

Maikel C. Rheinstädter Institut Laue-Langevin, Grenoble, France

> *BioMaterials and Neutrons, AVS Meeting Boston, October 31 2005*

Exploring the collective dynamics of lipid membranes with inelastic neutron scattering

"Broadband" Neutron Spectroscopy

Mesoscopic Membrane Fluctuations

Maikel Rheinstädter, BioMaterials and Neutrons, AVS Meeting Boston, October 31 2005

Dynamics of lipids and membrane water)

(Phospho-)Lipids and Membranes

Towards biological membranes

Membrane Dynamics

- Incoherent inelastic neutron scattering
- NMR
- Dielectric spectroscopy

- Coherent in- and quasielastic neutron scattering
- Inelastic X-ray scattering

Correlated molecular motions might be responsible for 'functionalities' of the membrane and structural changes

Neutrons • and Biology

- Neutrons are (coherently) scattered equally well by light and heavy atoms
- Neutrons penetrate deeply into matter (little absorption by sample and substrate)
- H and D scatter very differently (selective deuteration)
- Neutrons are gentle, causing little or no damage to delicate systems
- Incident energy of the neutrons in the range of the excitations -> good energy resolution

Stacked Planar Membranes

Sample Preparation

"Sandwich-sample" with 500 mg of deuterated DMPC

"Humidity Chamber"

Scattering from aligned phases

Neutron Three-Axes to measure the short wavelength fluctuations

Short-Range Dispersion Relation on TAS

Dispersion relation as found in ideal liquids as liquid argon or liquid helium \rightarrow c-atoms of the acyl-chains behave "quasi liquid"

transition to weakly 1st order \rightarrow weak crystallization scenario

Coexistence of Gel and Fluid Phase

Neutron Spin-Echo to measure long wavelength undulations

Spin-Echo Technique

Spin-Echo Measurements

Maikel Rheinstädter, BioMaterials and Neutrons, AVS Meeting Boston, October 31 2005

Undulation "Dispersion" Relations

Maikel Rheinstädter, BioMaterials and Neutrons, AVS Meeting Boston, October 31 2005

Neutron and X-ray Reflectometry

Quasi- and inelastic measurements important to probe and improve theoretical membrane models

Elasticity parameters K and B from advanced (smectic) theory

Thanks to

- Tim Salditt, Institut für Röntgenphysik, Göttingen
- Wolfgang Häußler, FRMII, TUM
- Giovanna Fragneto, ILL, D17
- Wolfgang Schmidt, FZ-Jülich, IN12
- Franz Demmel, ILL, IN3
- Arno Hiess, ILL, IN8
- Tilo Seydel, IN10/IN16
- Fanni Juranyi, FOCUS, PSI
- Dieter Richter, FZ-Jülich

Maikel Rheinstädter, BioMaterials and Neutrons, AVS Meeting Boston, October 31 2005