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Abstract

Cyclic loadings produce progressive damage that
can ultimately result in wind turbine structural failure.
There are many issues that must be dealt with in
turning load measurements into estimates of

Backgr ound

Fatigue loadings on wind turbines are fairly
difficult to characterize because they are of variable
amplitude with the intensity of the variations
depending on the wind environment of the turbine.

component fatigue life. This paper deals with how the The loadings must be comprehensively described to
measured loads can be analyzed and processed to meebnduct fatigue analyses for various components.

the needs of both fatigue life calculations and

Therefore, the loads at many locations on a turbine

reliability estimates. It is recommended that moments must be determined (either from analysis or test) and
of the distribution of rainflow-range load amplitudes be archived for future use in the fatigue analysis. There is
calculated and used to characterize the fatigue loadinga need for a procedure that describes loads simply,

These moments reflect successively more detailed
physical characteristics of the loading (mean, spread,
tail behavior). Moments can be calculated from data
samples and functional forms can be fitted to wind
conditions, such as wind speed and turbulence
intensity, with standard regression techniques.
Distributions of load amplitudes that accurately reflect
the damaging potential of the loadings can be
estimated from the moments at any wind condition of
interest. Fatigue life can then be calculated from the
estimated load distributions, and the overall, long-
term, or design spectrum can be generated for any

while relying on a fairly small set of parameters
described over all wind conditions (wind speed and
turbulence). This procedure should be capable of
including information on how well the loads have been
determined, i.e., the uncertainty in the knowledge of
the loads.

There are a few universally applied procedures
currently in practice for describing fatigue loads on
wind turbines. First, the loading time series is
obtained either from prototype measurements or
computer simulation. The time series is then rainflow

particular wind-speed distribution. Characterizing the counted to identify significant cycles that produce

uncertainty in the distribution of cyclic loads is
facilitated by using a small set of descriptive statistics

fatigue damage. Rainflow counting is a procedure for
determining the damaging loading cycles (mean and

for which uncertainties can be estimated. The effects ofamplitude) in an irregular time seriésCycles are
loading parameter uncertainty can then be transferred usually summed into bins referenced to the mean and

to the fatigue life estimate and compared with other
uncertainties, such as material durability.

amplitude of the cycle. The end result is a histogram
of the number of occurrences of cycles in each load
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mean and amplitude bin, which condenses the data in The measured histogram is often taken tahee

the original time series - by factors of thousands. The characteristic distribution of loading cycles at the wind
cost of the condensation is that the resolution of the  conditions of the measurement (or simulation). This is
data is reduced to the bin size of the histograms. IEA an approach that could be called “data based” or “non-
fatigue recommendations suggest a minimum of 50  parametric” in that the definition of the distribution of
bins? However, any particular sample might use only load amplitudes is based on the measured (or

a fraction of the 50 available bins and resolution can besynthesized) data. Then the histograms are commonly
reduced beyond what is necessary for future analysis. used directly to calculate the fatigue lifetimes of

When the number of bins actually filled with data dips components. Sutherland, for example, applies this
below 16, the data are effectively reduced to four-bit  approach directly in the LIFE2 fatigue and fracture
accuracy (something that would never be allowed in  analysis codé. This approach has the advantage of

the original data acquisition and should never be simplicity; there is no need for distribution modeling.
permitted for future fatigue analysis). Finally, the However, it depends on a rather large set of data to
distributions are described as a function of average  describe each loading environment and does not lend
wind conditions determined over a short interval, itself readily to illustrating systematic trends across
typically ten minutes. wind conditions. We also seek to understand the
importance of loads beyond the measured range and
Figure 1 shows a typical description of the cycle include them in the analysis when found important.

amplitudes and means in a particular wind speed
interval. The plot was produced using the rainflow .
analysis features of the LIFE2 codleLIFE2 does 100
fatigue analysis based on these histogram-type
descriptions of loadings, one loading description for
each wind speed interval covering the entire operating
range. Separate distributions cover start-stop
transients and buffeting while parked in high winds.
Because the variation in the mean of each range is
often a minor factor in the damaging potential of the 01¢
loadings, this paper assumes the mean can be treated
as a constant, and focuses on the distribution of 0.01 - = - . |
amplitudes only. Figure 2 shows the same data plotted 0 Flatvsvise Bendli?lg Momelr?t Rangez[?\/lPa] 2
as a function of amplitude only. If the mean values are

close to the ultimate strength, this simplification will
lead to significant errors, but that situation should be
fairly rare for well designed components.
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Figure 2: Typical Load Amplitude Histogram for a
HAWT Flatwise Bending Moment.

An alternate approach which could be called
“statistical” or “parametric” is to calculate a few
statistics of the loading and use those statistics to
describe the loading distribution. Strictly speaking, a
histogram is a collection of statistics, where the relative
frequency of each histogram cell is a parameter, or
statistic, of the distribution. This leads to a set of about
50 separate statistics to describe the complete
discretized distribution. Statistical approaches usually
seek to condense the description by calculating a very
sy 2 2 small set of descriptive statistics. They have the
3 ean Stres® drawback of only being as good as the assumed
parametric form and can be overly restrictive as a
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Figure 1: Typical Load Histogram for a HAWT result. On the good side, by condensing the number of
Flatwise Bending Moment over Cycle Mean and descriptive parameters, they promote understanding,
Amplitude. illustrate systematic variations and trends, and permit

smooth extrapolation where data are missing.
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Highly condensed statistical approaches are not new. Using Moments of Load Amplitudes to

Veers proposed the use of Rayleigh distributions of Describe Fatigue Loading

stress amplitudes, which rely on only the RMS of the

stress histories to describe the entire distribution. The The statistical moments of random quantities are
problem is that the Rayleigh distribution appears to be characteristic values that can be used to approximate
appropriate only for a single location on a single type their distribution functions. The first three moments,
of wind turbine (flatwise loads on vertical axis wind L, of the rainflow-range amplitudes, are defined
turbines). Jackson proposed a scheme based on an here as:

exponential fit to loading amplitudes from relatively

short data sets from horizontal axis wind turbifies. = E[S (1)
Kelley’ continues in this vein emphasizing the

exponential nature of the low cycle, high stress (LCHS) Lo -9s . og? = E[(S— H9 2] 2)
tail of the distribution. In this approach, only tkpe )7

of an exponential fit to the highest of the cycle

amplitudes is used to describe the entire distribution. E[(S— H9 3]

It is not yet clear just where the fit should start, nor H3= ————F—— 3)
that the exponential distribution is always the s

appropriate choice.
whereE[.] is the expectation (or average) operator. The
Recently, Ronold, et &land Lange and Winterstein first moment is the mean or average amplitude, a

used a method for organizing loads based on the measure of central tendency. The second moment is
moments of the measured load amplitudes. Successivéhe Coefficient of Variation (COV), which is the
moments are particularly descriptive of the load standard deviation divided by the mean, a measure of

distribution: the first moment is the mean, the second the distribution spread. The first two moments can be
moment describes the spread about the mean, and theexactly matched by any two parameter distribution, and
higher moments reflect more detail in the tail behavior are often fitted with the Weibull (of which the
of the distribution. The moments are then functionally exponential and Rayleigh are special cases with COV
fitted to both wind speed and turbulence intensity. Theof 1.0 and 0.523, respectively). The third moment is
actual distribution of stress amplitudes at any given  the skewness, which provides more detailed
wind condition can be estimated from the moments as information on the tail behavior of the distribution.
described in Winterstein and Lanife(This method of ~ Since load amplitude data are often well fit by a
calculating moments and estimating stress distribution®Veibull distribution, a slight distortion of the Weibull
has now been included in LIFE9) distribution is used to exactly match the first three
statistical moment¥ The three-moment match
The main purpose of the Ronold et al. and Lange and produces a distortion of the standard Weibull
Winterstein papers, however, was to show how to distribution function so that it plots as a quadratic
evaluate safety factors needed to produce a rather than linearly on a Weibull plot.
predetermined level of risk of fatigue failure.
Explanations were aimed at illustrating the uncertainty An example data set will be used here to illustrate the
in the stress distributions due to limited data. So, the procedure for analyzing fatigue loading data to produce
details of calculating the statistical quantities and usinga comprehensive load definition over all wind
them to describe the load distributions over all climate conditions. The data displayed here were collected
conditions was given secondary importance in the from the Advanced Wind Turbines’ AWT-26 P2
presentations. Therefore, the advantages of this prototype in Tehachapi, California in 1994. They are
approach may not be clearly evident from the existing perhaps a typical example of data collected on
literature. The purpose of this paper is to illustrate the prototype turbines during development efforts around
methods developed previously and to show why this  the world. These data are from a single location on the
statistical approach is likely to accomplish the needs ofturbine - the blade root flatwise bending - but could be
fatigue-life prediction, loading-spectra definition, and from any component of loading with fatigue damaging
uncertainty analysis. potential. The data consist of over thirty hours of
turbine operation collected in ten minute segments.

3
American Institute of Aeronautics and Astronautics



ASME Wind Energy Symposiurileld in conjunction with thAlIAA Aerospace Sciences Meeting,
Reno, Nevada, January 6-9 1997.

Figure 3 shows the number of ten minute samples thatDistribution shapes can be similarly approximated at
fall into each wind bin divided over both wind speed  any wind speed bin from the moments of the
and turbulence intensity, defined as standard deviationamplitudes in that bin.

of wind speed divided by mean wind speed. Wind , , , , , ,

speed runs from about 5 to 20 m/s and turbulence .99999 .

intensity ranges from about 8 to 30%, although most of U arc]jqrrz)altlitcL:u\j/s e?ttﬁll o
the samples fall on the lower half of that range. Figure 3.999 - Weiull - '-r/"j',.
3 illustrates one of the difficulties of determining the = 99 | onormal --- |
long-term loading spectrum directly from measured g ’

data even with a large sample. The measurementsare™ .95 | -
rarely indicative of the test-site distribution of climate _g

conditions, much less of any particular site for which g o L i
the turbine is likely to be installed. Like most =

measurement campaigns, the data are sampled more 3 o L |
heavily in high wind conditions where the turbine ' ,

response is more interesting and provides information

on high wind response. Simply including all the 40 = c i é é é 1IO
measurements into a global distribution would not Normalized to ean oad mplitude
produce a loading spectrum indicative of any site. The

data should be used to determine how the turbine Figure 4: Distribution of amplitudes in th¥ = 11.5,
responds as a function of wind conditions and then it | = 155 bin, along with various fits to the data, The
can be applied to any site for which it might be quadratic Weibull is based on three moments.

intended, including standard type-classification sites in

certification standards. o _ )
Fittin oments of the Rainflow mplitudes to

Wind Conditions

The moments of the rainflow-range amplitudes were
calculated for all the 30-plus hours of data. Figures 5,
6, and 7 show the results for the mean, COV, and
skewness, respectively. There appears to be an
upward, approximately linear trend of the mean with
wind speed, a mild tendency for COV to decrease with
wind speed, and no particular trend of skewness with
wind speed.
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Figure 3: Number of 10 minute samples in each wind
condition bin for the AWT-26 prototype measurements
used as an example.
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Within each wind bin, histograms of rainflow : Tur ulence | ——0.215
amplitudes have been combined from all the ten- Intensity - 82‘7‘2
minute samples that share the bin characteristics for . 0305
average wind speed and turbulence intensity. Figure4  ° 5 ! o
shows the load amplitude data at one particular wind wind Speed

condition, 11.5 m/s wind speed and 0.155 turbulence Figure 5: First moment (mean load amplitude) from
intensity, on a Weibull probability scale. Thisscale  the AWT data set.

enhances the tail of the distribution where much of the

fatigue damage is caused. A quadratic Weibull fit Moment behavior as a function of wind conditions is

created to match the first three moments of the load  jjjystrated by a standard regression fit of the moment
amplitude data is superimposed on the plot.

o
[
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data over the two dimensional space of wind sp&ed,
and turbulence intensity, with the following
functional form.

I, 2

E[] =3 _fE
re

F oz

Vet andl s are the reference values of the independent
variablesV and|. (Ronold used a polynomial
regression oveY andl rather than the power law
shown here.)

(4)
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Figure 6: Second moment (load amplitude COV)
measurement from the AWT data set.
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Figure 7: Third moment (load amplitude skewness)
measurement from the AWT data set.
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We choose/,es andl e values as the geometric mean
values found from the data; for example,

_ 1/
Vief = (MV2... \Wh) :

in terms of the individual mean wind speed,
observed in each 10-minute segment. In this example
Viet =11.4m/s, and the analogous geometric mean of

5

the turbulence intensity iss = .157. By using these
geometric means to normalize our fit, we achieve
uncorrelated estimates of the parametgrb;, andc;,

herein denoted b , by , and G to distinguish them
from the true (but unknown) values.

In addition to the estimates , i , and G , a standard

regression analysis provides several other useful pieces
of information. These include the corresponding
standard deviations of the estimate;sdi , Op , and

gc which reflect the effect of limited data. These are

commonly reported in normalized form by associated
“t-statistics,” which are the inverse of the COV
definition:

and similarly fort, andt; . Larget values indicate

relatively important parameters; i.e., parameter
estimates that are “significantly” different from zero,
as compared with their statistical uncertainty. One
may, for example, regard variables withx 2 as
statistically significant, since if the trug = 0, the
observationta = 2 corresponds to the improbable

event that the estimatg happens to fall 2 standard
deviations away from its mean.

Finally, regression also supplies a gross measure of the
adequacy of the fit in Eq. 4. This is commonly

reported as the unitless quantity, the fraction of the
variability “explained” by the predictive equation. In

this case, because linear regression is applied to the
logarithm of Eq. 4R? is computed as

N
> (g =In i )?
RE=1-1EL (5)
> (nm)?
i=1

Herey; is the observed moment value computed
directly from the data, whilgy; is the corresponding

estimate obtained from Eq. 4 with its estimated
parameters; , b, andG . R? = 1 implies perfect
prediction; i.e.u = y; for all observations. Table 1

American Institute of Aeronautics and Astronautics
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Table  Load-Amplitude Moments vs. Wind Condition]- ~ *°
Regression Results
2 IR
Moment| Parameter] Parameter t Rl | e
Symbols | Estimates s Skewness 7
a1 0.254 117. cov
Mean by 1.003 21.7 | 0.77 '
(,Ul) C1 0.380 7.14 0.5 ——
a 1.125 417. e - T T
0
cov b, -0.189 -14.6 0.86 & 0 15 20
Wind Speed (m/s)
(1) C2 0.160 10.7 Figure 8: Functional fits of the first three moments
Skew- a3 1.822 192. over all wind speeds at the reference turbulence
intensity,| = 0.16.
ness b3 -0.167 -5.90 0.26] y
() 3 -0.008 0.25 Reasons Why the Definition éfUsed Here May
Not Be Best It would seem from Table 1 tHads

calculated here is not necessarily the best defining
factor in segregating stress responses at the same
average wind speed. From a physical point of view, one
would expect that some measure of the roughness in
the inflow must affect the stress amplitude
distributions. There are many reasons wimyay not

_ - be adequate to describe it. The greatest deficiency is
exponent (eitheb; or ¢) reflects minimal dependence probably that it does not reflect any of the spatial

.th .
OI thei dmom(ejnt onv ofrll rtesdpgcnvily.hThe onlyt_ thi variations in the flow. Several researchers have
S rongl e_pe;rr: f?ﬁe refiec ef thy? ::? ex??nden N N1Sreached that conclusion and are proposing better
exampie 1S that the mean of the foad amplitudes measures of inflow damaging potential. Kelly has

?ependsl stt_rongr:y on w(;nd spkele((jj,(blb=l.t(|)t|mt|%lles a suggested measures of atmospheric stability and shear
tlr?'egr rela |0n§rh|p) an v;ea dythf‘(: ou Ot € gg}\-/ stress, which should have substantial influence on the
ird power). The second and third moments, spatial distribution of wind speed fluctuatiohs.

_ar:jd ske\évnetss, d_eglend e\aen mﬁﬁ)wfalfly cin tgoth Barnard and Wendell suggest using two point
indepen e? I""?‘”gl es gn tm]lg : de ade_?_ 0 be thi measurements to directly measure the spatial variations
approximately independent ot wind conarions in this - ., 46 \ing!3 Both require additional measurements

exampliz. Figure 8.520WS tr:je ftutr;]Ct'OQal f'tf t(_) zti_” three of either temperature, all three wind components, or
moments versus wind speed at the characteristic wind speed at additional locations, which is an

turbulence intensityles. impediment to easy implementation. However, the
additional measurements may ultimately be required.
Here,l was estimated from the standard deviation of
the wind speed over each ten minute interval with no
additional processing. Connell et*lhave noted that
calculations of should be done with some sort of “de-
trending,” or high-pass filtering that will remove the
' long term fluctuations while preserving the variations
likely to drive rotor dynamics. It may also be that such
a filteredI will better correlate to turbine response.
This is a topic for which future study is planned.

summarizes all the mean parameter valtes)ues,
andR? values of each parameter for each moment.

By examining the values of the parameters antlaofd
R?, substantial information on the character of the
loading can be obtained. For example, a small

Thet values of the parameters reflect how confident
you can be in a nonzero value of the coefficient. Since
theg, reflect the regression fit at the reference
conditions, there should be high confidence in their
values. For the exponents, a zero value means no
dependence of the moment on the particular variable
eitherV or I. All of the coefficients in this example
exhibit high levels of significance, except for a clear
lack of dependence of skewnesslorMost of the
variability in the mean and COV is explained by the
regression, as indicated by relatively highvalues of Loading Cycle Rate The rate at which cycles are
0.77 and 0.86, but the regression explains very little of accumulated is also an important quantity in

the skewness variationB{= 0.26), which indicates conducting a fatigue analysis. The cycle rate can be
that there is a lot of sample to sample variation that is treated just like the moments of the load amplitudes in
uncorrelated with eithev or 1. the previous section. Figure 9 shows the AWT cycle

6
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rate data plotted versus wind speed. Again, for this
example, there is minimal dependencel pand
significant dependence dn However, the relative
size of the change in cycle rate with wind speed is
small enough£15%) that variations in the rate will
have a minimal effect on lifetime estimates.

[ — - — — —a—
———

N

Tur ulence
Intensity

——0.095
—=0.125|
- =-0.155|
—-0.15
——0.215|
—— 0.245|

+ 0.275|

=« 0.305

Cycle Rate (Hz)

12‘ 1‘
Wind Speed
Figure 9: Cycle rates in each of the wind condition

bins from the AWT data set.

20

Using the Loading Model in Fatique and
Reliability Analysis

Because the trends with turbulence intensity are small
in this data set, we will restrict the rest of the loading
descriptions in this example to wind speed dependenc
only. Analysis including the two dimensional
regression has been published by Lange and
Wintersteirl and by Ronold et dl. The plotting is
simplified and perhaps the approach may be more
clearly demonstrated by restricting the example to one
dimension V.

Once the moments have been described over all wind
speeds by Eq. 4, the loading distributions can be
estimated using the procedures described in detail Ref:
8 and 9. Figure 10 shows the resulting load amplitude
distributions, plotted as exceedence diagrams, for
several wind speeds. These wind speeds reflect the
short term (10 minute) average typically used in data
gathering. The shapes are quite similar especially due
to the fact that the COV and skewness (second and
third moments) depend only weakly on wind speed (se
Figure 8).
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Figure 10: Load distributions at various wind speeds

estimated from the functional fits to the moments over

wind speed.

t
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With the load distributions defined conditionally on the
wind speed, it is a fairly simple matter to determine the
long-term load distribution, which is sometimes called
the design spectrum. It is calculated by integrating the
conditional distributions over all wind speeds.

F(9= RSV (V) av (6)

0

wheref(V) is the wind speed probability density

Sunction andrF(gV) is the distribution of load

conditional on wind speed(.) could be either the
density function, the cumulative distribution function,

or the inverse cumulative distribution function (which

is the same as the exceedence diagrams shown in
Figure 10). Cut-in and cut-out conditions can also be
applied by integrating between the limits. Figure 11
shows design spectra in terms of exceedence diagrams
calculated from Eq. 6 for Rayleigh distributed wind
speeds with two different long-term averages, 6 and 7

h/s. The two spectra are quite different in shape from

any of the short term distributions in Figure 10. The
effect of different sites is readily seen as about a factor
of three difference in the probability (frequency of
occurrence) for a given load amplitude in the high
amplitude end of the plot in Figure 11. The fatigue
damage is then calculated directly from the long-term

Qistribution and the loading frequency.
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1.00E+00 Ny = c = Cnoml__&“ c (7)
= fail = - M— m
N E[S] H Sond " (s

N\,
N
1.00E-02 \

ity

N

~ HereN = C/S" is the component'S$-Ncurve,
~‘\\\7m/s Raylern parameterized by a slope(fixed) and intercep€
1.00E-04 (uncertain). S,omandC,ominclude all the factors that
N influence loading and material resistance, respectively.
m/s Rayleih "~ "N Ref. 8 includes a proposed definition of these nominal
~ factors, which will not be repeated here. (Sufficeitto
. ~C say hereegreflects uncertainty itg, due to limited

0 , ; ; 7 knowledge both of the wind climate distribution - i.e.,
Load Amplitude f(V) is the probability density of mean wind speed - and

Figure 11: Overall load distribution summing all the  of the loads due to limited data at various wind speeds.

load distributions at different wind speeds weighted by & reflects uncertainty in material strength and

Rayleigh wind-speed distributions with 6 and 7 m/s  fatigue modeling.)

average wind speeds.

1.00E-0

Exceedence Probab il

1.00E-0

Numerical routines like FAROW could be used here

The advantages of describing the loading first - to continue with the uncertainty analysis including the
conditionally on wind conditions and then applying the detail needed to accurately reflect the physical
conditional definition to SpeCifiC, Site-speCiﬁC wind situation. To include an ana|ytica| solution more

distributions is firstly that the significance of climatic
conditions can be determined. Parametric studies are
easily accomplished by varying the wind speed
distributions (or, if included in the analysis, the
turbulence parameters). Secondly, fatigue analyses carf
be easily adapted to the wind conditions of different .
sites or certification class designators with thisloads S = Son¥'s ¥ s=exp(ta, § £)
model. Recall that wind turbine certification standards ¢*=c v yc=exploy, @ B)
are usually tied to a prescribed site characterization or
“class.”

fitting for a short example, we here let. and £g be
assumed to be independent and lognormally

distributed. FORM estimates the most likely values to
use failure as

which are equal to the nominal loading and strength

. —- _l .

FOR -Based Uncertainty nalysis and esin _tlmes ‘t‘he_safe_zty 'factor’?;g; andy.t. Herg/? = ¢ (1) .

oad Spectra is the “reliability index” associated with a target failure
_ . probabilitypr per service life @™ is the inverse

Finally, we show how the foregoing results (e.g., the  Gaussian distribution function)as = m gi,g/ gy and

long-term load distribution in Fig. 11) can be ac = dincloy , in terms of the net standard deviation
conveniently adjusted to reflect uncertainty in both of the safety margit:

loading and material behavior. We rely here on

concepts from first-order reliability methods (FORM). \/ﬁ
These provide not only an efficient method to estimate “M = (MO g)” +0in ¢
the fatigue reliability of a wind turbine component, but

also the particular combination of uncertain factors ~ With the lognormal model, we also have that
most likely to cause such failure (the FORM design

point). Ojns = 4/In(1+COVA); and

The program FAROW uses FORM methods to Opne = Jln(1+ COV%).
propagate uncertainty in 15 different factors; here for

simplicity we consider the two (net) uncertain factors, . . .
As a numerical example we consider a blade material,

£c and s, to reflect uncertainty irS-Ncurve and with S-Ncurve characterized by expondnt 6, and

long-term loads distribution, respectively. The coefficients of variation COY= 0.10 and CO¥ =

resulting number of cycles to failurbly is 0.50, respectively. The above results then yieldi,s
=0.60,0y = 0.76, anchis = 0.78. This gives a load
factorys = 1.2 to achievex =10? (8=2), andys= 1.3
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to achievep; = 10° (B8=3), per service life. These conditions at a given site or as described in a

factors can then be applied to a nominal, best- certification requirement. The uncertainty in the
estimated fatigue load spectrum; e.g., by rescaling the loadings can then be fed into a probabilistic analysis to
long-term distribution in Fig. 11. In Figure 12, a determine the safety factor required to achieve the
safety factor of 1.3 is applied to the 7 m/s data. Notice desired level of reliability, which is related to the

that the effect is much smaller than the change in probability of premature failure. All of these features
average wind speed of 1 m/s. This implies that a of the moment-based approach to load modeling were

loading uncertainty (which includes uncertainty in the illustrated with a specific example.
wind speed distribution) with COV = 0.10, as assumed
in this example, may be a relatively small uncertainty
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