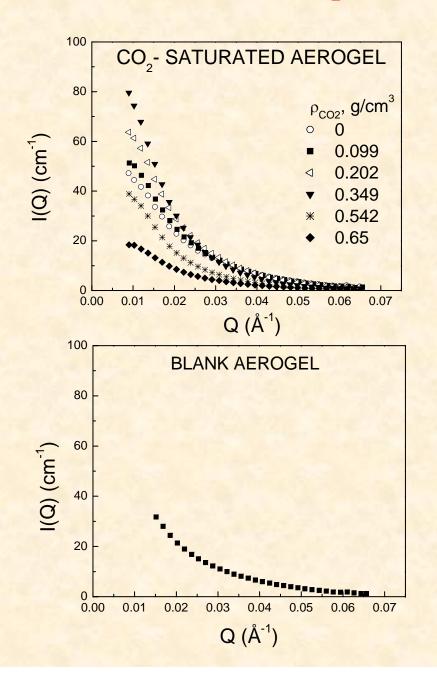
POROUS SYSTEM: AEROGEL

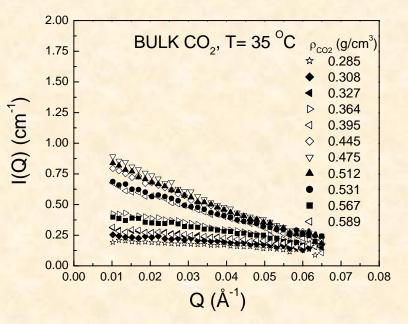

AEROGELS ARE VERY DILUTE NETWORKS OF RANDOMLY INTERCONNECTED SiO₂ STRANDS

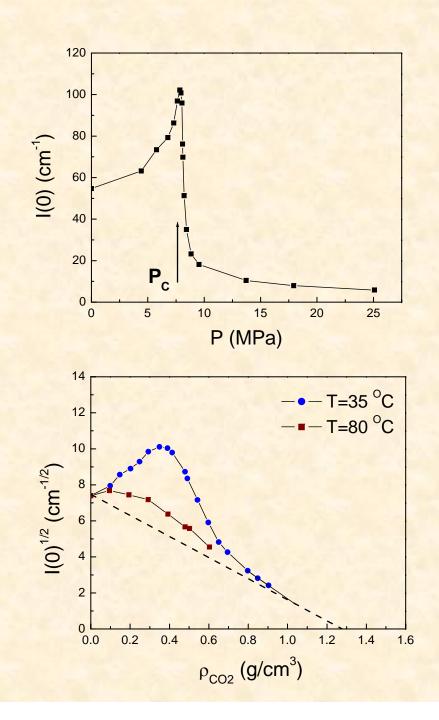

BASE CATALYZED AEROGELS FROM OCELLUS Inc. WITH ρ_{siO2} = 0.1 g/cc


PORE VOLUME $V_p \sim 96 \%$ PORE DIAMETER ~ 70 Å SURFACE AREA S/V ~ 400 m²/g SURFACE METOXY GROUPS =Si-O-CH₃

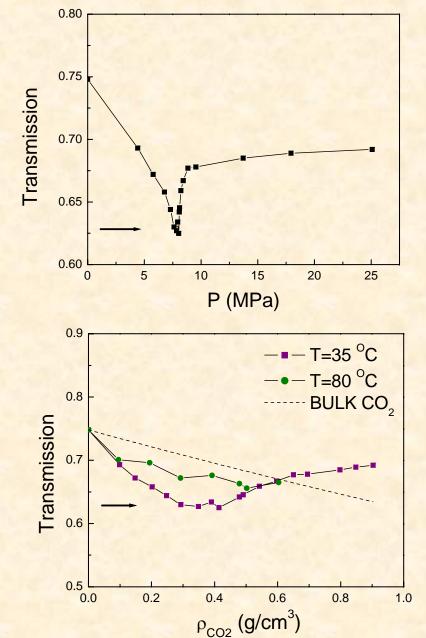
SCF: CO₂, T_c=31.1 °C, ρ_c = 0.468 g/cc


P-SCANS AT T=35 AND 80 °C





SANS FROM CO₂-SATURATED AEROGEL AT T=35 °C


THE VARIATION OF SCATTERING WITH DENSITY/PRESSURE IS NON-MONOTONIC. IT EXCEEDS SCATTERING FROM BULK CO₂ BY TWO ORDERS OF MAGNITUDE AND THAT FROM BLANK AEROGEL BY A FACTOR OF THREE.

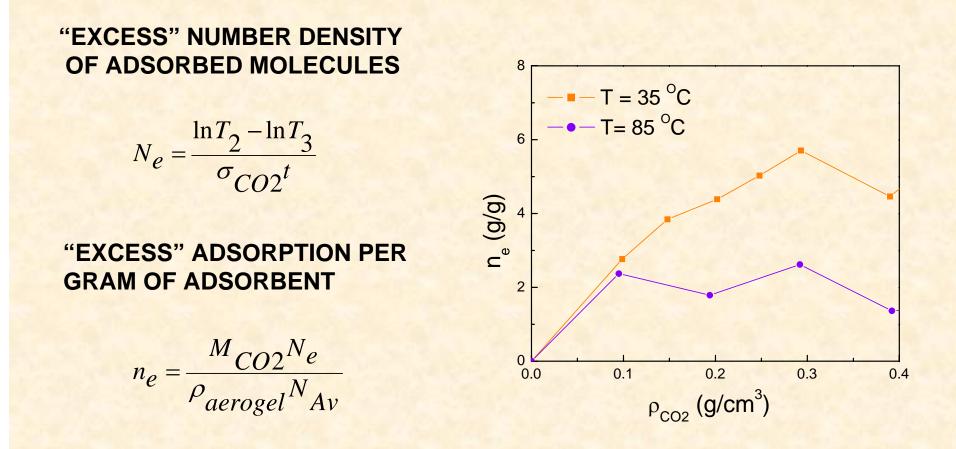
SANS FROM A TWO-PHASE SYSTEM (CO₂+AEROGEL):

$$I(0) \sim \left(\rho_1^* - \rho_2^*\right)^2 = \left(\frac{b_{SiO2}}{M_{SiO2}}\rho_{SiO2} - \frac{b_{CO2}}{M_{CO2}}\rho_{CO2}\right)^2$$

DEVIATION FROM THE STRAIGHT LINE I(0)^{1/2} ~ ρ_{CO2} INDICATES FORMATION OF A THIRD (ADSORBED) PHASE

NEUTRON TRANSMISSION

transm T =I inc

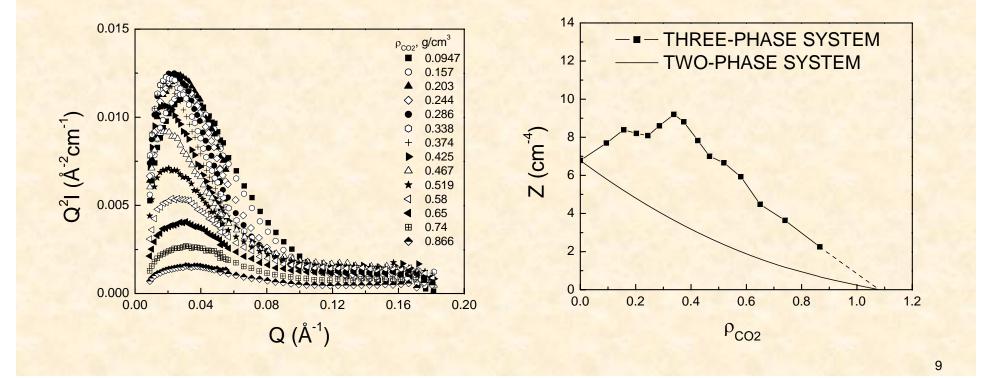

TRANSMISSION OF A TWO-PHASE SYSTEM (CO₂+ AEROGEL):

 $T_{2} = \exp(-N_{SiO2}\sigma_{SiO2}t - N_{CO2}\sigma_{CO2}t) =$ = $T_{1} \exp(-N_{CO2}\sigma_{CO2}t) = T_{2} = T_{1} \exp(-C\rho_{CO2}t)$

DEVIATION FROM THE DASHED LINE $InT_2 \sim \rho_{CO2}$ CONFIRMS FORMATION OF A THIRD (ADSORBED) PHASE

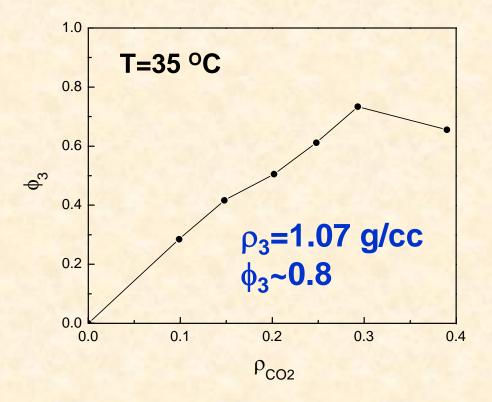
DETERMINATION OF EXCESS ADSORPTION

EXCESS OR GIBBS ADSORPTION (*n_e*) IS PARAMETER CALCULATED NEGLECTING THE VOLUME OCCUPIED BY THE ADSORBED PHASE, I.E. AS IF THE ENTIRE PORE VOLUME WAS ACCESSIBLE TO UNADSORBED FLUID


DETERMINATION OF VOLUME FRACTION

THE INVARIANT FOR A TWO-PHASE SYSTEM (AEROGEL+CO₂)

$$Z_{0}(\rho_{CO2}) = \int_{0}^{\infty} Q^{2} I_{0}(Q, \rho_{CO2}) dQ = 2\pi^{2} \phi_{1}(1-\phi_{1})(\rho_{1}^{*}-\rho_{2}^{*})^{2}$$


THE INVARIANT FOR A THREE-PHASE SYSTEM (Wu, Polymer, 1982)

$$Z(\rho_{CO2}) = \int_{0}^{\infty} Q^{2} I(Q, \rho_{CO2}) dQ =$$

= $2\pi^{2} \Big[\phi_{1} \phi_{2} (\rho_{1}^{*} - \rho_{2}^{*})^{2} + \phi_{2} \phi_{3} (\rho_{2}^{*} - \rho_{3}^{*})^{2} + \phi_{1} \phi_{3} (\rho_{1}^{*} - \rho_{3}^{*})^{2} \Big]$

THE VOLUME FRACTION OF THE ADSORBED PHASE CAN BE CALCULATED FROM THE DIFFERENCE OF INVARIANTS:

$$\phi_3 = \frac{Z - Z_0}{2\pi^2 \left[\phi_2(\rho_2^* - \rho_3^*)^2 + \phi_1(\rho_1^* - \rho_3^*)^2 - \phi_1(\rho_1^* - \rho_2^*)^2\right]}$$

CONCLUSIONS

>SANS COMBINED WITH THE TRANSMISSION MEASUREMENTS CAN BE USED TO STUDY THE ADSORPTION OF SCFs IN POROUS MATERIALS

>AT (T~T_c, P~P_c) AN EXTREMELY COMPRESSED ADSORBED PHASE IS FORMED WITH THE DENSITY ~ 1.1 g/cc SIMILAR TO CLOSELY PACKED CO₂ MOLECULES WITH THE vdW VOLUME

>IN THE MAXIMAL ADSORPTION REGIME $n_e=5.74$ g/g TO BE COMPARED WITH $n_e\sim0.2$ IN ZEOLITES and $n_e\sim0.9$ IN SUPERACTIVATED CARBON

SUBMITTED TO J.Chem.Phys.