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ABSTRACT

A numerical approach has been developed to predict the dynamic response of
structures excited by random wind and random waves, such as wind turbines at
offshore locations. The software developed by this efforet, called OFFSHORE
HAWTDYN, calculates the displacement time response of horizontal axis wind
turbines (HAWTs) attached to offshore support structures subjected to steady
and random wind and wave forces that simulate ocean environments. This
software utilizes the struetural dynamie analysis capabllity of HAWTDYN, a
code developed at Sandia MNational Laboratories, to solve the equations of
motion. The HAWTDYN code was modified to permit the application of water
wave loads to the structure being analyzed.



INTRODUCTION

The concept of placing wind turbines on ocean-based
placforms is motivated by a desire to use the large
offshere wind energy resource of relatively shallew
waters, as well as to alleviate the environmental
impact of land-based turbines. A wind turbine in an
ocean environment will be loaded by turbulent and
steady wind on the rotor and wave forces on the
support structure. The software package, OFFSHORE
HAWTDYN (OFFSHORE Horizontal Axis Wind Turbine
DY¥Namics), is the result of incorporating all of
these load cases inte a structural dynamics model of
an ocean-based horizontal axis wind turbine, with
particular interest in developing an analytical
model of the wave loads. The result is the
caleulation of struetural dynamic response of the
turbine and support structure as displacement time
histories. The power spectral densities (PSD) and
root mean square responses are also calculated.

The structural response is calculated by HANTDYN, a

1
structural code developed by Lobitz. The
asrodynamic loads on the rotor are computed by the

2
Prop Code. These loads are the result of mean

axial wind, turbulence, and aercelastic effects. &
spatially coherent model of the wind turbulence was

developed by ﬂacrs.’ The efficient design and
construction of wind turbines placed on offshore
support structures excited by envirenmental loads
depend on the avallabilicy of tools to make a
structural dynamiec analysis,

The basiec tool for analysis, developed at Sandia
Hational Laboratories (SNL), is a structural
dynamics code for land-based herizontal axis wind
turbines subjected to wind loading. This code,
HAWTDYN, has been augmented to incorporate a finite
element model of an offshore support structure
loaded by random waves. The mass, stiffness, and
damping matrices of the stationary tower and support
structure and of the rotating rotor are produced by
NASTRAN (a linear code) and ucilized by HAWTDYN.

The support structure and tower are modeled in a
fixed reference frame, and the rotor is modeled in a
rotating reference frame at a constant angular
velocity. HAWTDYN was selected for the structural
dynamic analysis based on its success in predicting
mean and eyelie flapwise bending moment for the

rotor of the 2.5 MW MODZ HANT. In additien,
HAWTDYN predicts natural frequencies of the MODZ and
qualitatively predicts teeter response behavior to

wind shear., The addition of a finite element model
of a stationary support structure loaded by random
waves extends the HAWTDYN capability as a design
tool for the general problem of stochastically
loaded offshore structures that have a rotating
substructure attached to a fixed foundation.

3
A turbulent wind field is generated by Veers' code,
which uses a pover spectral demsity and coherence of

the wind provided by Frost, Long, and ‘I‘urnar.‘
Turbulent wind velocity is modeled as a function of
wind speed, height above ground, and surface
roughness coefficient. The spatial correlation of
the wind is specified by a coherence function.
Steady and turbulent wind velocities are used to
establish loads on the rotor using the PROP code,
which uses momentum theory aerodynamics.

Random wave loads are established as a function of
water particle velocity and acceleration. Water
particle velocities and accelerations are obtained
by summing functions of wave height amplitude over a
range of frequencies. To generate a time history of
wave height amplitude, many harmonic components are
summed with random phase. The water particle
velocities and accelerations are perfectly coherent
so that each time history in space is
deterministically related te every other time
history by linear wave theory. Assumptions
associated with linear wave theory are that flow is
undisturbed by the structure and that wave height is
small compared to water depth and wave length. The
mean square frequency content of wave height is
represented by a PSD. The underlying spectral
content 1s represented by either the Plerson-

Moskowitz PSD for fully developed seas or the

L]
Fetch-Limited (JONSWAP) PSD for underdeveloped sea
states.

Water particle velocities and accelerations must be
generated at Gauss points along the length of every
submerged structural member to allow for integration
of point forces into total force, A two-point per
element Gaussian integration scheme was chesen. In
this analysis, waves can impinge on any arbitrarily
oriented structural member from any direction. The
component of water particle velocity and
acceleration perpendicular te the member is
determined. These velocities and accelerations are
incorporated in the wave load expression, known as



Morison's equation. Loads generated perpendicular
to the member are integrated, and leads parallel to
the member’'s length are neglected. The fundamental
measure of structural dynamic response iz the
displacement time history of the composite turbine
and suppert structure, This graphical
representation of the motion of the structure is
computed in the augmented HAWTDYN code, called
OFFSHORE HAWTDYN. Other measures of structural
response, including power spectral denmsity and root
mean square responses, are also caleulated.

OCEAN WAVE LOAD EQUATIONS

The fluid-induced loads on submerged structures are
obtained from a gravity wave model. Linear wave
theory is used as the basis for a probablistic
spectral description of the waves. An indepth
digcussion of linear wave theory e be found in the

ocean engineering text by Wilson. There are nine
assumptions inherent in linear wave theory.

1. The amplitude, A, of the surface disturbance
{wave height) is wvery small relative to the wave
length, A, and depth, d.

2. The velocity head (u + w)/2g is negligible
compared with the anomaly of pressure head (from

hydrostatic conditions), where u and w are the
horizontal and vertical particle velocities,
respectively.

3, The fluid has a uniform depth, d.
&, The fluid is nonviscous and irretatiomal.

5, The fluid is incompressible and nonstratified
(homogeneous) .

&. The deflecting ferce associated with the earth's
rotation (Coriolis force) is negligible.

7. Surface tension is negligible.

g. The bottom is smooth and impermeable.

9, The sea level atmospheric pressure, Par is
uniform. The water pressure is denoted by p.
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Figure 1. Schematic representation of a simple
harmonic wave.

The linear model for surface gravity waves yields a
sinusoidal surface profile, which propagates with
;nnstan: velocity. The surface profile takes on the
orm

n(x,t) = A cos(kx-wt), {1}
where

A = wave amplitude
k = wave number
w = natural frequency (radians/second).

Linear wave theory provides a functional
relationship between wave heights and water particle
velocities and accelerations im space over time.
When used to deseribe a spatial wave field over
time, this relation characterizes the water particle
velocities and accelerations as perfectly coherent.
Expressions 2 through 5 for water particle
velocities and accelerations can be viewed as
harmonic functions multiplied by functional forms
that depend on frequency, w«, depth belew the water
surface of a point of interest, z, and absolute
water depth, d. In order to form realizations of
wave height random processes, particle velocity
random processes, etc., these harmonic components
frem Equations (1) through (5) are added together
over all frequencies. The amplitude at each
specific frequency is chosen so that the wave height
random process has a specified PSD. The random
process realizations have zero mean.

Horizontal particle wvelocity

u = A w gogh kiz+d) cos(kx-wt) (2)
sinh (kd}

Vertical particle velocity

w = A w sinh kiz+d) sin(kx-wt) 1)
sinh (kd)

Horizontal particle acceleration

u - &_E:_ﬂ cosh kiz+d) sin(kx-wt) (&)
T sinh (kd)

Vertical particle acceleration

T *: A sinh kiz+d) cos(ks-wt) {5)
2
T ginh (kd)

where T = Zx/w is the period of a particular
harmenie component. Wave number k is related to the
natural frequency as defined by a transcendental
equation:

w = gk tanh(kd). (6)

Thiz relation indicates that the frequency of each
harmonic determines the veloecity at which it will
propagate in space and that each frequency
propagates at a different rate. Since wave number
is a function of frequency, its value must be
uniquely determined for each harmonic component of
the signal.

The generation of a random process realization is
accomplished in the following way. Based on the
diserete form of Fourier series representation for
periodic signals, a random time series, xj. is
represented as a summatlion of many harmonic
components with random phase:

N-1 L(2rik/N - é.)
o [ 2 K e for j = 0,1,...,8-1 (7)

k=0

whare # = randomly generated phase.

To create real-valued, random time histeries with
zero mean, it is necessary to impose the following
conditions:



1. X, is real-valued for k = 1,2,...,(N/2)-1

2. X =Xy, =0

3. Xgroyek = Xansay-k £OF k= 12,0, (0/2)-1
4. ¢, = uniforn [-x,x], k=1,2,...,(8/2)-1

5. for k= 1,2,...,(N/2)-1.

o2k T TP ms2) -k

With these conditions imposed on Equationm (7), it
can be transformed to become:

%éi
xj - 2;;.0 xk cos(2xjk/N - ¢k}, j=-0,12,... H-1.(8)

With the appropriate definition of xk, this

representation will produce a real, zero mean,
random time signal with any desired spectral
density. The form of Equatien (8), representing a
randomly generated time history as a summation of
terms that are amplitudes multiplied by harmenic
functions makes Equation (B) a compatible
representation for modeling Equatiens (1) through
(3). The x, represents randomly generated wave

height amplitudes, n{0,t). Equation (7) is the

-14
inverse Fourier transform of Kk ] k, A fast

Fourler transform algorithm is used to execute the
discrete Fourier transform of Equation (7).

The random phases in Equation (7), ‘k' are the
quantities that randomize the signal xj, for
j=0,1,...,8-1. The # is generated as a uniform
random variable on the interval [-x,x]. Each 'E is
independent of ¢n for k » m., The values of the xk'
k=0,1,...,N-1, establish the spectral density of
the random signal. When the series xk' k=0,...,R-1
are chosen using the formula, X, = [bw sxx(“"”l"ﬂ.

the realization of the random process formed using
Equation (7) has the underlying spectral density
Sxx(u}, Sxx(m) is assumed to be a two-sided

spectral density. For a one-sided PSD, Gyy (@),

12
Km = [1/2 fw GRX{H}I .

The two PS5Ds used te describe the frequency content
of wave amplitudes observed in the sea are

1) Plerson-Moskowitz spectrum for fully
developed sea conditions

2) Fetch-Limited (JONSWAP) spectrum.
The Pierson-Moskowitz PSD is glven by‘Equltion (9.

S, (w) = 81210 g e ¢ ) ghere (%)
e 4 n
L5
V= Hindspﬁnd at a height of 19.5 meters above

still water lewvel
w = natural frequency (radians/sec).

An example of the Plerson-Moskowitz PSD for a 27-mph
mean wind is shown in Figure 2.
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Figure 2. Pierson-Moskowitz PSD.

Fully developed sea states are characterized by
powar content at low frequencies and high wave
heights. The Fetch-Limited PSD for less exposed
areas is given by Equation (10).

. ] 2 2
2 -8 3 - =
Spy(@) = a g w pr[_n{zn:. ] raxPI (w-w ) /20 o |
where B = 1,25 (10}
7.0 for very peaked spectra
¢ =¢3.3 for mean of selected JONSWAF data
1.0 Pierson-Moskowitz spectrum
g =J0.07 for w = w
.09 for w > wo
m
w, - peak frequency = 2l{3.5}(mj{i)'n'“
a - u.n?scij'u'zz
X - gV
X = fetch length
V = wind speed.

The Fetch-Limited spectrum requires three

environmental input parameters:

1) Fetch length, X

2) Windspeed at 10 meters above still water level,V

3) A shape parameter, [, defined as the ratio of the
maximum spectral energy at peak frequency te the
spectral energy of the corresponding Pierson-
Moskowitz spectrum.

An example of the Fetch-Limited PSD for a 27-mph

mean wind is shown in Figure 3.
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Figure 3. Fetch-Limited (JONSWAP) PSD.



The wave height spectrum for less exposed areas
produces power at higher frequencles and lower
applitudes than the fully developed spectrum.

Waves can approach an arbitrarily oriented
structural member from any possible direction.

Waves are planar and can be fppliad from any angular

direction between 0 and 360 . Time histories of
wave particle velocicties and accelerations must be
randomly generated at the points in space that
represent the Gauss points of each finite element to
prepare for the integration of distributed forces
into total load. Water particle veleocities and
accelerations are randomly gemerated at the two
Gauss points along the length of each submerged
finite aleament. ’

Figure 4, Finite element nodal and Gauss points
along length of member using twe
polnt Gaussian quadrature.

The components of water particle velocity and
acceleration perpendicular and parallel to the
member must be determined to decompose the loads
into the local elemental coordinate system. The
component of the load perpendicular to the
structural member is applied, and the component of
the lead parallel to the member is neglected. To
find water particle velocity perpendicular to the
member, first the vector sum of horizontal and
vertical water pafticla valEcj,tifs iz found; denote

it B: (R = U cosfi + U sinfj + Vk). A cross product
is formed between the velocity vector and a vector
occurring along the length of the structural member,

L. This creates a third vector, € = R x L, that is
perpendicular both to the original velocity wvector
and the member. Then a cross product is taken

becween the member vector L and & to create a

vector, @ = L x €. The vector § is perpendicular to
the member and lies in the original plane created by

the member and the original welocity vector. ]
vector represents the direction of interest. A unitc
vector, Qunit' in the direction of § is formed

(@, ¢, = @/1Q1). Finally, a dot product between
ﬁilnit and the original velocity wvector, R, is taken

to establish the component of R perpendicular te the
member, § (5§ = ﬁunit " R).

applied to water particle accelerations.

The same procedure is

R IS THE VECTOR <
SUM OF HORIZONTAL (U)
AND VERTICAL (V) WATER
PARTICLE VELOCITIES

Ga

=\

X

§=WAVE DIRECTION
R=U(COS& + U{SING] +V K= VELOCITY VECTOR
FIND C=R XL-- A VECTOR PERPENDICULAR TO
. . . VELOCITY VECTOR AND MEMBER.
FIND Q=L XC--A VECTOR PERPENDICULAR TO
MEMBER IN THE PLANE CREATED
= BY MEMBER AND VELOCITY VECTOR.

GUNITS3| =~ UNITIZE & TO RETAIN ITS DIRECTION.

FIND S = GUNIT « & — ACHIEVE COMPONENT

OoF
VELOCITY VECTOR PER
TO MEMBER. PENDICULAR

Figure 5. Component of water particle wvelocity
perpendicular to member,

The wvelocities and accelerations perpendicular to
the member are incorporated in the wave force
expression known as Horison's equation. Morison's
equation is the vector sum of a drag term due to
water particle velocities and an inertia term due to
water particle accelerations. The full expression
for Horison's equation that results in force per
unit length is Equation (11).

2 2 .
F,=1/2C, p DU, +Cypn (D /)T, {11}

where

a=x, ¥, £, directions
CD- drag coefficient (1.0 was used)

GH- inertia coefficient (1.5 was used)

¢ = density of sea water
D = diameter
v = flow veleocity

Ua = flow acceleration.

Point load time histories are integrated over the
length of the structural member and redistributed to
the nodal endpoints with the concept of wvirtual werk
and the approximation that the struetural
deformation varies linearly between endpoints. A
virtual work approach is used to show that an
incremental amount of work is equal to an
incremental deflection times the applied force;

§0(s) = §u(s)? * F(s).

A linear interpolation of tramslatienal deformation
between the endpoints of a structural member is
found with the following relation:
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The distributed virtual work follows:
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A two-point Gaussian quadrature is used to evaluate

the integrals:

F“I
F |=
¥
F |-
Zy
F -
x
F -
¥z
F; -
L T

[1-5
1l-s

L l-s

r}“{l;
Fy(si
F (s}
F (s}
FyES}'

FE(sJ

= -

ds .

WIND LOADS AND AMALYSIS OF WIND TURBINES

The wind velocities used in aerodynamic load
caleulations include the mean axial wind,
aeroelastic effects due to local velocity and
twisting deformation of the blade, and stochastiec

wind turbulence.

The mean axial wind velocities are

predicted by the PROP code, which uses momentum

theory to compute Interference factors, «.

The

relative wind velocity vector is given by the
following expression:

W= (1 -

‘}um + v, - [fiR +0x (X + UR}I (12}

where U' is the mean axial wind

Hai iz the stochastic wind
i1 is the rotational velecity of the
turbine

XR is the initial local position wvector

UR iz blade deformation
Up is the velocity of blade flexibility,

With the relative wind velocity vector determined,
aerodynamic loads applied to the rotor are
determined through lift and drag formulations. The
life (L) and drag (D) forces per unit length are

given by
L 1 #
= 1/2 p a Wy G (a)
T
D=1/2 p a WH ﬂn(u},
where ¢ = density of air
a = length of chord
GL. CD = coefficients of lift and drag
a = angle of attack
"H = chordwise direction of wind velocity.
The power spectral density of atmeospherie turbulence
is
12.3 ¥ h [1n{10/z, + 1) Iln{h/z, + 1:]'1
S(f) =
T8
1+ 192.0 [h £ 1n(l0/z, + 1)/V 1n(h/z, + 1)) /
where

f = frequency (Hertz)

(14}

h = height above ground
V = mean speed at h = 10 meters
zy = surface roughness coefficlent

A surface roughness coefficient of 0.25 was used

representing a turbulent wind site.

This may be

higher than is necessary to model an ocean

environment.

An example of an atmospheric

turbulence PSD is shown in Figure 6.

TURBULEMNCE P5D

T
¥=12.07 m/eec .
h=81 maters
z5=0.28
a=1.01 mieec

Figure 6.
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P5D of atmospheric turbulence.
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where a = decay coefficient = (7.5 was used) uncorrelated, zero mean, random processes. Let
w = frequency (Hertz) Y (t) = 8y, (w) X, (t) and Y (t) = &g, (w) K, +
Ar = distance between polnts 1 and j
(mecers) a35(w) " Xz(t). In matrix form:

¥ = mean windspeed (meters/sec).

The level of correlation depends on the distance

b the peints, the mean windspeed, and
Ef‘:::::c}"-l‘ ;hls coherence function is shown in Y, (t) 8y, (w) 0 Xy (e)
Figure 7.
Ya(t) - Az (W)  agg(w) Ea (el
10
o8
w The autocovariance of the vecter of random Processes
E o8 of Y(t) is
[T}
& T
5 s Ryy(7) = E ([Y(E)])[¥(t+r)]")
Q T T
= E {[A] [X{c)][X(t+r)]" [A]T)
0.2 T
= [4] By (r) [A]7,
0 where Ry (r) = E ([X(t)][X(t+r)]T)

AR, meters The power spectral density is the Fourier transform
of the autocovariance:

F 4
Figure 7. Coherence function, ¥y , for 3 - e
atmospheric turbulence at a 27-mph SYY{”} - 3; I RYY{r) & T-ds
mean windspeed, ”_w

A schematic of a wind simulacion with variations in _ s?in{H} SY,YE(”} i . T
three dimensions is shown in Figure 8. s‘t‘ v (w) S'Y v (wy| = [a] n{u} [a]”.
2% 2%z

Since X,(t) and X,(t) are uncorrelated white noise

Vi (1) random processes, the spectral density matrix
4 t between the random processes [X(t)] can be chosen to

be the identity matrix. The cress correlation of
white noise is zero creating a zere cross spectral
k t distribution, and the spectral density of white

noise is chesen to have a magnitude of unity over
all frequencies:

Is
L]
1 1
L] Ar
-
t
1 SX.H,(”} ijxi(mj 1 &
\‘\l SXX (w) = _ ‘
0 L
sxzx:. o) SJ'I'.,.X, (w)
Figure 8. Three-dimensional, spatially varying
turbulence. Therefore, Syylw) = [h]IhIT '

The coherence between [¥;{e}] and [Y(E)] 1is
Correlated single-point time series are generated at represented as y(w), where
several points. It is visually apparent that the
lower frequencies in the wind are highly correlated,
and the higher frequencies retain less correlation, - @)
Turbulent wind random precesses with predetermined 1¥g
spectral content and coherence are created as a 2
linear functien of uncorrelated, independent random T (w) =

processes. See Veers for an example of this
caleulation, s?l el SY: el




AUCMENTATION OF HMAWTIDYM

Lobit_:.l developed a computer coda, HAWTDYN, for
structural dynamic analysis of horizontal axis wind
turbines. It uses the finite element code
MSC/HASTRAN to generate mass, stiffness, and damping
matrices of the tower and rotor, which are treated
in MASTRAN as separate structures. The rotor is
subsequently joined te the tower exernally to
HNASTRAN, using a time-dependent transformation
consistent with the hub configuration. These time-
dependent constraint equations account for rotor-
tower interactions by allewing for relative motion
between the rotor and hub. Rotating frame effects
are taken inte account by modifying the rotor
stiffness matrix due to centrifugal stiffening.
Coriolis forces result in the modification of the
stiffness and damping matrices. The aerodynamic
loads are applied to the turbine blades and the
equations of motlon are solved in the time domain by
the Hewmark-Beta methed using the time step of 0.008
seconds., The equations of motion are

U + CTU + KU = FT + F" TOWER AND SUPPORT

My + (Cp+C)Up + (K-S )Up, = F. + F, + F, ROTOR,
where subscript T = tower and support structure

subseript R = roter (16)
C. = Corielis matrix

=

= gsoftening matrix
= wave forces

= gentrifugal forces

o -
g 0 5 D

= gravitational forces

=
]

aerodynamic forces

= displacement vector
velocity vector
= acceleration vecter.

(=] =1~
1

The MOD2 HAWT was modeled in HAWTDYN as an initial
test of the code’'s performance. The MODZ HAWT has a
300 foot diameter rotor rated at 2.5 MW and was
tested in Goodnoe Hills, WA, The finite element
model of the MODZ? HAWT used in HAWTIDYN is shown in
Figure 9.

300" DIAMETER ROTOR
=—TIP PITCH
CONTROL
NACELLE MASS |
LATERAL TOWER TEETERED HUB
DAMPING il i
YAW SPRING AND DAMPER
X z
TR

Figure 9. Finite element model of MOD? HAWT.

QOFFSHORE HAWTDYM expands HAWTDYN capabilities to
include & finite element model of an offshore
support structure loaded by random waves. A code
has been developed that generates perfectly
eoherent, quasi-stationary, random time histories of
wave particle velocities and accelerations in three-
dimensional space, which are transformed into force-
per-unit length. These forces are applied to the
support structure at nodal points located below the
still water level. A revised finite element model
of the turbine and platform structure Ls shown in
Figure 10. The nodal points and Gauss points using
two-point Gaussian quadrature are also shown.

300" MAMETER TI# BITCH
ROTOR .~ CONTROL
HACELLE MASS 1 TEETERED
LATERAL 'l'm‘-\“"._ i .
DAMPING
YAW SPRING
TORQUE
AND DAMPER
-
¥ X
Lo
o 856
z 4 I
¥
F) i
b, w0e
STILL WATER |
| i
se7hi N
L = QAUSSE POINTS
= HODE POINTS

Figure 10. Revised composite finite element
turbine/platform structure.

EXAMPLE PROBLEM

An example problem is presented for three separate
load conditions. The response to each load
condition is shown at different points on the
structure, The first set of loads on the structure
is steady and turbulent wind at a mean wind of 27
mph, with no wave forces applied. This represents
the original eapability of HAWTDYN, except that the
support structure has been added. A second set of
loads represents the isolation of the effect of wave
forces on the structure, although the turbine is
rotating at 17.5 rpm. For this loading case, the
density of air was set to zere, which can be
interpreted as rotation of the rotoer in a vacuum,
The third set of loads involves the fully loaded
structure with 27-mph turbulent and steady winds and
random waves genarated by a 27-mph wind. The
Plerson-Hoskowitz PSD was used for the underlying
spectral content of the wave loads. Horizontal and
vertical water particle velocities and accelerations
are generated at every Gauss point, A
representative picture of horizontal water particle
velocity is shown in Figure 11.
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Figure 11. Horizontal water particle velocity.

The code is capable of handling mean horizontal
water particle velocities due to tidal current and
wind-stress current. A mean horizontal wvelocity can
be superimposed on the randomly generated signal.
Tidal current is represented as a power law.

Ir_ﬂ
Uelz) = (1 +2/d) 7 U0

where d is the water depth, z is measured positive
upward (or negative downward) from the sea surface,
and Ut(D} iz the surface wvelocity at z = 0.

The other important current is that due to sustained
wind blowing ever the sea surface. The velocity
profile of this wind-stress current is approximated
as linear, with a maximun value UHEQ} at the sea

surface. The wind-stress current U, {z) is given by

U () = (14 2/d) U(0).

Figure 12 shows a sample of randomly generated wave
heights which is a realization of a stationary
random process with the underlying Plerson-Moskowitz
spectral content for a steady 27-mph wind.
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Figure 12, Randomly generated wave heights.

Loads are integrated over the length of the finite

element and vedistributed to the nodal endpoints in
units of force. An example of the integrated wave
force in the -2 direction is shown in Figure 13.

200 T T T
WIND SPEED =27 mph

FORCE (lbs)

10 20 30 40 S0 80 7O
TIME (sec)

Figure 13. Integrated force at a nodal point in

-Z direction.

Displacement structural response for the turbine and
support structure is shown at three locations:

1. Center of the platform, Z-direction
2. Top of the turbine tower, Z-direction
3. Center of the platform, Y-direction.

The Z-direction is the orlentatien of the strongest
components of wind forces, Displacement response in
units of inches is shown for three different loading
cases, The term "wind alone® refars toe displacement
response due to steady and turbulent winds, with no
wave forces applied. The turbine is rotating at
17.5 rpm. The term "waves alone" refers to the
loading case of stochastic waves generated by a 27-
mph wind. Although the turbine is rotating at 17.5
rpm, no loads are generated by wind. The term "wind
and waves" refers to the full loading case of 27-mph
turbulent and steady wind on a rotating turbine and
random waves on the submerged support structure.
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Figure 14. (a) Displacement response of corner
of platform in Z-direction due
to wind loads only.

(b) PSD of response.
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Figure 15. (a) Displacement response of corner
of platform in Z-direction due
to wave loads only.

(b) P5D of response.
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Figure 16. (a) Displacement response of corner
of platform in Z-direction due
to wind and wave loads.

(b} P5D of response,.
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Figure 14. (a) Displacement response of corner
of platform in Z-direction due
to wind loads only.

(k) PSD of response.
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Figure 15. (a) Displacement response of corner
of platform in Z-direction due
to wave loads only.

(b} PSD of response.
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Figure 16. (a) Displacement response of corner
of platform in Z-direction due
to wind and wave loads.

{b) PSD of response.
a.01
g
ul
z
s
o
<
=l
&
o
=
=111.84 | i 'l i L
oo 4.0 an 120 18.0 200
TIME (revs)



10

T T T T T T
1ol | a=1518 inches (1
E
8 .l
E w
o
-
E 100 -
=
8 el
w
10T |- 1 L L Iy
0.0 o5 1.0 1.5 2.0 2.8 30
FREQUENCY (Hz)
17. a) Displacement response of center
Flmiea : of platform in Z-direction due
to wind loads only.
(b) P5D of response.
51827 T T T T
(18a)
F
=
z
w
=
[T}
=
&
@
a
I L I L L
u'mu.o 40 8.0 12.0 18.0 200
TIME (revs)
T L T L T T
1w0? &=1,005 inches (188)
=
E 10-1
&
Ell 10T
8wl
&
1074 . -
ol s 1.0 1.5 20 28 10
FREQUENCY (Hz)
Figure 18, (a) Displacement response of center

of platform in Z-direction due
to wave loads only.
{(b) PSD of response.
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(a) Displacement response of center
of platform in Z-direction due
to wind and wave loads.

{b) PSD of response.
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Displacement response of top of
tower in Z-direction due to wave
loads only.

PSD of response.
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Figure 22. (a) Displacement response of top of
tower in Z-direction due to wind
and wave loads.

(b) PSD of response.

DISCUSSION OF RESULTS

The frequency content in the form of a PSD and the
root mean square responses are useful measures of
response derived from the displacement time history.
The frequency content of the structural response
indicates the natural modes activated by the applied
leads, Mean square response can be useful to
fatigue calculations. The numerical example
presented in this paper is primarily a demonstration
of the use of this code. The platform in the
present structure is relatively stiff; therefore,
wave-induced response is lew. Any structure can be
modeled with this computer program, and other
structures would yield different results.

In all the displacement time responses shown, the
wind loads are applied as a gradual linear ramped
function over the first four rotor revolutions. The
steady-state response is not expected until after
the loads are fully applied. The Pierson-Moskowitz
P5D was used as the underlying spectral content of
random wave height generation given a 27-mph mean
wind. The PSD of displacement response is shown for
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each load case histery. The PSD was generated for
the steady-state response of the turbine. The
initial 6.66 revolutions of response were truncated
before PSD caleulation. The final 14,33 revolutions
of response were used in PSD caleculations. The PSD
was caleulated by first removing up to a second-
order trend from the signal, calculating the
autocevariance, multiplying the autecovariance by
the Parzen window, and taking the Fourier transform.
The smoothing parameter, M, of the Parzen window is
the highest number of lags for the autocovariance.

M was chosen to be 171 for a time series of 512
points, Primary response is found in the firsc high
peak in the low frequency range and represents
statiec response of the structure in the frequency
range of both the wind and wave loads. The time
series of the response shows high frequency response
superimposed on a lower frequency. The high
frequency response indicates a very stiff structure.
The greatest response cccurs when natural
frequencies of the rotating turbine fall on integral
values of turbine rotation, in particular 2P (0.58
Hz), &4F (1.167 Hz), 7P (2.042 Hz), and 10P {2.917
lz). The corner of the platform in the Z-direction
behaves similiarly to the center of the platform,
which indicates rigid-body response in the Z-
direction. The corner and center of the platform
both show high frequency response dues to resonances
of the turbine. The top of the tewer oscillates at
a single low frequency. The center of the platform
responds in the Y-direction primarily at the 2F
excitation due to turbine rotation. The other
directions of response do not represent the most
significant response and are not included.

CONCLUSIONS

OFFSHORE HAWTDYN represents a unique capability to
analyze the structural response of wind turbines
supported on ocean platforms and is essential in
designing these turbines. Computer software
caleulates the structural dynamic displacement
response, and the P5SD and mean square of response.
Several numerical examples are presented to
demonstrate the use of this computer code.
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APPENDIX I

Generation of Random Time Signals While Preserving
the Power Spectral Density

Any signal can be represented by a sum of harmonic
components. In the case of a periedie function, a
discrete, periodic Fourier series will represent it.
4 single period of the time signal is represented by
a finite sequence of numbers that is continuously
extended. A non-periodic function is represented by
a continuous Fourier series (or Fourier integral).
In this analysis, a continuous, non-pericdic time
signal is represented by a discrete, periedic
Fourier series. This approximation is an accurate
representation of the real signal when At is chosen
so that the highest frequemey, 1/2at, captured in
the approximation is greater than any fraquency
found in the original signal. Therefore a section
of a non-periodic signal can be made discrete and
assumed to be periocdic and represented by:

R-1 12xkj/N -
. "

* = -0,1,...,H-1 7
3 ké; 3 (an
where,
H-1 “12xik/H - ¢
X, - ;E X, e T o 0,1,...,8-1. (18)
S

The ¢, term is a uniformly distributed random

variable, within the range of -x to =, used te
generate a zero-mean, weakly stationary stochastic
process. The inclusien of ‘k in Equation 17

effectively generates a randem signal by susming
many harmonics with randoem phase. It is of
particular interest to create a zero-mean, real-time
signal. Certain conditions must be imposed on this
representation of x, to make the signal real-valued

with zero mean. These conditions are

1. Set N = power of 2, so each generated time series
will have 2" data points

z. X, is real-valued for k - 1,2,...,H/2-1

3. Xo = Xy,p = 0

4, fo2+k - foE-k for k= 1,2,...,H/2-1

5. *k = Uniform [-x,x], for k = 1,2,...,0/2-1

6. ‘u-"Nfz"'n

s - 1,2,...,002) -1,
ook T by for kT e (VD

Equation (17) can be rewritten to explicitly show #
how the signal adds around /2]

LU2m) LOR/2Y-R1M - ‘{ﬂji}-k‘
X ] +
(H/2)-k

Xins2)+x © 3

Asserting conditions #4 and #7;

in] -12nJk/N 16000y
x(H;E}-k[' ] .

in] i2wjk/N L9
p - & o (B2

+

-i[2xfk/N + ¢ ]
x(“fzj_k cosin (e (8/2)-%"

L]2xik/M + *:n;z;-kli
a

- 2 1(3!2}_k cos jx cos [2xik/N + ‘{H;i}-k]

With the above calculation shown to be true,
Equation 17 can be written as:

-i¢

-1 in]
xy = Xy @ iﬂf! & +

o
+ xﬂfﬂ 1
(H/2)-1

k=1
for | = 0,1,...,H-1.

x(“fzj_k cosjr cos[2nik/H + ‘{Hfl}-k]

Asserting condition #6;
xj - Xp + xﬂfﬂ cosjm +

(H/2)-1
2 éél x(ﬂjz}-k cosin cos[2=jk/H + 4{“}2}-k]
for § = 0,1,...,H-1.
Asserting conditions #3 and #1;

(H/2)-1

Ey = 2 = x{HJ?}-k cosin cos[2xjk/N + ‘(H}Z}-k]
for { = 0,1,...,H-1.
This is explicitly real-valued with zero-mean. This

can be transformed to be expressed more compactly.
It can be shown that

cos(2=f[(N/2)-k]/M - ‘{u;z}.kl ™
cosjn cos[2mjk/N + ﬁ{HKE}-k]'

Starting with

cos(2x) [(N/2)-k)/N - #.y 1y )

1[2x) (8/2-K)/N - by ]
1;2(5 H/2-k "

~A(2mf [(H/2)-k] /N - @ el

. 3 (H/2)-k )
1x] -12xk/N -1é

- 172[e !j- " a B2k,

-imf 12xik/N 14 }
& e [ (8/2) k}

-i[2njk/N + ¢ i)
- 1/2 cosjx (e (8/2)-k°

L[2xjk/N + ‘{n;z;-u'}
-]
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- cosin cos[2rmik/N + i(NfE}-k]

An intermediate form of Equation (17) is

(N/2)-1
X, = 2 kzj_ x{ﬂfi)-k cos(2rj[(H/2)-K]/M - ‘{H{Z}-kl

for § = 0,1,...,H-1,

It is possible to expand the sum to include the zero
term and the N/2 term since they are zero;

N/2
%y = 2 éﬂ X n/2) -k cos20] [ (N/2)-k]/N = &0y )

for § = 0,1,...,H-1,

Reversing the order of the sum;

N/2
Xy = 2 é xk cos(2xjk/N - 4kj for j = 0,1,...,K-1.
k=0

This sum explicitly produces a real-valued, zero-
mean random time signal. It is possible to create a
signal having a very specifie underlying frequency
content by determining the values of the .'ﬂk's. This

is accomplished through the use of the power
spectral density. The power spectral density is the
Fourier transform of the autecovariance. The

discrete autocovariance is E[xj xj+q]‘ This is the

"expected” or average value of the signal multipied
by itself at an incremental time, g, in advance. It

is possible to use the complex conjugate of ‘.ILJ* in
the autocovariance since %, is a real signal, and

the complex conjugate of a real number is the number
itself.

)i

Discrete autocovarlance = E[xj* xj+q

14

N-1 14, -12xjk/N N-1 -1¢,
=E [uzu Xe e Eﬂ X, e

H-1 H-1 “A2xik/MN  12x(j+q)m/N i¢, -is,
- X e ] E [= e ]
2o oo e

12x(]+q)m/N
& ]

ig, -ig

Hote that E [¢ “& ™ '{E :kk]'
H-1 , il2wqk/N

Therefore, E [:c‘1 xj+q] - Hxxc'qj = 355 X, @

AL H-1 -1 2=qm/N
Syxten) = Iw qgu Bxlrg) ©
form - 0,1,...,8-1,
N-1 ,  il2wqk/N

AL “il (s 1
- [ []
™ 2 L& "

-12wqm/MN

” Nil s N-1 iZnq(k-m)/N
- [
" 1S x"q-u

HAE 2
'3(1-} ;
12
Therefore (xm} = [fAw sxxcmm;] .

The power spectral density is a symmetric functienm,
symmetric about zerc because autocovariance is real.
This represents power over negative frequencies.
This symmetric PSD is called a two-sided P5D,

Sy lw) . Sometimes the PSD is represented to have

power only over positive frequencies, where the

function over positive frequencies is multiplied by
two which captures the total power of the two-sided
PSD in the one-sided PSD. If the PSD of interest is

a one-sided PSD, Gxx{w}. as is often available in

the literature, then xk = [1/2 Aw ﬁxx(w}].



