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ABSTRACT

There is uncertainty in the performance of wind energy installations due to unknowns in the local wind
environment, machine response to the environment, and the durability of materials. Some of the unknowns
are inherently independent from machine to machine while other uncertainties are common to the entire fleet
equally. The FAROW computer software for fatigue and reliability of wind turbines is used to calculate the
probability of component failure due to a combination of all sources of uncertainty. Although the total
probability of component failure due to all effects is sometimes interpreted as the percentage of components
likely to fail, this perception is often far from correct. Different amounts of common versus independent
uncertainty are reflected in economic risk due to either high probabilities that a small percentage of the fleet
will experience problems or low probabilities that the entire fleet will have problems. The average, or
expected cost is the same as would be calculated by combining all sources of uncertainty, but the risk to the
fleet may be quite different in nature. Present values of replacement costs are compared for two examples
reflecting different stages in the design and development process. Results emphasize that an engineering
effort to test and evaluate the design assumptions is necessary to advance a design from the high
uncertainty of the conceptual stages to the lower uncertainty of a well engineered and tested machine.

INTRODUCTION

The return on an initial capital investment in wind turbines is obtained by continuous operation of the
machines over several years. The financial risk, or expected costs, must be examined and quantified before
large investments can be made and large numbers of machines can be built. Certainly, investors expect
some estimate of the risk they are taking with their money for comparison with the projected returns and
other investment options. However, risk can be difficult to quantify with relatively new technologies or new
kinds of hardware. In the case of wind turbines, the risk is driven by uncertainty, especially in the durability
of the structure. A large part of the financial risk of operating wind turbines is in the replacement costs
(and ancillary loss of revenue) associated with broken components.

The fatigue life of many wind turbine components is susceptible to large uncertainties for two reasons.
First, the fatigue resistance of all materials has a large amount of inherently random scatter. That is, given
two nominally identical pieces of material repeatedly stressed under identical conditions, the two pieces
may fail at lifetimes different by factors of ten or even hundreds. Second, the nature of the fatigue process
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is such that a small change in the loading experienced by the material will lead to a large change in the
material lifetime. This sensitivity exacerbates the problem of not knowing the loadings perfectly. Small
uncertainties in the loadings lead to large uncertainties in component lifetimes. The sum of these two effects
is to create a wide range of possible lifetimes for fatigue-susceptible wind-turbine components.

In this paper, the economic impact of uncertainty is addressed by calculating not only component
probability of failure, but by estimating the experience of a fleet of identical turbines. The number of
components expected to fail in each year of operation is calculated, and the costs are assigned to those
replacements. The cost in each operating year is then known, and the present value can be estimated. Thus,
the nature of the risk to the fleet is quantified for use in making financial decisions.

Component fatigue life is usually calculated using the best estimates of uncertain load and resistance
quantities and applying reasonable safety factors. A better measure of design adequacy is obtained by
estimating the distribution of possible values for these uncertain inputs and calculating a probability of
component failure at a specified target lifetime. But the probability of a component failing is not the same
as the percentage of components in the fleet expected to fail. It is necessary to separate the uncertainty into
two types: common, where all components share a load or strength value but that value is not known with
certainty, and independent, where the value for each component varies independently of the others. The
effect of these different types of uncertainty is addressed here.

SOFTWARE TO CALCULATE PROBABILITY OF FAILURE

A software tool has been developed for evaluating the probability of wind turbine components meeting a
target lifetime; it is called FAROW, for Fatigue And Reliability Of Wind turbines [Veers, et al., 1994].
FAROW uses the relatively new approach of structural reliability theory to evaluate the probability of
premature failure in the presence of multiple uncertain inputs with arbitrary distribution of possible values.
It is specifically tailored to the wind turbine fatigue problem and does all the difficult numerical
calculations internally, leaving the user to focus attention on the still formidable task of determining the
distribution of possible values for all of the uncertain inputs. FAROW calculates several quantities of
interest, including the median lifetime of the part, and the probability of failing before some specified target
lifetime, as well as importance factors, which are estimates of how much each random variable contributes
to the probability of failure. The sensitivity of the results to changes in each input quantity is also
calculated.

When the probability of a component failing in less than Y years is calculated by FAROW to be X%, one
often hears the interpretation that “you can expect X out of 100 components to fail in the first Y years of
operation.” Unfortunately, this very simple and useful way to think is usually wrong. It would be correct if
all the uncertainties in the inputs are completely independent from component to component. However,
much of the uncertainty does not lie in the randomness of an input quantity from component to component.
Rather, the quantity has some value that varies quite little from component to component, but the exact
value of the quantity is simply not known. This uncertainty is common (perfectly correlated) between all
the machines in the fleet. If all of the uncertainty is common between all the components, the correct
interpretation of the above statement would be that either none or all of the components will fail, and the
probability of all of them failing is X%. Real life is never so simple as to fit into either limiting category,
but contains uncertainty of both the common and independent varieties.

SEPARATING COMMON AND INDEPENDENT CAUSES: FATIGUE PROPERTIES

Completely separating the uncertainty in component fatigue life into common and independent sources is a
virtually impossible task, or at best very difficult. However, material fatigue properties have such a large
and inherently independent variability that they can be used to approximate all the independent uncertainty
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in the component probability of failure.
Figure 1 shows fatigue test results for
identical specimens, plotted as effective,
alternating-stress amplitude versus number
of cycles to failure, i.e., a stress-life, or S-
N, plot. Notice that identical material
specimens tested at the same stress level can
have lifetimes that differ by a factor of ten
or more. This is the norm and not the
exception with fatigue properties. A typical
value for the standard deviation of the
cycles-to-failure is 60% of the mean value
[ASCE, 1982]. It is quite possible to have
common material property uncertainty due
to manufacturing processes and to material
lot differences. These, however, are
assumed to be small relative to the inherent
randomness of the material property.

The randomness in material properties is
described in FAROW by using a single random variable to represent the coefficient of the S-N curve (its
intercept). The S-N coefficient can also be entered in FAROW as a deterministic quantity representing a
given “confidence level” or survival rate. Figure 1 shows curves for four survival rates: 50% (Least
Squares Curve Fit), 90%, 95%, and 99%. FAROW then calculates the probability that the designated
percentage of components (equal to the survival rate) will last for the target lifetime. Keep in mind that
there are still many uncertain inputs describing the loading.

The non-material property uncertainty is dominated by common sources (i.e., values that are common to all
the components, but not known with certainty). All of these inputs, although possessing some independent
randomness from machine to machine, are most likely dominated by the uncertainty that is common to all
components. Therefore, the material property is chosen to represent all the independent uncertainty and the
rest of the inputs are assumed to be entirely common between components. This simplification is chosen as
a convenience and is not necessary for the application of the procedure presented here.

The result is that FAROW can estimate the probability of achieving a fleet-wide survival rate specified by
the S-N curve survival rate at any designated target lifetime. Different S-N curves are input to calculate the
probability of achieving different survival rates. By applying the replacement cost to the numbers of
components failing and weighting by the probability of that occurrence, the expected, or average, cost of
fleet maintenance due to the a particular component failure and replacement is estimated. The analysis is
repeated at different target lifetimes to assess the time at which replacement costs are accrued and to
calculate the present value of such costs. The following examples outline the process step-by-step and
illustrate some typical results.

EXAMPLES

The process of calculating the economic effect, or risk, of uncertainty from different sources, independent
and common, may be illustrated with a pair of examples taken directly from the FAROW User’s Manual.
One case represents the situation in which extensive prototype testing has reduced the uncertainty in the
machine response to the environment about as far as possible. This “low uncertainty case” has a median
lifetime of 300 years, while the probability of the component failing in less than 20 years is 3%. The other
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case reflects a situation earlier in the design and development process before there has been much testing.
Structural response levels may have been calculated, but have not been test validated. There would
therefore be a high uncertainty on stress levels. This “high uncertainty case” has an 11% probability of
component failure in less than 10 years although the median lifetime is 600 years.

Details on the entire description of the input quantities reflecting the appropriate degree of randomness and
uncertainty for these examples can be found in the FAROW User’s Manual. The exact inputs are not
important to the topic of this study. Rather, they can be summarized using the importance factors
calculated by FAROW. Importance factors reflect the contribution to the probability of failure due to each
of the random inputs. Figures 2 and 3 show the importance factors for the two cases lumped into three
areas: wind speed, stress response and material property inputs.

Material properties include the inherent randomness in fatigue properties, and represent all of the
independent uncertainty in these examples. The wind speed category describes the annual wind speed
distribution. The stress response category includes such quantities as stress concentration factors, nominal
stress levels as a function of wind speed and cyclic stress amplitude distribution parameters. As stated
above, all the latter two categories are designated as common sources of uncertainty.

EXAMPLE WITH LOW UNCERTAINTY

If all median properties are used to calculate the fatigue life in this example, the life of this component (a
blade joint) is estimated at about
300 years. Of course, no designer
worth his or her salt would ever
design with median properties.
Some substantial factors of safety
would be applied. Here, we
calculate the probability that a
component will last for a
predetermined period of time using
the FAROW software. As stated
above, this probability of failure in
a 20-year lifetime for an individual
component has been calculated at
3%. The probability of failure for
lifetimes less than the 20-year
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Figure 3:  Relative importance of the three
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case.

Material 
Properties

50%
Stress 

Response
30%

Wind 
Speed
20%

Figure 2:  Relative importance of the three
sources of uncertainty in the low uncertainty
case.

0.00

0.01

0.02

0.03

2 4 6 8 10 12 14 16 18 20

Years of Operation

P
ro

ba
bi

lit
y

Figure 4:  The probability of component failure grows with time as
the fatigue damage accumulates (low uncertainty case).



5

target is also easily estimated and is plotted in Figure 4. The question remains: What do all these numbers
mean? We would like to know how many machines are likely to fail and at what time, rather than the
probability that any individual component will fail.

The number of components likely
to fail is assessed by first setting
the material property to a
specified percentage-survival
level. A target lifetime is then
selected. FAROW is then used to
take all the remaining uncertain
quantities and calculates the
probability that the survival level
will be achieved at the target
lifetime. The results of this
analysis for several survival
levels and a 20-year target
lifetime are shown in Figure 5.
While it is practically a sure thing
that this component will exceed
50% or 60% survival rates, it has
only a slim chance of achieving a
99.9% survival percentage. The chances of achieving survival percentages between these extremes are
shown in the figure. For example, the chance of achieving a 98% or higher survival level at 20 years is
0.71, and exceeding the 99% level has only a 0.57 probability.

The expected cost of replacement is calculated by first determining the probability that different
percentages of components will fail, then assessing a cost to that number of replacements, and finally
adding up the costs over all possible percentages of failures. The difference between the probabilities at
each level in Figure 5 is the probability that the percentage of components failing will be in the range
between those levels. For example the probability that the number of failures after 20 years will be between
1% and 2% is 0.71 - 0.57 = 0.14. The cost associated with between 1% and 2% of all components failing
can be lumped at 1.5% of the total fleet replacement cost. Let the fleet replacement cost be 100 units for
both this example and the next. The expected cost of a fleet failure rate exactly between 1% and 2% is
therefore 1.5% times the cost of replacement times the probability that the failure rate will be in the
specified range: 0.015 x 100 x 0.14 = 0.21. Similar cost estimates can be made for all the other ranges of
survival percentages and for all the other years of operation. Keep in mind that the calculated costs are
cumulative over time.

This same calculation can be done at earlier target lifetimes to fill in a complete description of the number
of components that are likely to fail and after how many years. Figure 6 shows a compilation of these
results from 2 to 20 years for this example.

Figure 7 shows the cumulative cost breakdown by number of components expected to have failed at 2 and
at 20 years. The greatest cost associated with any particular percentage point is in the <1% bin, but
because range widths are not uniform in Fig. 7, the costs are larger in bins associated with the wider
ranges. Also, the greatest probability of occurrence is for the <1% bin. Because of the greater costs
associated with greater number of component failures, the costs do not drop off as fast as the probabilities.
This example illustrates a case for which about half the expected cumulative costs are due to the risk that
small numbers of components (less than 10% of the total installed) will have failed in 20 years of operation.
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It is perhaps more interesting that half the financial risk comes from the chance that more that 10% of the
components will fail. This outcome may not have been apparent from the combined sources calculation,
which produced a 3% probability that any particular component will fail in the 20-year target lifetime.

The expected cumulative costs are shown in Figure 8. Notice the similarity with Figure 4. The total
expected cost could also
have been calculated by
taking the probability of
individual component
failure (from all sources of
uncertainty, common and
independent) and
multiplying by the cost of
replacement. The expected
cost is the same whether
the sources of the
uncertainty are broken out
or not. It would not be the
same if the cost associated
with larger failure
percentages were higher
than for smaller
percentages. Such might
be the case if loss of
production due to
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maintenance down time were
included in the replacement cost.
High rates of component failure
could lead to an inability to fix
the machines in a timely manner,
resulting in low availability.
These effects, and other more
detailed cost effects such as
replacement of the replaced
parts, are not included in these
examples.

Incremental costs in each 2-year
interval are calculated by taking
the difference in cumulative costs
between consecutive 2-year
increments. The present value of
these incremental costs is shown
in Figure 9 for discount rates of

zero, 5% and 9%. The
present values for 20 years
of operation come out to be
3.1, 1.7 and 0.8,
respectively. Notice that
because the incremental
costs initially increase and
then level out, the present
values are dominated by the
costs in the later years,
unless the discount rate is
high.

EXAMPLE WITH HIGH
UNCERTAINTY

Now let’s examine a very
different situation, one in
which there is substantially
higher uncertainty in the
stress response1 of the turbine. The wind speed and material property uncertainty are assumed to be about
the same as in the low uncertainty example. Here, however, the stress response uncertainty is so much
higher it accounts for 85% of the probability of failure, as shown in Figure 3. There is sufficient
randomness to produce an 11% probability of individual component failure in less than 10 years, even

                                               
1 It is not essential to this discussion to know exactly where all the uncertainty comes from. It is usually a
combination of imperfect knowledge of the overall level of response, distribution of stress cycle amplitudes, mean
stress, and stress concentration factors.
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when a 600-year lifetime is calculated using median values of all the inputs. Should this be interpreted as
11 out of 100 components having failed after 10 years? No. Let’s see why.

The probability of achieving various component survival levels has been calculated in the same manner as
for the first example. The results are quite different in this case. While in the low uncertainty example there
was virtual certainty that not all the components would experience problems, here there is a substantially
higher chance of fleet-wide problems. Figure 10 shows calculations of the probability of achieving different
percentage survival levels at each of the years from one to ten. Notice that the scales are different than in
Figure 6, especially on the probability axis, which runs from 0.5 to 1.0 in Fig. 10 and 0 to 1 in Fig. 6.
There is no certainty that even very low survival rates will be achieved. Conversely, there is almost a 2 in 3
chance that there will be a 99% survival rate or better. Because the stress response uncertainty is high,
there is a slight chance that stresses will be too high throughout the fleet, but also a good chance that the
component has been over designed and will have needlessly low stresses in all applications.
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The source of the costs is
also calculated as before
with dramatically different
results. Figure 11 shows
the source of replacement
costs in terms of the
percentage of components
failing. The risk is shown
to be dominated by the
cost associated with the
finite probability that all
the components will fail.
The total expected cost
(with replacement cost set
to 100 as in the first
example) is 11. The
expected cost of more than
99% of the components
failing (1% survival level)
is about 4, which is more
than a third of the total
cost of replacements after
10 years. Even in the first
year, the expected cost of

full-fleet replacement is a large part of the total. On the other hand, there is so little chance that only a
small part of the fleet will be experiencing problems that it is not a significant part of the total. The
expected costs associated with less than half the components failing is about 40% of the total in the first
year and drops to about 25% of the total risk after 10 years.

The total expected cost of 11 matches the probability of failure calculated from combined common and
independent sources of
uncertainty (11%) times the
replacement cost. The cumulative
costs match the combined sources
probability of failure in every
year, as seen in Figure 12. The
separated-sources result comes
from the sum of the costs across
all of the percentages of
components failing (in Figure 10)
for each target lifetime. The
combined result is obtained by
using the probability of failure
calculated by FAROW, which
combines all sources of
uncertainty. The results are nearly
identical and, in fact, would be
exactly the same except for
numerical errors accumulated by
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using the wide bin widths
of Figures 10 and 11.

The incremental costs for
this example are shown
in Figure 13. Notice that
the largest expected cost
is in the first year. This
indicates that if the entire
fleet is to have problems,
it is sure to be manifest
early in the fleet
operations. The early
years of operation are the
equivalent of a testing
program providing the
knowledge that is lacking
in the absence of
adequate prototype
testing. The present
values are not sensitive to
the discount rate because
of this heavy weighting
on the early years of operation.

SUMMARY

The expected cost of replacing failed components during the operating life of a wind farm can be calculated
in either of two ways. The easiest is to estimate the probability of individual component failure and
multiply by the total replacement cost. This should not be confused with an equivalent percentage of the
components failing. The percentage of components expected to fail is the probability of individual
component failure only if the source of uncertainty responsible for the probability of failure is completely
independent for each component. Common sources of uncertainty, shared by all turbines in the fleet, are
also prevalent. A second approach is to separate (as well as possible) the sources of uncertainty into
common and independent sources. The probability of different percentages of components failing is then
estimated and the expected (average) cost of replacement is calculated. These two approaches result in the
same expected total replacement cost if the individual replacement costs are independent of the number of
components failing. More sophisticated cost models, reflecting a change in replacement costs when
different fractions of the fleet have problems, will result in different expected costs from the two
approaches. The simple first method would not be able to handle this variable cost case. The incremental
costs in each year of operation estimated by either method are used to calculate the present value of
replacement costs.

It is quite apparent that in the high uncertainty example the nature of the risk, components possibly failing
early and in large numbers, is very different from the low uncertainty case of small numbers of components
almost certainly failing gradually over time. In the low uncertainty case the risk is easily managed, while in
the high uncertainty case the risk amounts to gambling with the short-term viability of the enterprise. It
should be clear that an engineering effort to test and evaluate the design assumptions is necessary to
advance a design from the high uncertainty of the conceptual stages to the lower uncertainty of a well
engineered and tested machine.
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