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Abstract— Maximum energy and power can be generated by
a wind turbine by operating at the edge of dynamic stall. This
paper applies a novel nonlinear power flow control technique to
the nonlinear stall flutter problem that occurs when the wind
turbine passes into dynamic stall. A nonlinear aerodynamic
and structural model is developed that is representative of the
first torsional mode of a nominal 5 MW rated power wind
turbine blade. This model is analyzed using the power flow
control technique to determine the limit cycle behavior of the
nonlinear stall flutter condition of the first torsional mode. This
model is further analyzed to determine the effectiveness of
feedback control to generate nonlinear flutter suppression to
ensure stability while maximizing the performance of the wind
turbine. In addition, the limit cycle is shown to be a stability
boundary for the nonlinear system.

I. INTRODUCTION

Researchers have been attempting to maximize the energy
and power output of wind turbines for many years. Maximum
energy and power can be generated by a wind turbine by
operating at the edge of dynamic stall. As a result, limit
cycle behavior of a wind turbine induced by dynamic stall
must be investigated in order to make progress toward the
goal of maximizing the performance of wind turbines.

Many different fields of engineering have been performing
research in the analysis of limit cycle behavior. Specific
applications that relate to stall flutter of wind turbines include
helicopter blades in forward flight, gas turbine compressor
blades, and airplane wing flutter, all of which can be catego-
rized as Limit-Cycle Oscillations (LCO). The analysis and
control of LCO’s continues to be a challenge and an on-
going area of research. For example, Gopinath, Beran, and
Jameson [1] explore various methods in the computation of
time-periodic solutions for autonomous systems. The goal
was to determine the range of applicability of models of
varying fidelity to the numerical prediction of LCOs and
related evaluations. A simple aeroelastic model of an airfoil
with nonlinear structural coupling was used to show the
efficacy of the procedure. Several researchers are investi-
gating cyclic methods to compute LCO’s for potentially
large, nonlinear, systems of equations. One such method
by Hall, Thomas, and Clark [2] introduces a harmonic
balance technique for modeling unsteady nonlinear flows in
turbomachinery. Additional wing flutter LCO identification
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and control investigations by others are further discussed in
the following references [3], [4], [5], [6], [7].

The goal of this paper is to utilize the results of refs. [8],
[9], [10] to analyze the stall flutter of wind turbines and
design nonlinear flutter suppression controllers to maximize
the performance of wind turbines. To begin the analysis of
the stall flutter of wind turbines, a line integral of the power
flow for Hamiltonian systems is utilized to determine the
onset of a limit cycle. In particular, the work per cycle [11],
[12], [13], [14] defined by the line integral of the power flow

Wcyclic =
∮
τ

F · ẋdt = 0

is chosen since the time derivative of the Hamiltonian is the
generalized power flow for natural systems [8].

A specific application of these concepts is the analysis of
classical flutter. Classical flutter is a linear limit cycle that is a
result of the coalescence of a bending mode and a torsional
mode to produce a self-excited oscillation. Abramson [15]
describes the existence of a flutter mode as

We see now that negative work is done on the wing
by part of the torsional motion, by the flexural
motion, and by the elastic restoring forces; positive
work is done on the wing by part of the tor-
sional motion. The motion will maintain itself (the
condition for flutter) when the net positive work
just balances the dissipation of energy due to all
the damping forces. The magnitude of the positive
work done by the additional lift due to the twist
is directly dependent upon the phase relationship
between the coupled torsional and flexural motions
...

This concept of the existence of limit cycles based on
power flows leads to a balance between positive work and
energy dissipation due to damping in the stall flutter of wind
turbines.

This paper applies a novel nonlinear power flow control
technique to the nonlinear stall flutter problem that occurs
when the wind turbine passes into dynamic stall. A nonlinear
aerodynamic and structural model is developed that is repre-
sentative of the first torsional mode of a nominal 5 MW rated
power wind turbine [16] blade. This model is analyzed using
the power flow control technique to determine the limit cycle
behavior of the nonlinear stall flutter condition of the first
torsional mode. This model is further analyzed to determine
the effectiveness of feedback control to generate nonlinear
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flutter suppression to ensure stability while maximizing the
performance of the wind turbine. In addition, the limit cycle
is shown to be a stability boundary for the nonlinear system.

This paper is divided into three sections. Section 2 intro-
duces a nonlinear stall flutter model, discusses the effects of
additional nonlinearities, and presents the design and analysis
of a PID controller based on power flow control concepts.
The discussion begins with a linear flutter analysis of the first
torsional mode of a 5MW wind turbine blade and progresses
to a nonlinear stall flutter analysis and controller design.
Nonlinear power flow control design allows the partitioning
of the power flows of the nonlinear dynamical system into
three categories: storage, generation, and dissipation. By
identifying and balancing the power flows over a cycle,
the system stability and performance characteristics can be
determined. Further details using this technique are outlined
in references [9], [10]. Finally, Section 3 summarizes the
results with concluding remarks.

II. NONLINEAR STALL FLUTTER MODEL

This section develops a single degree-of-freedom (DOF)
model which is representative of the first torsional mode (on-
the-order of 5.58 Hz) of a large wind turbine (5 MW) blade.
Figure 1 depicts the simplified nonlinear model, where K
is the torsional stiffness, KNL the nonlinear torsional stiff-
ness, C the torsional damping, CNL the nonlinear torsional
damping, I the wing (or cross-section of the blade) section
torsional moment of inertia, and Mα, Mα̇ the aerodynamic
moments. The equation of motion is derived from Lagrange’s

Fig. 1. Nonlinear flutter model

equation
d

dt

(
∂L
∂α̇

)
− ∂L
∂α

= Qα (1)

where
L = T − V
T = 1

2Iα̇
2

V = 1
2Kα

2 + 1
4KNLα

4

Qα = Qdamp +Qaero +Qcontrol
Qdamp = −Cα̇− CNLsign(α̇)
Qaero = Mα(α) +Mα̇(α̇, α) and
Qcontrol = u = −KPα−KI

∫ t
0
αdτ −KDα̇

where L is the Lagrangian, T the kinetic energy, V the po-
tential energy, and Qα the generalized forces. The controller
input u consists of Proportional-Integral-Derivative (PID)
control action where KP is the proportional gain, KI the
integral gain, and KD the derivative gain. The aerodynamic

moments Mα and Mα̇ are generated based on the following
nonlinear hysteresis logic (also shown visually in Fig. 2)

Fig. 2. Nonlinear hysteresis aerodynamic moment characteristic

Mα(α) =

 ĈMαα for |α| < αstall
0 for |α| > αstall
0 for the return hysteresis cycle

and

Mα̇(α̇, α) =
{
ĈMα̇

α̇ for |α| < αstall
0 for |α| > αstall.

Applying (1) yields the equation of motion as

Iα̈+Kα+KNLα
3 =

−Cα̇− CNLsign(α̇) + u+Mα(α) +Mα̇(α̇, α)

which has many interesting properties given next. The next
sections will discuss the following regions: i) linear, ii)
nonlinear stall flutter, iii) further nonlinearities (such as cubic
stiffness and Coulomb friction), and iv) conventional PID
control design.

A. Linear Region
For |α| < αstall, the model is linear with KNL = CNL =

0 or

Iα̈+
[
C − ĈMα̇

]
α̇+

[
K − ĈMα

]
α = u

which produces typical linear aeroelastic behavior. Diver-
gence occurs when

ĈMα ≥ K for u = 0

where
ĈMα = KMαqA = KMαA

(
1
2
ρV 2

)
and q is dynamic pressure, ρ is density, A is the cross-
sectional area, d is the cord length, and V is the free stream
velocity. The angle of attack relative to the free stream
velocity vector is α. Torsional flutter occurs when

ĈMα̇
≥ C for K − ĈMα

> 0 and u = 0

where
ĈMα̇

= KMα̇
qAd.

Linear torsional divergence is typically determined and stiff-
ness and/or mass balancing are added as needed. Linear tor-
sional flutter rarely happens and is typically not of concern.
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B. Nonlinear Stall Flutter with Linear Dynamics

When the motion reaches |α| > αstall, the model becomes
nonlinear where

Iα̈+ Cα̇+Kα = Mα(α) +Mα̇(α̇, α)

with

H = 1
2Iα̇

2 + 1
2Kα

2

Ḣ = [Iα̈+Kα] α̇ = [−Cα̇+Mα(α) +Mα̇(α̇, α)] α̇

which produces a limit cycle when∮
τ

[Mα(α) +Mα̇(α̇, α)] α̇dt =
∮
τ

[Cα̇] α̇dt.

C. Nonlinear Stall Flutter with Nonlinear Dynamics

The nonlinear stall flutter can be further modified by
adding the nonlinear stiffness and damping

Iα̈+Cα̇+CNLsign(α̇)+Kα+KNLα
3 = Mα(α)+Mα̇(α̇, α)

with

H = 1
2Iα̇

2 + 1
2Kα

2 + 1
4KNLα

4

Ḣ =
[
Iα̈+Kα+KNLα

3
]
α̇

= [−Cα̇− CNLsign(α̇) +Mα(α) +Mα̇(α̇, α)] α̇

which produces a limit cycle when∮
τ

[Mα(α) +Mα̇(α̇, α)] α̇dt =
∮
τ

[Cα̇+ CNLsign(α̇)] α̇dt.

D. Controller Design

The nonlinear system can be modified by feedback control
to meet several performance requirements. A PID controller
is implemented to show the effects of feedback control. The
model becomes

Iα̈+ [K +KP ]α+KNLα
3 =

− [C +KD] α̇−CNLsign(α̇)+Mα(α)+Mα̇(α̇, α)−KI

∫ t

0

αdτ

with

H = 1
2Iα̇

2 + 1
2 [K +KP ]α2 + 1

4α
4

Ḣ =
[
Iα̈+ (K +KP )α+KNLα

3
]
α̇

= [−(C +KD)α̇− CNLsign(α̇) +Mα(α)
+Mα̇(α̇, α)−KI

∫ t
0
αdτ

]
α̇

which produces a limit cycle when∮
τ

[
Mα(α) +Mα̇(α̇, α)−KI

∫ t

0

αdτ1

]
α̇dt =∮

τ

[(C +KD)α̇+ CNLsign(α̇)] α̇dt.

Numerical simulations were performed for a representative 5
MW wind turbine blade first torsion mode. Three cases were
considered. Case 1 represents a passivity PID control design,
Case 2 represents a limit cycle oscillation for the system, and
Case 3 is without control, where the aerodynamic loads drive
the system unstable or generates more energy and power
into the system then can be dissipated. These three cases are

Fig. 3. Nonlinear Stall Flutter with Nonlinear Dynamics and
PID Control System Results: 3D Hamiltonian trajectory paths

Fig. 4. Nonlinear Stall Flutter with Nonlinear Dynamics and
PID Control System Results: Phase Plane Plots

shown in a Hamiltonian 3D surface with the resulting paths
(see Fig. 3). The corresponding phase plane plots are shown
in Fig. 4. Case 1 shows a stable, damped response that occurs
when the power flows due to the system damping (linear,
nonlinear) and derivative PID control action are greater than
the power flows due to the nonlinear aerodynamic loads and
the integral PID control action. Case 2 identifies the existence
of a limit cycle oscillation (LCO) which results in nonlinear
stall flutter when the power flows due to the derivative PID
control action and damping (linear, nonlinear) balance the
power flows due to the nonlinear aerodynamic loads and the
integral PID control action over a cycle. Case 3 shows an
unstable response where the power flows of the aerodynamic
loads and integral PID control action are greater than the
power flows due to the derivative PID control action and
damping (linear, nonlinear). Notice, the limit cycle shows
power flowing into the first torsional mode up to stall and
then the decay of this energy state due to the damping such
that the net work over a cycle is zero. These numerical results
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are given for energy/power flows; Case 1 (see Fig. 8), Case
2 (see Fig. 9), and Case 3 (see Fig. 10). In addition, the
numerical results for the nonlinear hysteretic aerodynamic
moments are shown for Case 1 (see Figs. 11), Case 2 (see
Fig. 12), and Case 3 (see Fig. 13). The corresponding control
effort and acceleration responses are given for Case 1 in
Figs. 14 and 15, respectively.

III. SUMMARY AND CONCLUSIONS

A nonlinear power flow control design methodology was
applied to a nonlinear stall flutter problem (dynamic stall)
that approximates the first torsional mode of a large wind
turbine single blade (on-the-order of 5MW and larger). The
methodology directly accommodated nonlinear structural and
discontinuous aerodynamic models. The limit cycles (nonlin-
ear stall flutter) were found by partitioning the power flows
and identifying when the dissipation and generation balanced
over a cycle subject to the storage (kinetic and potential
energies) in the system. The limit cycles were shown to be
stability boundaries. The flutter suppression control design
was initially assessed by designing a PID controller. This
initial first step starts the process of how to design a nonlinear
flutter/dynamic stall controller that could be incorporated into
the standard controllers for a typical 5MW turbine in below-,
at-, and above-rated power conditions. The closer the wind
turbine can safely operate to dynamic stall, the greater the
energy that can be generated.
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Fig. 5. Nonlinear Stall Flutter with Nonlinear Dynamics Case
1 Dissipative PID Control Results

Fig. 6. Nonlinear Stall Flutter with Nonlinear Dynamics Case
2 Neutral LCO Results



5

Fig. 7. Nonlinear Stall Flutter with Nonlinear Dynamics Case
3 Generative Results

Fig. 8. Power and Energy Flow Responses for Case 1 Dissipative
PID Control Results

Fig. 9. Power and Energy Flow Responses for Case 1 Neutral
LCO Results

Fig. 10. Power and Energy Flow Responses for Case 3
Generative Results

Fig. 11. Aero Moment Responses for Case 1 Dissipative PID
Control Results

Fig. 12. Aero Moment Responses for Case 2 Neutral LCO
Results
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Fig. 13. Aero Moment Responses for Case 3 Generative Results

Fig. 14. Control Effort for Case 1 Dissipative PID Control
Results

Fig. 15. Acceleration for Case 1 Dissipative PID Control Results


