Structural Studies of Proton-Conducting Inorganic Electrolytes

Sossina M. Haile California Institute of Technology Calum R.I. Chisholm, Dane A. Boysen, Tetsuya Uda, Lisa A. Cowan, Wim T. Klooster, Boris Merinov

Superprotonic Conductors: Solid Acids

What?

 Chemical intermediates between normal salts and normal acids; "acid salts"

 $\mathcal{V}_2(Cs_2SO_4) + \mathcal{V}_2(H_2SO_4) \rightarrow CsHSO_4$

Why?

- Transport properties of liquid acids
- Benefits of the solid state
- Exhibit structural transformations

Proton Transport Mechanisms

Applications for Solid Acids

- High protonic conductivity, all solid state
 - Hydrogen gas sensors, water electrolyzers
 - FUEL CELLS
 - Higher efficiency, cleaner than combustion engines
- Compared to state-of-the-art polymeric H⁺ conductors
 - Humidification not required => system simplification
 - Impermeable to gases => higher power output
 - High operating temp
 - Higher tolerance to fuel stream impurities => simplication
 - Higher catalyst activity => higher power output
 - Easier heat rejection => reduction in system size
 - Ideal for alcohol (methanol) fuel
 - $CH_3OH + {}^{3}\!/_2O_2 \rightarrow CO_2 + 2H_2O$

"Engineering" of Solid Acids

- Understand/control transition behavior
 - $T_{trans} = \Delta H_{trans} / \Delta S_{trans}$
 - Entropy drives transitions
 - Evaluate change in configurational entropy

Understand/control magnitude of conductivity

- Cond = proton concentration (N_a) × mobility (μ)
 - N_a and µ determined by both global structure and local environment of protons
 - Disorder in structure generally increases N_a and μ
- Both aspects require clear structural elucidation

Neutron Diffraction and Solid Acids

- Scattering lengths erratic with atomic mass
- Sensitive to light elements (e.g. H, D, Li)
 - H/D (Li, O) positions

– Proper stoichiometry

- Able to differentiate between atoms of similar atomic masses (i.e. electron densities)
 - Distribution of dissimilar species (e.g. S and P)
 - Superstructures
 - Mixed site occupancies

• *III.* β -Cs₃(HSO₄)₂[H_{2-x}(P_{1-x}, S_x)O₄]

I. Cs₃Li(DSO₄)₄: Superprotonic at RT?

• Reported compound: $Cs_{1.5}Li_{1.5}H(SO_4)_2$

- I43d, a = 11.734 Å
- One Cs, S, Li site; two O sites
- Dynamically disordered H-bonded SO₄ chains
- $d(O_{D}...O_{A}) = 3.38 \text{ Å}$
- Asymmetric H-bond [01-02]
- $d(S-O_D) \sim d(S-O_A)$
- H-bond occupancy = 1/6
- High Li thermal parameters
 - Merinov, Solid State Ion (1994)
- Transition at 162K (153K)
 - Baran, J. Mol. Struct. (1999)

I. Cs₃Li(DSO₄)₄: Conductivity

- Clear isotope effect
- H⁺, not Li⁺, conductor
- Activation energy is high
- Conductivity is not high
- 'Superprotonic'
 - ~ 0.4 eV
 - ~ $10^{-3} \Omega^{-1} cm^{-1}$ just above T_c

Merinov, Chisholm, Boysen & Haile, Solid State Ionics (2001)

Single Crystal Neutron Diffraction

with Wim Klooster

- Experimental
 - 2TanA diffractometer
 - High Flux Isotope Reactor
 - ANSTO (Australia)
 - Deuterated (>50%)
 - $-4.2 \times 4.2 \times 4.2 \text{ mm}^3$
 - *300K*
- Refinement Statistics
 - $WR(F_0^2) = 0.0495$
 - -S = 1.034

- Results
 - Cs, S, O similar to X-ray
 - H/D at entirely different location (1-type)
 - Symmetric: O(2)-O(2)
 - Li occupancy = $\frac{1}{3}$
 - $Cs_3 Li(DSO_4)_4$
 - vs. Cs₃Li₃H₂(SO₄)₄
 - 85% deuteration
- Chemical analysis
 - ICP-MS
 - Confirms neutron results

I. Cs₃Li(DSO₄)₄: Revised Structure

- Highly distorted LiO₄
- Comprised of O(2) only
- 0-0 = 2.77, 3.16 Å
- $d = 2.77 \text{ Å} \Rightarrow \text{H-bond}$

Li site occupied H-bonds not formed

 1_3 of sites

Li site unoccupied H-bonds formed

 $2/_3$ of sites

Klooster, Piltz, Uda & Haile, J. Solid State Chem. (2004)

'Non-superprotonic' behavior consistent with revised structure

II. Cs₂Na(HSO₄)₃: X-ray Diffraction

$Cs_2Na(HSO_4)_3$

hex: a = 8.571(2), c = 9.980(2) ÅUnusual 3-membered (HSO₄) rings

- Hexagonal structure
 - One Cs, Na, S site; 3 O sites
 - Diffraction symbol 6/m P6₃--
- X-ray diffraction unable to identify space group
 P6₃ or P6₃/m?
- O—O distances suggest two sites with O(1) as donor

$$- O(1) - O(2) = 2.96 \text{ Å}$$
$$- O(1) - O(3) = 3.02 \text{ Å}$$

 NMR data ⇒ only one proton position

• H position unknown

Chisholm, Cowan, Haile & Klooster, Chem. Mater. (2001)

II. Cs₂Na(HSO₄)₃: Conductivity

Observations:

- $\sigma_{33} > \sigma_{11}$
- But H-bonds in a-b plane?
- σ₁₁ exhibits curvature
- No transition before melt

Single Crystal Neutron Diffraction

with Wim Klooster

- Experimental
 - HB2A beam port, 4-circle diffractometer
 - HIFR, ORNL
 - Protonated
 - $-5.5 \times 2.5 \times 2.5 \ mm^3$
 - 300 K
- Refinement Statistics
 - $WR(F_0^2) = 0.1715$
 - -S = 1.385

II. $Cs_2Na(HSO_4)_3$: Neutron Diffraction

Fourier difference maps: O(1)—O(3) occupied; O(1)—O(2) empty

II. Cs₂Na(HSO₄)₃: Orientational Disorder

Locally

- Two orientations of SO₄ groups possible
- Globally
 - Neither preferred
 - Disorder may be
 - Static, or
 - Dynamic
- Configurational entropy

- RIn(2)=5.8 J/mol*K

II. Cs₂Na(HSO₄)₃: Conductivity

Observations:

- $\sigma_{33} > \sigma_{11}$
- But H-bonds in a-b plane?
- σ₁₁ exhibits curvature
- No transition before melt

Interpretation:

- O(32)-O(32) = 3.1 Å
- Interstitial sites along c
- Temperature sensitive disorder
- Configurational entropy stabilizes structure relative to a superprotonic phase
- More likely due to small size of Na⁺ cation

III. β -Cs₃(HSO₄)₂[H_{2-x}(P_{1-x}, S_x)O₄]

X-ray diffraction study

P,S distribution, H positions obtained only indirectly

C 2/c

x ~ 0.5

X(2) ~ S

Haile, Calkins & Boysen, J. Solid State Chem. (1998)

III. β-Cs₃... Conductivity

III. β -Cs₃... Neutron Diffraction

with Wim Klooster

- Basic structure confirmed
- XO₄ anions
 - $X(1)O_4 = (P_{y_2}S_{y_2})O_4$
 - $X(2)O_4 = SO_4$
 - x = 0.500(6)
- Proton positions
 - H(1): symm, centered bond:full; site:full occ
 - H(2): asymm, acentered bond: full, site: ~ ¼, ¾
 - H(3): asymm, distributed bond: ½; site: ¼ occupancy
- Global disorder/local order

Haile and Klooster, Acta Cryst. (1999)

Single Crystal Neutron Diffraction

with Wim Klooster

- Experimental
 - H6M beam port, 4-circle diffractometer
 - High Flux Reactor at Brookhaven National Labs
 - Protonated
 - $-1.4 \times 3.2 \times 2.2$ mm³
 - 15.0 (5)K, DISPLEX CS-202 closed cycle refridgerator
- Refinement Statistics
 - $WR(F_0^2) = 0.081$
 - -S = 1.25

III. β-Cs₃... Neutron Diffraction

• XO₄ chains in one of two arrangements

Summary

- $Cs_3Li(DSO_4)_4$
 - Structure, stoichiometry revised on the basis of SCND
 - Rationalize 'non-superprotonic' behavior
- $Cs_2Na(HSO_4)_3$
 - Space group determined by SCND
 - Proton/SO4-orientation disorder revealed
 - Insight into proton conduction, lack of phase transition
- β -Cs₃(HSO₄)₂[H_{2-x}(P_{1-x}, S_x)O₄]
 - Presumed structure confirmed by SCND
 - Multiple sources of entropy detailed
 - Quantitative analysis of entropy of RT phase
 - Confirmation of entropy model developed for SP phases

Acknowledgements

- Graduate Students
 - Calum Chisholm, Dane Boysen, Lisa Cowan
- Post-doctoral Scholars
 - Dr. Tetsuya Uda (Dr. Chisholm, Dr. Boysen)
- Collaborators
 - Dr. Wim Klooster (ANSTO)
- Staff
 - Dr. Sonjong Hwang (NMR)
- Funding
 - NSF (DMR)

