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“A MARKOV METHOD FOR SIMULATING NON-GAUSSIAN

WIND SPEED TIME SERIES™

Gerald M. McNerney
Wind America, Inc.

Paul S. Veers
Sandia National Laboratories
Albuquerque, NM 87185

ABSTRACT

This paper ‘details a method which can be used to construct a wind
simnlator capable of generating wind time series with any distri-
bution of hourly averages, exponentially decaying autocorrelation
function, -and a Gaussian realization of the turbnlence. The method
is based on a Markov random walk for hourly averages, and an inverse
inverse hourly transform of the power spectrum to produce short-term
turbulence. The Markov process .is discussed in the first secticn
and the turbulence generator is covered in the second section. A
description of the applications for which the model was developed
follows.

*This work supported by the US Department of Energy at Sandia
‘rNational Laboratories under -Contract No. DE-ACD4-76DP007B9.



INTRODUCTION

Wind speed time series may be periodic,
random non-Gaussian or random Gaussian
depending on the time scales involved.
Monthly averages appear to have a strong
periodic component over twelve months due to
the seasonal changes in the global wind phe-
nomenon. Hourly averages are a random pro-
cess with a probability density which resem-
bles a Weibull distribution. Instantaneous
readings -~ taken at one-second intervals
strongly resemble a Gaussian random process.
The purpose of this wind speed .simulation is
to provide input to a wind turbine generator
control system simulation. The control sys-
tem for a wind turbine has the task of decid-
ing when to turn. the turbine on or off to
balance the energy capture with fatigue life
consumption. This is currently accomplished
by continually sampling the wind, usually at
roughly one-second intervals, and using a
predetermined algorithm to decide if the tur-
bine should be on or off. The efficiency and
protection from fatigue damage afforded by
any particular algorithm is dependent on how
it performs over a long period of time.
Since high fregquency wind speed data is not
available for long times and a wide variety
of wind sites, a wind speed simulation is
necessary. The periodic nature of monthly
averages is not modeled. but both the non-
Gaussian hourly averages and the Gaussian
high frequency w&ind speed variations are
modeled.

The method of generating =2 sample of
hourly averages is a Markov Pprocess random
walk. A transition matrix relates each
hourly average with the “previous hourly
average based upon 1) the desired probabil-
ity density and 2) autocorrelation of the
wind speed process. These two properties of
the random process are uncoupled by defining
the transition matrix as a normalized pro-
duct of a diagonal probability matrix, to
control the probability density. and a sym-
metric decay matrix, to control the autocor-
relation. Thus, a series of hourly average
wind speeds can be generated with any desired
probability density function and an exponen-
tially decaying autocorrelation with speci-
fied rate of exponential decay.

The high fregquency wind speed ‘time
series, which* grepresents the _.atmospheric
turbulence, is superimposed on the hourly
averages. The turbulence is represented as
a Gaussian random process defined by its
power spectral density (psd).: This fregqguency
domain representation of the turbulence is
converted to the time domain using a fast
Fourier transform which is computationally
efficient. The functional form of the psd
reflects changes in mean wind speed and per-
mits adjustments to the turbulence intensity.
A tapering scheme is employed to produce a
smooth transition -between adjacent hours.

GENERATING HOURLY AVERAGES

The basic method for generating a realiza-
‘tion of hourly averages is a discrete time
random walk over a finite state space of wind
speeds. The process is Markovian in that the
Etep to each succeeding state depends only on
the preceding state and not on earlier states.
Such a process may be represented by a matrix
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called the transition matrix. In this repre-

(1)

-sentation.'tij is the one-step probability of

transition from state i to state J. The
transition matrix must have the following
two properties:

i) all the entries are non-negative,

ii) the sum of the entries in each row
is one.

Any matrix with these ©properties is
called a stochastic matrix. It is a useful
fact that the product of any two stochastic
matrices is.a stochastic matrix.

‘The property of transition matrices that
will be used is the so-called renewal theorem
which implies that if [T] is stationary, irre-
ducible, and aperiodic, then [T)] has the ergo-
dic property, which is
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where the 1limir is of the Mth exponent of the
transition matrix [{T], and the elements 17,
r;., ... . rp constitute a probability vector
{r} called the 1limiting probability density
function or limiting pdf (l). A transition
matrix is stationary if it does not change in
time, the irreducible property implies there

.are no closed or absorbing subsets cof -states,.

and a state is periodic if a random walk can
return to that state only on integral multi-

ples of the period.

The transition matrix can be used to rep-

- resent -2 random walk since for a starting
- probability wvector (vg} ., the nth step proba-

bilities are given by the vector {vp} = {vg!
[TIR. To use [T] in realizing a random walk,

‘first form the cumulative distribution matrix
~[C).s ~where ©ij-= J 1Tjg.

Then when in the

2.

K=1

‘state i, ‘choose a random number R from:a uni-

form distribution and the next state will be
k. where

. Lig-1 < B < Cjg



For our purposes, [T] needs to be ergo-
dic with the limiting pdf equal to the pdf
of hourly average wind speeds, and the re-
sulting time series must have an exponen-
tially decaying autocorrelation function
with a specified rate of decay or, egquiva-
lently. a specified base.

To do this, define the transition matrix
as the normalized product of two matrices,
one to determine the probabilities of arriv-
ing in each state and the other to induce
the desired autocorrelation property. A tran-
sition matrix can .be found which will pro-
duce any combination of autocorrelation and
pdf by varying these two matrices.

To begin the constructjon, the discrete
weighting function g3 = 2~ is chosen and a
decay matrix [G] is defined by

[Glij = 9i-3 - (3)

The transition matrix is then defined as
the matrix product

(T} = [N][G]I[P]. (4)

where [P] is the initial pdf matrix consist-
ing only of diagonal entries p;. Pz. .-... Pn.
and [N] is a diagonal normalization matrix
with diagonals

1/ng = M/ (F P 9y 3) - (5)

The elements of [T] are then

tij =gy % pj/ni o (6)
[T] has no zero entries so it is aperiodic
and irreducible. Since [T] has no time
dependence, it is also staticnary and there-
fore ergodic and has a limiting 'pdf {r} =

-ese Eg) In practice, the initial
pdf {pf and the limiting pdf {r} are differ-
ent. In order that the limiting pdf be the
desired result, the initial pdf must be com-
pensated. This is done by first finding a
functional form of the limiting pdf in terms
of the initial pdf and then numerically
inverting the relation.

To derive the relation between {r} and
{p}. an alternate form of [T]M will be given
which is then compared with equation (2).
First, observe that any power of [T] must
have the form

™ - mya™ ey . (7)
where IA]M_1 is a symmetric matrix of the
form
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where the limit has the form of eqguation (2).
Let the elements of
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[A"] be Ay, = Ay; .
then
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Comparison with the limiting matrix in equa-
tion (2) reveals that

"

A ../n, = A ./n, = A /nm = rllpl
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By = By (T, ™ * RBop/Pn = I/P5  (11)
Aip/fy = Byp/By = --0 = App/0y = /Py

Thus, all the Ajj's can be solved in terms of
one of them, say A,;. or

A.. = n.n.A ./n
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It follows that

2
r. = A n./n 13
j 191 }/ (13)
which has the proper form, i.e., no i depen-
dence. Since the limiting matrix is stochas-
tic and fr} is a probability wvector, it
follows that

E_‘k .

2
nl.) Epknk = 1, (14)
and thus

2
All = n, /Epknk A (15)

With this form for Aj;j. the elements of {r}
can be solved for

'r. = p.n./(Ep.n . 16

j PJ j ( Py k) (1s6)

The product jnj can be expressed in vector
form, which wllf be useful in inverting the

equation for {r} , thus {r} tentatively will
be expressed as

fr} = [P)[(Gl{p} . (17)

remembering that this product must be norma-
lized to represent a probability.

Equation (17) may be used in an itera-
tive process to find the initial pdf {p}! 1in
terme of the limiting pdf {r} which is known.
First choose {pl}® = {r} , then calculate

{ril = [pP]°[G1{p}° . (18)
Then normalize {r}l and calculate

{ptl = {p}° + F ({r} - {31y . (19)



where o < ¥ < 1 is a relaxation factor which

stabilizes the convergence. For successive
steps use TABLE 1. DESIRED AND REALIZED PDF'S
-1 n-1
{r}® = P17 161 ip} (20)
Wind Speed (m/s) Rayleigh pdf Realized pdf Initial paf
= n
p1? = (91"t 4 Py - 1th (21) - -0242 -0267 .0381
2 .0466 L0531 .0933
where {z}n must be normalized every step 3 L0657 L0667 L0822
after eguatiom (20). This process converges 4 .CBOS .0793 L0678
in 5 to .10 steps. The transition matrix can 5 0901 _DBEY Joi
be calculated since .the initial pdf 1s now s TR G g
known. However, the decay function hags been 5 sy - e
arbitrarily chosen and the resulting autocor- . . & .
relation may not have the desired rate of -0894 .0847 L0658
decay. To remedy this, a random walk must be 9 L0817 .0gG7 L0661
conducted and the autocorrelation calculated. 10 .0719 .o704 L0617
1f the rate of decay is too fast, T;l n change 11 L0812 SIS e
the decay function from g3 = 27! to g; = - nEG i “EE
B-l1l, where B < 2. 1f the decay is too slow, 5 - .
use use B > 2, and repeat the process. All : oAl L
14 .0311 .0287 0397

physically reasonable hourly autocorrelations
can be reached by starting initially with B = .p233 .D204 L0342
2 and AB = 0.4, then bisecting in five steps. L0170 L0179 L0290
The autocorrelation of the r‘amiom wallk will Joa gt azed
never be an exact exponential but if the B B .
first two hours are matched to the exponen- . : D
tial, the error on the 12th hour generally
will be 10 to 20 percent with the simulated
usually greater than exponential decay. This
ig beneficial in the sense that real wind
autocorrelation deviates from the exponential
in the same manner. The Markov process can-
not be made to give a diurnal cycle. The
procedure described above allows the operator
to choose any combination of autocorrelation
decay and limiting pdf.
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As an example, a Markov TProcess ‘wWas Ccon-
structed for a Rayleigh pdf with mean wind
speed of B m/s and autocorrelation with expo-
nential decay on a base of 0.87. The results
of the walk are given in Table I. The first
column is the wind speed in meters per second,
the second column is the desired Rayleigh
pdf, the third column is the pdf that was
realized by the walk after 8760 steps, and r
the fourth colunm is the initial pdf that was 1507
calculated during the program. The first 20 h
rows and columns of the associated transition H
matrix with two significant figures for ,,l

il I

}i ' ‘!J
0.05 level of confidence, which is normally H '
used with goodness-of-fit tests. Figure 1 6 ; i ] ;
is a plot of the first 1000 hours of the 60 2000 4000 8000 800.0 1000.0
random walk on hourly averages. TIME (HOURS)

10.04

WIND SPEED (M/S)

cla:itg of presentation are given in Table II.
The X goodness-of-fit test was performed
on the resulting distributions. It was found 50
that the resulting pdf just passes at the

FIG. 1. 1000 HOURS OF A RANDOM WALK OF HOURLY AYERAGES



._ TABLE I1. SAMPLE TRANSITION MATRI1X

i R e T i L
3 o ANehZe . MIY P10 D& 03 .02 nevodls)
2 .13 .33 .22 .13 .08 .05~ L03 .01 - .01
a .06 .16 .3z .20 .12 .07 .04 .02 .0l
a- .03 .08 .16 .31 _:.P8 .1l .D6. . JOZ 02
5 .02z .04 .09 .17 .31 .18 .10 .05 .02
6 .01 .oz .05 .09 .17 .30 ,17 .08 ' .05
7 .01 .ol .03 .0% .09 .17 .30 .16 .09
8 0r .0z .63 .05 .10 .17 .29 .16
9 .01 .0z .03 .06 .10 .17 .29

10 .01 .02 .03 .06 .10 .18

11 .01 .01 .02 .04 .06 .11

12 .01 .01 .02 04 07

13 .01 .01 .02 .04

14 .01 .01 .02 .03

18 .01. .01 .02

16 .01 .01

17 .01

18 L0l

19

20

TURBULENT WIND SIMULATION

After each hourly average wind speed is gen-
erated, second-by-second time series of the
Turbulent speed during that hour can be simu-
lated. This high frequency time series dur-
ing any hour is a Gaussian random process.
The second order statistical properties of
the process can be controlled using the tur-
bulence power spectral density (psd). In a
NASA summary of atmospheric environments by

Frost, Long and Turner(2)., the following
form for the psd of atmospheric turbulence
is suggested:
& -1
S(w)= 12.3Vh[ln(10/zo+1)ln(h/zo+1)] o
1+192[nmln(lo/zo+1)/v1n(n/zo+1)]5’3
where
w = frequency
h = height above ground
V = mean wind speed at h = 10 m

z0 = surface roughness coefficient

An example turbulence psd at a reference
height of 30 ft (10 m) with a surface rough-
ness coefficient of 0.1 is shown in Figure
2- For the wind velocity a Gaussian time
gseries described by this psd can be obtained
by the following method (3). Represent the
power in a narrow band, Aw, of the psd by
sine and cosine components, at the central
frequency and sum these inputs over all the
frequencies of interest. Such a velocity
time history is given by

10
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.07 .11 .8 .28 .13 .06 .03 .01 .01
.05 .p7 .12 .18 .27 .13 - .06 .04 .01 .01
.03 .05 .08 .12 .18 .27 .13 .06 .03 .01
.0z .03 .0%s .08 .1Z. .18 .27 .12 .06 .03
.01 .oz .03 .05 .08 .12 .l .26 .12 .06
.01 .01 .02 .04« .06 .08 .12 .18 .26 .12
.0l .01 .02 .03 04 .06 .08 .12 .l§ .25
o 2 (A. sinw.t + B. cose.t)
vie) = T e Z N j j = 233
where Aj and Bj, the real and imaginary parts

of the gpectrum at frequency wj. are randomly

chosen from a normally distributed set of
mean zero and variance 1 g
2 )

Sj = magnitude of the psd at frequency wj
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FIG 2. FREQUENCY CONTENT OF ATMOSPHERIC TURBULENCES



This is accomplished by making A; and Bj
sum of 12 or more uniformly disgribute
random variables and then scaling it to get
the proper variance value. The central limit
theorem guarantees conhvergence of V(t) to a
Gaussian form as the number of sinusoidal
components at different frequencies with
random phase becomes large. This is eguiva-
lent to band limited, filtered white noise.
1f the frequency spacing is <regular and
begins at =zero, the computation of the time
series can be accomplished with a discrete
inverse Fourier transform,  ¥-1, pf the com-
plex series,

n
= = o
V(t) =V + F jga (B + iBy) (24)

By using the fast Fourier transform, the
above eguation can be evaluated wvery effi-
ciently. Adjacent hourly simulations are
connected by creating an additional eight
minutes of high frequency data {68 minute
total) and overlapping into both the previous
and subseguent hour. The ends of each hour's
data are tapered with a sinuscidal weighting
function so that the sum of the two overlap-
ping sections maintains a uniform variance.

APPLICATIONS

The wind model described in this paper
wag constructed for use in a wind turbine
control simulation. The problem of deciding
when to turn on and off wind turbines to
optimize energy capture while at the sanme
time minimizing turbine fatigue life consump-
tion is still unsolved. especially on the
high wind side. Earlier work on this problem
on the low wind side came to conclusive re-
sults for specific wind sites using real high
frequency (0.5 hz) wind time series data
taken from two sites: Bushland, Texas. and
Albuquerque, New Mexico (4). in general,
this kind of wind data is not available., and
a wind simulator model was needed to fill the
gap. For each wind site characteristic, the
turbine control simulation will calculate the
percentage of time a turbine is on and con-
nected to the utility grid as well as the
number of starts the turbine experiences for
each algorithm and choices of parameters.
With this information, the percent energy
available that is captured and the fatigue
life consumption can be calculated. The
best algorithms to use in various combina-
tions of turbine-wind site characteristics
can then be determined.

Using the wind simulator will allow any
number of wind regime types to be tested for
essentially wunlimited duration, a feature
that is not possible using a real wind data
base.
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