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Classical aeroelastic flutter instability 
historically has not been a driving issue in wind 
turbine design.  In fact, rarely has this issue even 
been addressed in the past.  Commensurately, of 
the wind turbines that have been built, rarely has 
classical flutter ever been observed.  However, 
with the advent of larger turbines fitted with 
relatively softer blades, classical flutter may 
become a more important design consideration.  
In addition, innovative blade designs involving 
the use of aeroelastic tailoring, wherein the blade 
twists as it bends under the action of 
aerodynamic loads to shed load resulting from 
wind turbulence, may increase the blades 
proclivity for flutter.  With these considerations 
in mind, it is prudent to revisit aeroelastic 
stability issues for a MW-sized blade with and 
without aeroelastic tailoring.  Focusing on 
aeroelastic stability associated with the shed 
wake from an individual blade turning in still air, 
the frequency-domain technique developed by 
Theodorsen for predicting classical flutter in 
fixed wing aircraft has been adapted for use with 
a rotor blade.  Results indicate that the predicted 
flutter speed of a MW-sized blade is slightly 
greater than twice the operational speed of the 
rotor.  When a moderate amount of aeroelastic 
tailoring is added to the blade a modest decrease 
(12%) in the flutter speed is predicted.  By 
comparison, for a smaller rotor with relatively 
stiff blades, the predicted flutter speed is 
approximately six times the operating speed.  
When frequently used approximations to 
Theodorsen’s method are implemented, drastic 
under-predictions result, which, while 
conservative, may adversely impact blade 
design.  These under-predictions are also evident 
when this MW-sized blade is analyzed using 
time-domain methods. 

Although classical aeroelastic flutter has 
generally not been a driving issue in utility scale 
wind turbine design, one case in which classical 
flutter was observed involved a vertical axis 
wind turbine turning in still air with variable 
speed capability [1,2].  The rotor was 
purposefully operated at ever increasing RPM 
until the flutter boundary was breached and 
dramatic classical flutter oscillations were 
observed.  The flutter speed and associated 
vibratory frequency and mode shape were 
subsequently predicted using software developed 
for that purpose and, good agreement was 
obtained between the measured and predicted 
results.  The flutter, incidentally, occurred at 
approximately twice the operating speed of the 
rotor.  
 
For larger turbines fitted with relatively softer 
blades, classical flutter may become a more 
important design consideration.  Innovative 
blade designs involving the use of aeroelastic 
tailoring, wherein the blade twists as it bends 
under the action of aerodynamic loads to shed 
load resulting from wind turbulence, increases 
the blades proclivity for flutter.  As a reference 
point, in an earlier work for a 20 kW HAWT 
(Horizontal Axis Wind Turbine) rotor with stiff, 
aeroelastically tailored 5 m blades, Lobitz and 
Veers [3] predicted rotor flutter speeds that were 
several times the operating speed, rendering 
flutter a moot issue.  With the prospect of 
encroaching stability boundaries associated with 
state-of-the-art rotors, it is prudent to investigate 
aeroelastic stability issues for MW-sized blades, 
and the adequacy of the approximations 
embodied in dynamic aeroelastic analysis design 
tools that have been used in the past in 
conjunction with smaller, stiffer blade designs 
where stability boundaries are remote relative to 
the rotor operational speeds. 

__________________________ 
* Sandia is a multiprogram laboratory operated 
by Sandia Corporation, a Lockheed Martin 
Company, for the United States Department of 
Energy under Contract DE-AC04-94AL85000. 

 
The analysis of classical flutter in wind turbines 
necessitates the use of unsteady aerodynamics.  



As pointed out by Leishman [4], for horizontal 
axis wind turbines there are two interconnected 
sources of unsteady aerodynamics.  The first is a 
result of the trailing wake of the rotor and is 
addressed by investigating the interactions 
between the rotor motion and the inflow.   The 
second, which will be the focus of this paper, is 
due to the shed wake of the individual blades and 
can be addressed using techniques developed for 
analyzing flutter in fixed-wing aircraft.  To 
simplify the analysis for this latter source, the 
rotor is assumed to be turning in still air, and, 
thus, for no inflow, unsteady aerodynamics 
caused by the trailing wake can be neglected.  
Consequently, the aerodynamics for a single 
blade is similar to that of a fixed wing with a free 
stream velocity that varies linearly from the root 
to the tip, assuming that the shed wake of the 
preceding blade dies out sufficiently fast so that 
the oncoming blade will encounter essentially 
still air.  This assumption did not seem to 
degrade the predictions associated with the 
vertical axis wind turbine mentioned above [1,2].  
The blade also differs from the wing structurally 
in that it is centrifugally stiffened and rotating 
coordinate system effects are included in the 
equations of motion (i.e. Coriolis and centrifugal 
softening terms).   
 
As a further simplification, the single blade is 
attached to a fixed hub that can only rotate.  
Hansen [5] asserts that a single blade analysis to 
determine aeroelastic stability is unconservative 
and that when the complete turbine is analyzed 
flutter speeds are significantly lower.  However, 
his analysis deals only with unsteady 
aerodynamics associated with the interaction 
between the inflow and the rotor, and his claim 
may not be true for the unsteady aerodynamics 
associated with the shed wake from the blade 
that will be addressed here.  A complete 
approach would combine the unsteady 
aerodynamics associated with both the inflow 
and the shed wake from the blades using a 
complete wind turbine model.  However, the 
simple aeroelastic stability analysis presented 
here can still serve as a sanity check for use 
during the blade design process. 
 
The technique modified for the aeroelastic 
stability analysis of a HAWT blade was 
developed by Theodorsen6 and has been 
reproduced in several aeroelasticity textbooks 
[7,8].  Theodorsen’s solution is couched in the 
frequency domain and contains both circulatory 
and noncirculatory aerodynamic terms.  These 

terms are linear functions of the blade twist and 
its first and second time derivatives, and  the first 
and second time derivatives of the blade 
plunging motion (flapping motion perpendicular 
to the free stream).  Moreover, the circulatory 
terms are multiplied by a complex-valued 
function (the Theodorsen Function) which 
depends on the reduced frequency and hence, the 
frequency of the flutter oscillation.  The presence 
of this function necessitates an iterative solution 
procedure since the flutter oscillation frequency 
is not known a priori. 
 
Theodorsen’s technique described above has 
been modified over the years in a variety of ways 
to simplify the solution procedure.  One 
modification entails replacing the Theodorsen 
function with a unit value thereby reducing the 
unsteady aerodynamic theory to a quasi-steady 
one and eliminating the need for iteration.  Other 
modifications involve removing terms (such as 
the terms that contain second derivatives in time) 
from the equations.  To investigate the 
ramifications of these simplifications, aeroelastic 
stability predictions for a MW-sized 
aeroelastically tailored blade design have been 
made using modifications of the technique in 
addition to those made employing the 
unadulterated equations. 
 
Computations using the time-domain 
ADAMS/AERODYN [9,10] software, which 
contains options for both the quasi-steady and 
unsteady aeroload computation, are made here to 
corroborate the frequency-domain results, and to 
discover possible inadequacies in simulating 
larger more flexible and possibly twist/coupled 
rotors using computational tools that rely on 
quasi-steady aeroload computation.  
 
The remaining sections of the paper include a 
description of the analysis technique used for 
aeroelastic stability predictions, classical flutter 
speed results for the MW-sized blade model 
(with and without aeroelastic tailoring), and a 
summary with conclusions.    
 
2 Analysis technique 
 
As discussed above, unsteady aerodynamics is 
required for classical aeroelastic flutter 
prediction.  Focusing on aeroelastic stability 
associated with the shed wake from an individual 
HAWT blade, the technique developed by 
Theodorsen [6,7,8] for fixed wing aircraft has 
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     Figure 1.  Blade cross section schematic. 
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been adapted for use with HAWT blades.  
Theodorsen’s technique specifically addresses 
classical flutter in an infinite airfoil (i.e. two 
dimensional) undergoing oscillatory pitching and 
plunging motion in an incompressible flow as 
shown in Figure 1.  The pitching motion is 
represented by α, and the plunging motion, by h 
in the figure.  L represents the lift vector 
positioned at the ¼ chord, M is the pitching 
moment about the elastic axis and U is the free 
stream velocity.  The origin of the coordinate 
system is positioned along the chord line at the 
elastic axis.  
 
If the blade is simultaneously pitching and 
plunging in an oscillatory fashion as described 
below, 
           tiehh ω

0=            tie ωαα 0= ,             

where h0 and α0 are complex constants, 
Theodorsen shows that the lift force, L, and the 
pitching moment, M, are given by equations 1, 
where , b, da 1, and d2  are as shown in Figure 1.  
Note that a is defined as the fraction of b (the 
half-chord) that the elastic axis is aft of the mid-
chord.  Thus in Figure 1, a is negative since the 
elastic axis is ahead of the mid-chord.  The 
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     Figure 2. The Theodorsen function.
Theodorsen function, C(k), which is a complex-
valued function of the reduced frequency,            
k = ω b/U, is given by: 
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where H denotes the Hankel function.  The real 
and imaginary parts of C are displayed 
graphically in Figure 2.   
 
In order to incorporate equations (1) in a finite 
element procedure for subsequent complex 
eigenvalue analysis, they must be recast in a 
pseudo time domain form for developing 
contributions to the finite element mass, stiffness 
and damping matrices.  This can be 
accomplished by leaving the Theodorsen 
function as is, but using the explicit ω’s in the 
equations to construct time derivatives, 
producing the following equations (2) below. 
 
Now, using equations (2) with the principle of 
virtual work, contributions to the finite element 
stiffness, mass and damping matrices can be 
developed that include the complex-valued 
Theodorsen Function. 
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In matrix notation, the finite element equation to 
be used for investigating the aeroelastic stability 
of the wind turbine blade is given in equation (3) 
below, where M is the conventional mass matrix 
and K(u0,Ω) is the stiffness matrix, centrifugally 
stiffened commensurate with displacements, u0, 
resulting from centrifugal loads corresponding to 
the rotor rotational speed, Ω.  The displacement, 
u, and its time derivatives represent motion about 
this centrifugally loaded state.  The α and h 
degrees of freedom are included in u.  The two 
matrices, CC (Ω)and Kcs(Ω), the Coriolis matrix 
and the centrifugal softening matrix respectively, 
are due to rotating coordinate system effects and 
depend upon the rotational speed.  Bending/twist 
coupling is included through the presence of  the 
matrix Ktc.  The aeroelastic matrices, Ma(Ω), 
Ca(ω,Ω) and Ka(ω,Ω), all depend on Ω since the 
free stream velocity at any blade radius is 
governed by it (the rotor is assumed to be turning 
in still air).  The aeroelastic matrices, Ca(ω,Ω) 
and Ka(ω,Ω), also depend on ω, the natural 
frequency of the mode shape of interest, which 
occurs in the argument of the Theodorsen 
function.  Since this frequency is unknown at the 
onset of the computations an iterative process is 
required for obtaining accurate results. 

However, before that is done, it is noted that the 
HAWT blade does not conform to an infinitely 
long uniform wing to which the above equations 
apply.  Rather, such quantities as the semi-chord, 
b, and the free stream velocity, U, vary 
significantly along the span of the blade.  
Moreover, the lift curve slope, which in the 
above equations is assigned the theoretical value 
of 2π corresponding to a flat plate, varies with 
blade span.  These variations can be 
approximated by assembling a conglomerate of 
uniform blades, wherein the above equations are 
assumed to be applicable incrementally.  
Specifically, the quantities mentioned above are 
represented by a linear variation over the length 
of the element and included within the integral 
over the element length associated with the 
principle of virtual work. 
 
Simplified versions of equations (2) have been 
used over the years.  One simplification involves 
eliminating all terms containing α& , α&& , and h  
from the equations.  Another replaces the 
Theodorsen function with a constant value of 
unity, which corresponds to that function being 
evaluated at the argument of  k = ω b/U = 0, 
transforming the unsteady aerodynamic theory to 
a quasi-steady theory.  The ramifications of these 
simplifications will be explored later in the 
paper. 

&&

 
The iterative procedure developed for the 
aeroelastic stability analysis of the rotor blade is 
composed of the following steps:  

The MSC NASTRAN (www.mscsoftware.com) 
commercial finite element software is used for 
this aeroelastic stability investigation.  The 
contributions to the stiffness mass and damping 
matrices discussed above are supplied to 
NASTRAN via a NASTRAN input option.  
NASTRAN can accommodate non-symmetric, 
complex-valued matrices as are required in this 
effort, and it provides a number of complex 
eigenvalue solvers for the stability analysis. 

 
1. Select an Ω for investigation. 
2. In a quasi-static NASTRAN run, create 

K(u0,Ω) for subsequent eigenvalue 
analysis. 

3. Provide an initial guess for ω or update 
it from the prior calculation. 

4. Using a NASTRAN complex 
eigenvalue solution procedure, compute 
modes, frequencies and damping 
coefficients.  

The blades are modeled with NASTRAN beam 
(CBEAM) elements, which do not have a 
provision for the coupling between bending and 
twisting that is required for aeroelastic tailoring.  
Consequently, additional terms are added to the 
stiffness matrix in the manner described in [11] 
to effect this coupling.  Additional terms are also 
added to the various matrices to provide for 
rotating coordinate system effects (Coriolis and 
centrifugal softening terms) using the procedure 
outlined in [12]. 

5. Select a mode with a small or negative 
damping coefficient and return to step 3 
with corresponding frequency update. 

6. When the prior updated frequency is 
sufficiently close to the subsequently 
computed one, either suspend 
computations or modify Ω and return to 
step 1. 

 
The end goal in this process is to identify the 
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eigenmode that exhibits a negative damping 
coefficient for the lowest rotor rotational speed.  
This speed is designated as the classical flutter 
speed for the blade.  Usually it is associated with 
a mode containing a combination of twisting and 
flapping motion. 
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  Figure 3.  Schematic for the infinitely long 
                  uniform flat-plate airfoil. 

 
3 Results 
 
Before launching into computations for a rotor 
blade, a few verification exercises are useful to 
develop confidence in this computational 
procedure.  Solutions predicting classical flutter 
speeds for infinitely long uniform flat-plate 
airfoils in subsonic incompressible flow have 
been computed by Theodorsen et. al. [l3] and 
reproduced in [14].  A schematic of the 
configuration associated with these solutions is 
shown in Figure 3.  Many of the quantities in this 
figure are consistent with those of Figure 1 with 
the exception of Kα and Kh.  These represent the 
torsional and flapping (plunging) stiffnesses of 
the airfoil.  Other quantities of interest in this 
analysis are given below: 
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where ρ is mass per unit length in the direction 
of the chord.  As the coordinate system is 
positioned along the chord line at the elastic axis, 
the center of gravity, xcg, is fore or aft of the 
elastic axis, depending on its sign (positive for 
aft).  One final dimensionless group quantified in 

this analysis, the mass ratio, is given by 
2bm ∞πρ  where ∞ρ  is the free stream density. 
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    Figure 4.  Flutter speed predictions for an 
                     infinitely long flat-plate airfoil with 
                    ωh/ωα = 0.707, rα = 0.5, a = -0.2, and 
                    2b∞πρm = 10. 

 
In Figure 4, the solid curve represents 
Theodorsen’s flutter speed (UF) predictions for 
the infinitely long airfoil with the characteristics 
indicated in the figure caption.  The curve shows 
how the flutter speed varies with the chordwise 
location of the center of mass.  The circles, 
which correspond to predictions made using the 
procedure described in the preceding section, 
indicate that current predictions are in good 
agreement with Theodorsen’s results.  The circle 
to the far left associated with the infinity arrow 
indicates that when xα = -0.05 the airfoil is 
impervious to flutter instability, consistent with 
the practice of mass loading the leading edge to 
avoid the prospect of flutter.  Generally the mode 
shapes associated with the onset of flutter 
contain significant amounts of both plunging and 
pitching motion. 
 
Figure 5 provides results for an infinite airfoil 
with cross sectional properties (see figure 
caption) that are more closely aligned with a 
conventional wind turbine blade.  As before, the 
circles indicate that current predictions are in 
good agreement with Theodorsen’s results.  
Additional results are presented at xα = 0.1, 
wherein various approximations to the complete 
theory are made.  These modifications have been 
implemented over the years to simplify the 
computation of the aerodynamic loads.  The 
modifications investigated here involve 
eliminating the terms containing α& , α&& , and h  &&



Table 1.  Characteristics of the 1.5 Mw baseline  
               WindPACT blade and rotor. 
Characteristic Units Value 
Rated power MW 1.5 
Rotor diameter m 70 
Max rotor speed rpm 20.5(.342 hz) 
Max tip speed m/s 75 
Blade coning deg 0 
Max blade chord m 8% of radius 
Radius to blade root m 5% of radius 
Rotor solidity  0.05 
Blade mass kg 4230 
Hub mass kg 15104 
Total rotor mass kg 32016 
1st flapwise frequency hz 1.233 (1.199) 
1st edgewise frequency hz 1.861 (1.714) 
2nd flapwise frequency hz 3.650 (3.596) 
1st torsional frequency hz 9.289 (9.846) 
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 Figure 5.  Flutter speed predictions for an 
                  infinitely long flat-plate airfoil with 
                 ωh/ωα = 0.133, rα = 0.5, a = -0.3, and  
                 = 20. 2bm ∞πρ
from Equations 3 and/or approximating the 
Theodorsen Function with the constant value of 
1.0+i0.0, which eliminates the influence of prior 
history on the loads.  Results show that just 
approximating the Theodorsen Function 
produces a significant under-prediction of the 
flutter speed and, when combined with the 
elimination of terms, a substantial reduction 
occurs.  While these errors are on the 
conservative side, they are extreme enough to 
adversely affect blade design.   

 
in parentheses in this table were computed with 
the current computational procedure for the 
parked rotor configuration.  They differ from the 
ones reported in the WindPACT study, which 
were computed using the ADAMS/AERODYN 

[10,11] software, because the two models are 
inherently different and only minimal efforts 
were made to minimize the discrepancies.  In 
Figure 7 a planform view of the blade is 
presented showing the positions of the elastic 
axis and the axis representing the locus of the 
cross sectional center of gravity.  As the elastic 
axis is forward of the mid-chord, the quantity, a, 
in Equations 3 is negative, and it varies along the 
span in a range from –0.354 to –0.284.  Since in 
this implementation a constant value of a is 
required, a mid value of –0.32 has been selected. 

 
Having developed some confidence in the 
computational procedure, it is applied to the 
large relatively soft wind turbine blade shown in 
the wire-frame illustration of Figure 6.  This 
blade, termed the ‘baseline’ blade, was designed 
as part of the WindPACT Rotor Design Study 
[15].  Some characteristics of this blade and the 
associated rotor are displayed in Table 1. 

 
Aeroelastic stability predictions for the rotor 
turning in still air were made for this baseline 
model and for a similar one which contained a 
level of flap/twist-coupling corresponding to the 
coupling coefficient set at 0.4 (relative to a 

 
Although not readily apparent from Figure 6, the 
blade has a modest amount of twist (11.1 deg. at 
the root to 0.0 deg. at the tip).  The frequencies  

 

    Figure 6.  Wire-frame illustration of the 1.5 Mw 
                     baseline WindPACT blade. 
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 Figure 7.  The 1.5 Mw baseline WindPACT  
                  blade planform showing the location 
                  of the elastic axis and the locus of the 
                  cross sectional center of gravity. 



theoretical maximum of 1.0 based on material 
stability concepts [11]).  Results for the predicted 
rotor flutter speed are reproduced in Figure 8 for 
both the complete theory and for various 
approximations to it.  For the complete theory 
applied to the uncoupled blade, the predicted 
flutter speed is slightly greater than twice the 
operational speed of the rotor.  By comparison, 
for the smaller rotor with relatively stiff blades 
examined in [3], the predicted flutter speed was 
approximately six times the operating speed.  
When a moderate amount of flap/twist-coupling 
is added to the WindPACT blade a modest 
decrease in the flutter speed is predicted.  For the 
baseline blade the complex mode shapes 
associated with the onset of flutter contain 
significant amounts of edgewise (motion in the 
direction of the chord), flapping and pitching 
motion, as shown in Figure 9.  In classical 
flutter, motion in the edgewise direction is 
generally minimal, and the large amount 
predicted here is thought to be due to the fact 
that the blade is twisted and that the frequency of 

the second edgewise mode (6.153 Hz) is close to 
the frequency of the flutter mode (6.234 Hz).  In 
fact when flutter predictions are made for an 
entirely similar blade that is not twisted, 
edgewise motion in the associated mode is 
minimal.  
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Figure 8.  Flutter speed predictions for the 1.5 Mw baseline WindPACT blade for  
                                   uncoupled and twist/coupled configurations.  In the uncoupled configuration  
                                   ωh/ωα = 0.133,  a = -0.32. 

 

 
Observing the results for the approximate 
theories in Figure 8, the ones that include 
approximating the Theodorsen Function with the 
constant value of 1.0+i0.0, yield relatively 
drastic under-predictions, with the flutter speeds 
dropping into the vicinity of the operating speed.  
The character of the damping coefficient curve 
as a function of rotor speed is also markedly 
different as shown in Figure 10.  The 
characteristic and substantial rise in damping 
prior to the onset of flutter is absent when the 
above approximation is implemented.  The 
decline of the natural frequency of the flutter 
mode is similar for full and approximate cases 
(see Figure 10).  Approximating the Theodorsen 
Function with the constant value of 1.0+i0.0, 
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.  Mode shape at the onset of flutter for the 1.5 Mw baseline WindPACT uncoupled blade.
eliminates the influence of prior 
the aerodynamic loads, reducing the 
rodynamic theory to a quasi-steady 
time domain equivalent of the 

 function, as indicated by Leishman 
able through the use of the Wagner 

Function.  Appropriate CFD procedures can also 
capture this history-dependent (unsteady) 
aerodynamic behavior .  For transient 
computations that do not include this history 
effect, stable solutions for this particular blade 
may be difficult to obtain. 
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Figure 10.  Damping coefficient and frequency of the flutter mode versus rotor speed 
                                     for unsteady and quasi-steady aerodynamics. 



In fact, results for the 1.5 Mw baseline 
WindPACT blade turning in still air, obtained 
using the ADAMS/AERODYN [9,10] time 
domain software indicate dramatic instability 
(characterized by tens of degrees of oscillatory 
pitch) at different hub rotational speeds, 
depending on the aerodynamic theory used.  For 
all of these computations the blade is constrained 
to always be in the linear aerodynamic regime 
through judicious selection of the lift curves for 
the blade airfoils.  Commensurate with the 
Theodorsen theory, aerodynamic drag and 
aerodynamic pitching moments due to airfoil 
section properties are assumed to be zero (an 
additional approximation in this analysis).  In 
order to preserve numerical stability a small 
amount (0.0005) of stiffness proportional 
damping was included in the ADAMS model.  
Generally, any structural damping tends to 
increase flutter speeds, but the small amount 
included in this analysis is thought to have 
minimal effect. 
 
When the “STEADY” option in AERODYN is 
selected, wherein the aeroloads are computed 
using instantaneous values of the motion (α, , 
etc.), i.e. quasi-steady aerodynamics, the onset of 
instability occurs at a rotor speed of 0.4610 Hz, 
as shown in Figure 11.  Only the initiation of the 

instability is shown and not its growth to tens of 
degrees of oscillation.  In order to trigger the 
instability, a force was suddenly applied at the 
quarter chord near the tip of the blade at a rotor 
speed of approximately 0.435 Hz.  The torsional 
oscillations from this suddenly applied load tend 
at first to be slowly dying out but then exhibit an 
exponential growth pattern indicative of 
instability.   The principal frequency of the 
unstable pitch oscillation is 7.02 Hz., down from 
the frequency of the torsional mode reported in 
Table 1, as is characteristic for flutter instability.  
When the “BEDDOES” (Beddoes-Leishman 
dynamic stall model [4]) option in AERODYN is 
selected, which utilizes the Wagner function to 
calculate aeroloads that depend on the history of 
the motion in addition to instantaneous values, 
i.e. unsteady aerodynamics, the onset of the 
instability occurs at a rotor speed of 0.6056 Hz, 
shown also in Figure 11.  Again only the initial 
segment of the unstable behavior is displayed.  
No artificial trigger was required in this case as 
the numerical solution exhibits low-level noise 
beginning at a rotor speed of approximately 0.55 
Hz.  The principal frequency of the unstable 
pitch oscillation is 6.67 Hz., also down from the 
frequency of the torsional mode reported in 
Table 1.   When the aeroloads are turned off the 
solution displayed in Figure 11 is entirely stable 
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Figure 11.  Quasi-steady (AERODYN “Steady” option) and unsteady (AERODYN 

                                      “Beddoes” option) time domain instability predictions for the 1.5 Mw  
                                      baseline WindPACT uncoupled blade. 



over the rotor speed range.  Evidence of 
numerical noise noted above, although much 
diminished, is apparent in this case also, 
beginning near the same rotor speed.  
 
The ADAMS/AERODYN instability points are 
in qualitative agreement with those obtained 
using the Theodorsen theory for the uncoupled 
blade, as shown in Figure 8.  For the “STEADY” 
aeroload option a moderately greater rotor flutter 
speed is predicted relative to the Theodorsen 
results, and, for the “BEDDOES”, somewhat less 
than the Theodorsen predictions.  Some 
discrepancy is expected as the frequency domain 
approach utilizes finite element theory and the 
time domain approach relies on a lumped 
spring/mass theory.  In fact evidence exists in 
Table 1 of discrepancies between computed 
natural  frequencies for the two computational 
methods, that could provide a plausible 
explanation for the discrepancies in the rotor 
flutter speeds noted here. 
 
4 Summary and Conclusions 
 
With the advent of larger turbines fitted with 
relatively softer blades, classical flutter may 
become a more important design consideration.  
In addition, innovative blade designs involving 
the use of aeroelastic tailoring, wherein the blade 
twists as it bends under the action of 
aerodynamic loads to shed load resulting from 
wind turbulence, may increase the blades 
proclivity for flutter. With the above 
considerations in mind, classical flutter issues 
are revisited for the baseline WindPACT blade 
(1.5 MW rotor) turning in still air for both 
uncoupled and twist/coupled (coupling 
coefficient of 0.4) configurations.  Using a 
frequency-domain analysis tool verified with 
solutions obtained in the literature for two-
dimensional, uniform, flat-plate airfoils, results 
for the uncoupled blade indicate that the 
rotational speeds at the incidence of flutter are 
approximately twice the operational speed.  In 
comparison, flutter speeds for smaller stiffer 
blades are predicted to be several times the 
operating speed.  When twist/coupling is 
incorporated in the blade, a modest (12%) 
reduction in the flutter speed is observed.   
 
Flutter results for simplifying approximations to 
the full theory show that approximating the 
Theodorsen Function with the constant value of 
1.0+i0.0, yields relatively drastic under-

predictions, with the flutter speeds dropping into 
the vicinity of the operating speed.  This 
approximation essentially eliminates the 
influence of prior history on the aerodynamic 
loads, transforming the unsteady aerodynamic 
theory to a quasi-steady aerodynamic theory.  
Corroborating time domain computations have 
been completed here using the 
ADAMS/AERODYN software.  In the time 
domain the unsteady aerodynamics are included 
through the use of the Wagner function, an 
option that is available in this software package. 
Computational results for both quasi-steady and 
unsteady aerodynamic theories support the 
frequency domain results, with the flutter rotor 
speed from the quasi-steady theory substantially 
less than that from the unsteady theory.  As 
larger more flexible and possibly twist/coupled 
HAWT blades tend to experience classical flutter 
at lower relative rotational speeds (compared to 
their operational speed) than their smaller stiffer 
counterparts of the past, theoretical 
approximations that remove the influence of 
unsteady aerodynamic effects result in 
computational rotor flutter speeds that can 
approach rotor operational speeds.  While 
conservative for avoiding flutter, this error may 
adversely affect blade design, either by 
indicating premature flutter, or, more covertly, 
by significantly reducing the aerodynamic 
damping relied upon to mitigate blade vibration. 
The ability to obtain stable time-domain 
solutions may also be compromised. 
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