Protein Interactions with Lipid Membranes by Neutron and X-ray Reflectivity and Grazing Incidence X-ray Diffraction

M. Kent, H. Yim, D. Y. Sasaki Sandia National Laboratories, Albuquerque, NM

S. Satija, Yong-Soo Seo National Institute of Standards and Technology, Gaithersburg, MD

J. Majewski, Erik Watkins LANSCE, Los Alamos National Laboratories, Los Alamos, NM

T. Gog, I. Kuzmencko APS, Argonne Nat. Lab.

Outline

- 1. Introduction to the methods
- 2. Model system (relevant to nanoscience)
- 3. Other systems new opportunities with SNS

1. Introduction

Biomimetic membrane platforms used in scattering studies

1. Langmuir monolayers

2. Supported bilayers

3. Hydrated stacks of bilayers

Introduction

(2-D crystal structure - lipids and proteins)

Neutron and X-ray reflection

Probe amino acid segment profile

Insight into protein orientation and conformation

Probes in-plane correlations, such as crystallinity

When does protein binding impact lipid phase behavior?

protein adsorption to lipid monolayers

Alter conditions in the subphase underneath the lipid layer (pH, composition, protein conc., etc)

More sensitivity to the protein with neutron reflection

 $\phi = 0.55 + 0.05, \rho_{myo.} = 1.43 \text{ g/cm}^3$

Model system: Proteins and peptides adsorbing to monolayers of metal-chelating lipids

- 1. Shnek, Pack, Sasaki, Arnold Langmuir (1994), 10, 2382.
- 2. Ng, Pack, Sasaki, Arnold Langmuir (1995), 11, 4048.

specific interaction between histidines and chelated metal ions, Cu^{2+} (8.4 kT) > Ni²⁺ (7.0 kT) > Zn²⁺

Myoglobin

Dimensions [Å]: 44 x 44 x 25

11 histidines, 5 exposed on surface

orientation of adsorbed protein will depend upon which histidines bind

Structure of lysozyme

Dimensions [Å]: 44 x 28 x 26

1 histidine, exposed on surface

Only one orientation expected upon binding

Introduction

Biophysics questions addressed in this study:

- importance of single versus multiple-site binding
- orientation and reversibility
- conformational changes of proteins upon adsorption
- effect of protein binding on lipid phase behavior

Learn how to manipulate proteins at synthetic surfaces

Neutron reflection - Lysozyme

Little change in layer thickness with coverage

Lysozyme

one binding site - one expected orientation

Reflectivity data consistent with side-on orientation

Grazing incidence X-ray diffraction

Lysozyme binding does not alter crystalline phase

Langmuir **2005**, 21, 6815 Langmuir **2004**, 20, 2819

Myoglobin

Dimensions [Å]: 44 x 44 x 25

11 histidines, 5 exposed on surface

Neutron reflection (time dependence)

Cu²⁺ ions

Ni²⁺ ions

Langmuir **2005**, 21, 6815 Langmuir **2004**, 20, 2819

Summary

myoglobin dimensions [Å]: 44 x 44 x 25

Isolated chains adsorb in a much thinner layer with Cu^{2+} than with Ni^{2+}

Adsorption is irreversible on experimental timescale!

Irreversible even at low coverage (for Cu(II) and Ni(II))

Interpretation

Some unfolding or denaturation occurs upon adsorption of myoglobin to Cu(II)-DSIDA

Adsorption alters lipid phase behavior

myoglobin (constant $\Pi = 40$ mN/m)

Myo. adsorption to DSIDA/Zn²⁺

(constant $\Pi = 40 \text{ mN/m}$)

 Cu^{2+} (8.4 kT) > Ni²⁺ (7.0 kT) > Zn²⁺

Conclusions

Multiple site binding:

-causes unfolding of myoglobin

greater extent for stronger interaction may lead to segmental insertion

-perturbs lipid packing greater extent for stronger interaction

Future work

Probe stability of specific protein folds/structures

Probe dynamics within lipid membranes:

vary surface pressure add cholesterol, fluid phase lipids, etc vary protein characteristics

Probe effect of protein binding on lipid phase state for other systems

Future work possible with SNS?

Denaturation of proteins on hydrophobic surfaces

Conformational changes of bound proteins

Dynamic assembly of protein complexes

Location of small molecules within ion channels, lipid bilayers, integral membrane proteins Orientation of bound proteins using crystal structure

Botulinum, tetanus, and diphtheria toxin assault on cell membranes

study recognition and permeation processes:

-binding orientation
-conformational changes associated with change in pH
-effect of receptor conc.

tetanus

Catalysis domain Bacterial protein using endocytosis to infect the host cell

fragment B ____

▲ fragment A →

From: Lalli et al, Trends in Microbiol, 2003

diphtheria

lational aboratories

Botulinum, tetanus, and diphtheria toxin assault on cell membranes

Diphtheria - one model of "open-pore" structure

human platelet integrin $\alpha_{IIb}\beta_3$

from: Adair and Yeager, PNAS 2002, 99, 14059

Conformational changes induced by:

- ligand binding
- changes in divalent cation coordination in MIDAS

Influenza hemagglutinin

from: Carr et al., PNAS 1997, 94, 14306

"Influenza hemagglutinin is spring-loaded by a metastable native conformation"

SNAREs

from Tochio et al Science 2001, 293, 698

Conformational changes are key to auto-inhibitory regulation

C-terminal transmembrane anchoring domain SNARE motif (parallel α -helical bundles) H_{abc} N-terminal domain (intramolecular chaperone?)

 H_{abc} domain interacts with the SNARE motif to generate a closed form

Induced conformational changes (open-activated or closed - inactivated) appear to influence:

-the specificity of SNARE pairing-the kinetics of SNARE complex formation

Conformational change induced by: nSec1 binding, pH increase 7 - 8.8

Platelet-derived growth factor receptor

D. Bray Ann. Rev.

Epidermal growth factor receptor

Conformational changes upon phosphorylation? Timing and sequence of events?

How many proteins are bound at any time? To what extent do they interact with each other?

Orientation of bound proteins using crystal structure

Multiple possible ganglioside binding sites

Data to higher q required for this method! (Schlossman et al Biophys. J. 2005 89, 1861)

C fragment is 47 kD with a large negatively charged area (red) opposing the high positive charge area (blue) of the ganglioside receptor site

4 nm

Neutron reflection

Greater sensitivity to the protein in $H_2O!$

How accurate is the thickness obtained? (+/-2 Å)

