Project-X: A Powerful Facility for Particle Physics

Stuart Henderson Physics for Everyone December 7, 2011

Questions I Will Try to Answer

- What brings us to this point?
- What is Project-X and how does it work?
- Why do we need Project-X?
- What else can we do with Project-X?

Fermilab's Legacy of Building Accelerators to Answer the Big Questions

Main Ring Construction (1969-1971)

- Main Ring Groundbreaking: Oct. 3, 1969
- Celebration of last Main Ring magnet: April 16, 1971

Energy Saver/Doubler/Tevatron Construction (1979-1983)

Project approved: July 1979

Last magnet installed: March18, 1983

Antiproton Source Construction (1983-1985)

Antiproton Groundbreaking: Aug. 16, 1983 First antiprotons collected: Sep. 6, 1985

S. Henderson, Dec. 7, 2011

Main Injector Construction (1993-1999)

<image>

Dedication: June 1, 1999

Groundbreaking: March 22, 1993

🛟 Fermilab

S. Henderson, Dec. 7, 2011

Particle Physics is all about the Big Questions

- How did the universe begin?
- Why are we here and where are we going?
- What is the universe made of?
- How many forces are at work in the universe?

We Have Assembled a Remarkably Powerful Picture of the Subatomic World

Fermilab has Played a Big Role in Answering the Big Questions

- What are the basic building blocks of matter?
- How many families of quarks & leptons are there?
- How do the basic building blocks interact with one another?
- What are the basic forces of nature and how do they act?

Fermilab

- Fermilab has played a central role in constructing this picture:
 - Bottom, top quarks and tau neutrino discovered/observed at Fermilab

But, Big Questions Remain!

- What is the origin of mass?
- Why are there so many kinds of particles?
- Is there a deeper connection between all these building blocks?
- Do all forces become one?
- What do neutrinos tell us?
- What happened to all the antimatter?
- What is dark matter?
- Mystery of dark energy?

Answering these questions requires a new, powerfule, accelerator at Fermilab: Project-X

Energy vs. Intensity

 When you think about particle accelerators you may think of the really big ones that strive for the highest energies:

 The future program at Fermilab relies on making the world's most intense beams of particles, and exploring the physics that can only be studied with such eXtremely intense beams

Physics at the Intensity Frontier

Rare Decays and Rare Processes

- Example: a Muon cannot "morph" into an Electron, as far as we know (known processes too small to observe)
- By producing a huge number of muons, we will search for "muon to electron conversion", which if seen, indicates startling new physics, perhaps pointing the way to a deeper structure

- Fermilab will study 1,000,000,000,000,000,000 muons searching for this...a number equal to the grains of sand on all the world's beaches!
- We need a new, very powerful accelerator to search for these very rare processes!

How do we think about these rare decays?

Neutrinos

- Neutrinos are very elusive.
 We are just beginning to understand what they are and how they work
- They are everywhere!
 - ~100 trillion neutrinos zip through each person every second.
 - There are one billion neutrinos for each proton or electron in the universe

Intense Beams of Neutrinos

• They are weird!

- They hardly interact with anything zipping through earth
- They weigh almost nothing (but not nothing)
- . They "morph" over large distances from one to another
- Do they travel faster than the speed of light?
- To make sense of them we need to produce them in Huge numbers in the lab
- We need a new, very powerful accelerator, to make sense of neutrinos!

Fermilab's Program

- Fermilab's accelerator-based program is focused on the Intensity Frontier
- We intend to build the accelerator facilities, build the experimental facilities and carry out the experiments that will enable Fermilab to be the leader on the Intensity Frontier
- Just as Fermilab's Tevatron, built 30 years ago, provided an incredibly powerful platform that enabled three decades of groundbreaking particle physics research
- We are now planning to build the next powerful facility to enable the next three decades of worldleading research with Project-X

The Project-X Accelerator Facility

Project-X Will Be....

- a state-of-the-art, world-leading accelerator facility at Fermilab
- ...providing the world's most powerful beams of protons
- ...to make the world's most intense beams of neutrinos, muons, kaons and rare nuclei
- ...which will cement Fermilab's position as the world-leader in the Intensity
 Frontier for decades to come
- ...and will also provide a platform for the next accelerator at Fermilab beyond PX

News and Plans

- We are busy building the scientific case, and making that case with our funding agency and the particle physics community
- Last week the physics community came together to assess the scientific opportunities at the Intensity Frontier

- We are advancing Project X technology through a vigorous R&D Program in many areas
- We want to be ready for construction by 2016
- Project X is a national project with international participation. Collaboration is extremely important to the success of Project X!

The Project-X Accelerator

Fermilab's Accelerator Complex in the Project X Era

Project X 3-GeV Experimental Campus

🛟 Fermilab

In the World of High-Power Proton Accelerators Project-X will be Unique

- Highest proton beam power on the planet
- Broadest range of proton beam energies available: 1-120 GeV
- Ability to provide beams to multiple experiments simultaneously
- Ability to tailor the beam properties to the needs of each experiment
- Upgradeable to very high power

Project-X is the ideal machine for intensity-frontier physics

Project-X Will Provide 5 MW of Beam Power: How Much is a MegaWatt?

5 MW powers ~4000 homes

Electric locomotive: 5 MW traction power

10 MW solar power plant

S. Henderson, Dec. 7, 2011

High Power Proton Accelerators: Some History

28

1950s: Materials Test Accelerator

The Landscape of High Power Proton Accelerators

Project-X Beam Power Compared

Muon, neutron, kaon facilities

Long Baseline Neutrino facilities

How Project-X Works

Making a high power beam requires several ingredients

- Source of particles
- A way to control the detailed distribution of beam particles in time (beam chopper system)
- A way to accelerate the particles: Superconducting Radiofrequency Accelerator
- A place to deliver the beam (a target)
- Project X builds upon tremendous developments in the last two decades on Superconducting Radiofrequency Accelerators

Superconductivity

 Normal conducting metals heat up when an electrical current is passed through them

- Superconductors are amazing materials that don't heat up when an electrical current is passed through them
- Some materials become superconducting when they are cooled to a few degrees above absolute zero (-460 °F)

Fermilab

 This means they can carry tremendous electrical currents

Normal Conductors vs. Superconductors

S. Henderson, Dec. 7, 2011

Normal Conducting Accelerating Cavity

- 1 Million Volts/meter;
- ~2 Million Watts RF power dissipated
- Long and inefficient

Super Conducting Accelerating Cavity

- 15 Million Volts/meter
- ~10 Watts RF power dissipated
- Short and efficient

Superconducting Linear Accelerator for Project-X

S. Henderson, Dec. 7, 2011

Project-X: A Powerful Facility for Particle Physics and Beyond

What else can we do with Project-X?

- A multi-MegaWatt high energy proton accelerator is a national resource, with potential application that goes beyond particle physics
- Such facilities are sufficiently expensive that the U.S. will not invest in multiple facilities with duplicative capabilities
- With proper design we can share Project-X beams with non-particle physics activities
- Some of these non-particle physics activities can have a very big impact on problems of national importance, like energy

Applications of High Power Proton Accelerators

Potential Benefits of Project-X: Materials Irradiation for Nuclear Energy

- Some materials used in nuclear reactors suffer from degraded properties after many years in the reactor environment
- Materials for next generation nuclear reactors need an order of magnitude greater radiation resistance than those in use today
- One can build a facility to study materials in extreme radiation environments

Swelling of Stainless Steel

Accelerator Driven Reactors

High-power, highly reliable proton accelerator

Linac

Subcritical nuclear reactor

 Designed to be incapable of maintaining a chain reaction Neutron-producing target system

Reactor core

Applications: Accelerator Driven Subcritical Reactor Systems

- Accelerator Driven Reactors may be useful for
 - Generating electrical power with inherent safety (just shut off the accelerator)
 - Transforming highly radioactive nuclear waste to much less radioactive forms to help solve the country's nuclear waste problem
- Project-X could help to develop this technology for use elsewhere

Applications: Neutron Imaging

- Today's highest-power proton accelerators are utilized to produce neutron and muon beams for materials science
- Neutrons have unique properties, which make them very useful for imaging

Neutron imaging of a BMW engine showing oil flow and lubrication (B. Schillinger et. al., Physica B 385 (2006) 921)

Project-X Will Be a Very Versatile Tool

Long-baseline Neutrinos

Rare Kaon Decays

Short-baseline Neutrinos

> Muon Physics

Standard Model tests with Nuclei

Materials Irradiation Cold muons/ neutrons for materials sci.

Accelerator Driven Systems & Fermilab

- Fermilab is going after the most exciting questions in particle physics, the most interesting questions about the nature and future of our universe.
- We are planning to build a next generation, world's most powerful proton accelerator to power Fermilab and the nation's particle physics program for the next three decades.

There are complementary approaches:

The Energy Frontier exploits Einstein's mass-energy relation

E=mc²

appearance of **real** new particles

е

High energy crucial

The Intensity Frontier exploits Heisenberg's uncertainty principle

∆E∆t ≳ ħ appearance of **virtual** new particles

Feyman's tools

High intensity crucial

Test Facilities: ASTA and CMTF

- Advanced Superconducting Test Accelerator (ASTA) under construction at NML
- Cryomodule Test Facility (CTF) to allow cryogenic and RF testing of assembled cryomodules

S. Henderson, Dec. 7, 2011

Project X Reference Design

Fermilab⁴⁹

- Unique capability to provide multi-MW beams to multiple experiments simultaneously, with variable bunch formats.
- Provides U.S. Intensity Frontier leadership for decades!

0 700

Final Assembly

Fermilab SRF infrastructure

Cavity tuning machine

MP9 Clean Room

1st Dressed Cavity

1st U.S. built ILC/PX Cryomodule